Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lanai.c
Go to the documentation of this file.
1 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <[email protected]>
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of the GNU General Public License
5  * as published by the Free Software Foundation; either version
6  * 2 of the License, or (at your option) any later version.
7  *
8  * This driver supports ATM cards based on the Efficient "Lanai"
9  * chipset such as the Speedstream 3010 and the ENI-25p. The
10  * Speedstream 3060 is currently not supported since we don't
11  * have the code to drive the on-board Alcatel DSL chipset (yet).
12  *
13  * Thanks to Efficient for supporting this project with hardware,
14  * documentation, and by answering my questions.
15  *
16  * Things not working yet:
17  *
18  * o We don't support the Speedstream 3060 yet - this card has
19  * an on-board DSL modem chip by Alcatel and the driver will
20  * need some extra code added to handle it
21  *
22  * o Note that due to limitations of the Lanai only one VCC can be
23  * in CBR at once
24  *
25  * o We don't currently parse the EEPROM at all. The code is all
26  * there as per the spec, but it doesn't actually work. I think
27  * there may be some issues with the docs. Anyway, do NOT
28  * enable it yet - bugs in that code may actually damage your
29  * hardware! Because of this you should hardware an ESI before
30  * trying to use this in a LANE or MPOA environment.
31  *
32  * o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33  * vcc_tx_aal0() needs to send or queue a SKB
34  * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35  * vcc_rx_aal0() needs to handle AAL0 interrupts
36  * This isn't too much work - I just wanted to get other things
37  * done first.
38  *
39  * o lanai_change_qos() isn't written yet
40  *
41  * o There aren't any ioctl's yet -- I'd like to eventually support
42  * setting loopback and LED modes that way.
43  *
44  * o If the segmentation engine or DMA gets shut down we should restart
45  * card as per section 17.0i. (see lanai_reset)
46  *
47  * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48  * API says it isn't exactly commonly implemented)
49  */
50 
51 /* Version history:
52  * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53  * v.0.02 -- 11-JAN-2000 -- Endian fixes
54  * v.0.01 -- 30-NOV-1999 -- Initial release
55  */
56 
57 #include <linux/module.h>
58 #include <linux/slab.h>
59 #include <linux/mm.h>
60 #include <linux/atmdev.h>
61 #include <asm/io.h>
62 #include <asm/byteorder.h>
63 #include <linux/spinlock.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/interrupt.h>
69 
70 /* -------------------- TUNABLE PARAMATERS: */
71 
72 /*
73  * Maximum number of VCIs per card. Setting it lower could theoretically
74  * save some memory, but since we allocate our vcc list with get_free_pages,
75  * it's not really likely for most architectures
76  */
77 #define NUM_VCI (1024)
78 
79 /*
80  * Enable extra debugging
81  */
82 #define DEBUG
83 /*
84  * Debug _all_ register operations with card, except the memory test.
85  * Also disables the timed poll to prevent extra chattiness. This
86  * isn't for normal use
87  */
88 #undef DEBUG_RW
89 
90 /*
91  * The programming guide specifies a full test of the on-board SRAM
92  * at initialization time. Undefine to remove this
93  */
94 #define FULL_MEMORY_TEST
95 
96 /*
97  * This is the number of (4 byte) service entries that we will
98  * try to allocate at startup. Note that we will end up with
99  * one PAGE_SIZE's worth regardless of what this is set to
100  */
101 #define SERVICE_ENTRIES (1024)
102 /* TODO: make above a module load-time option */
103 
104 /*
105  * We normally read the onboard EEPROM in order to discover our MAC
106  * address. Undefine to _not_ do this
107  */
108 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109 /* TODO: make above a module load-time option (also) */
110 
111 /*
112  * Depth of TX fifo (in 128 byte units; range 2-31)
113  * Smaller numbers are better for network latency
114  * Larger numbers are better for PCI latency
115  * I'm really sure where the best tradeoff is, but the BSD driver uses
116  * 7 and it seems to work ok.
117  */
118 #define TX_FIFO_DEPTH (7)
119 /* TODO: make above a module load-time option */
120 
121 /*
122  * How often (in jiffies) we will try to unstick stuck connections -
123  * shouldn't need to happen much
124  */
125 #define LANAI_POLL_PERIOD (10*HZ)
126 /* TODO: make above a module load-time option */
127 
128 /*
129  * When allocating an AAL5 receiving buffer, try to make it at least
130  * large enough to hold this many max_sdu sized PDUs
131  */
132 #define AAL5_RX_MULTIPLIER (3)
133 /* TODO: make above a module load-time option */
134 
135 /*
136  * Same for transmitting buffer
137  */
138 #define AAL5_TX_MULTIPLIER (3)
139 /* TODO: make above a module load-time option */
140 
141 /*
142  * When allocating an AAL0 transmiting buffer, how many cells should fit.
143  * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144  * really critical
145  */
146 #define AAL0_TX_MULTIPLIER (40)
147 /* TODO: make above a module load-time option */
148 
149 /*
150  * How large should we make the AAL0 receiving buffer. Remember that this
151  * is shared between all AAL0 VC's
152  */
153 #define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
154 /* TODO: make above a module load-time option */
155 
156 /*
157  * Should we use Lanai's "powerdown" feature when no vcc's are bound?
158  */
159 /* #define USE_POWERDOWN */
160 /* TODO: make above a module load-time option (also) */
161 
162 /* -------------------- DEBUGGING AIDS: */
163 
164 #define DEV_LABEL "lanai"
165 
166 #ifdef DEBUG
167 
168 #define DPRINTK(format, args...) \
169  printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170 #define APRINTK(truth, format, args...) \
171  do { \
172  if (unlikely(!(truth))) \
173  printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174  } while (0)
175 
176 #else /* !DEBUG */
177 
178 #define DPRINTK(format, args...)
179 #define APRINTK(truth, format, args...)
180 
181 #endif /* DEBUG */
182 
183 #ifdef DEBUG_RW
184 #define RWDEBUG(format, args...) \
185  printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186 #else /* !DEBUG_RW */
187 #define RWDEBUG(format, args...)
188 #endif
189 
190 /* -------------------- DATA DEFINITIONS: */
191 
192 #define LANAI_MAPPING_SIZE (0x40000)
193 #define LANAI_EEPROM_SIZE (128)
194 
195 typedef int vci_t;
196 typedef void __iomem *bus_addr_t;
197 
198 /* DMA buffer in host memory for TX, RX, or service list. */
199 struct lanai_buffer {
200  u32 *start; /* From get_free_pages */
201  u32 *end; /* One past last byte */
202  u32 *ptr; /* Pointer to current host location */
204 };
205 
207  unsigned rx_nomem;
208  union {
209  struct {
210  unsigned rx_badlen;
211  unsigned service_trash;
212  unsigned service_stream;
213  unsigned service_rxcrc;
214  } aal5;
215  struct {
216  } aal0;
217  } x;
218 };
219 
220 struct lanai_dev; /* Forward declaration */
221 
222 /*
223  * This is the card-specific per-vcc data. Note that unlike some other
224  * drivers there is NOT a 1-to-1 correspondance between these and
225  * atm_vcc's - each one of these represents an actual 2-way vcc, but
226  * an atm_vcc can be 1-way and share with a 1-way vcc in the other
227  * direction. To make it weirder, there can even be 0-way vccs
228  * bound to us, waiting to do a change_qos
229  */
230 struct lanai_vcc {
231  bus_addr_t vbase; /* Base of VCC's registers */
233  int nref; /* # of atm_vcc's who reference us */
235  struct {
237  struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
238  } rx;
239  struct {
240  struct lanai_buffer buf;
241  struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
242  int endptr; /* last endptr from service entry */
244  void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245  } tx;
246 };
247 
251 };
252 
254  unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
255  unsigned vci_trash; /* # of cells dropped - closed vci */
256  unsigned hec_err; /* # of cells dropped - bad HEC */
257  unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
259  unsigned pcierr_serr_set;
264  unsigned service_notx;
265  unsigned service_norx;
267  unsigned dma_reenable;
268  unsigned card_reset;
269 };
270 
271 struct lanai_dev {
275  struct lanai_vcc **vccs;
276 #ifdef USE_POWERDOWN
277  int nbound; /* number of bound vccs */
278 #endif
280  vci_t num_vci; /* Currently just NUM_VCI */
283  struct pci_dev *pci;
284  DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
285  DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
287  int naal0;
288  struct lanai_buffer aal0buf; /* AAL0 RX buffers */
289  u32 conf1, conf2; /* CONFIG[12] registers */
290  u32 status; /* STATUS register */
293  struct atm_vcc *cbrvcc;
294  int number;
296 /* TODO - look at race conditions with maintence of conf1/conf2 */
297 /* TODO - transmit locking: should we use _irq not _irqsave? */
298 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
299 };
300 
301 /*
302  * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
303  * This function iterates one of these, calling a given function for each
304  * vci with their bit set
305  */
306 static void vci_bitfield_iterate(struct lanai_dev *lanai,
307  const unsigned long *lp,
308  void (*func)(struct lanai_dev *,vci_t vci))
309 {
310  vci_t vci;
311 
312  for_each_set_bit(vci, lp, NUM_VCI)
313  func(lanai, vci);
314 }
315 
316 /* -------------------- BUFFER UTILITIES: */
317 
318 /*
319  * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320  * usually any page allocation will do. Just to be safe in case
321  * PAGE_SIZE is insanely tiny, though...
322  */
323 #define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324 
325 /*
326  * Allocate a buffer in host RAM for service list, RX, or TX
327  * Returns buf->start==NULL if no memory
328  * Note that the size will be rounded up 2^n bytes, and
329  * if we can't allocate that we'll settle for something smaller
330  * until minbytes
331  */
332 static void lanai_buf_allocate(struct lanai_buffer *buf,
333  size_t bytes, size_t minbytes, struct pci_dev *pci)
334 {
335  int size;
336 
337  if (bytes > (128 * 1024)) /* max lanai buffer size */
338  bytes = 128 * 1024;
339  for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340  ;
341  if (minbytes < LANAI_PAGE_SIZE)
342  minbytes = LANAI_PAGE_SIZE;
343  do {
344  /*
345  * Technically we could use non-consistent mappings for
346  * everything, but the way the lanai uses DMA memory would
347  * make that a terrific pain. This is much simpler.
348  */
349  buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
350  if (buf->start != NULL) { /* Success */
351  /* Lanai requires 256-byte alignment of DMA bufs */
352  APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
353  "bad dmaaddr: 0x%lx\n",
354  (unsigned long) buf->dmaaddr);
355  buf->ptr = buf->start;
356  buf->end = (u32 *)
357  (&((unsigned char *) buf->start)[size]);
358  memset(buf->start, 0, size);
359  break;
360  }
361  size /= 2;
362  } while (size >= minbytes);
363 }
364 
365 /* size of buffer in bytes */
366 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
367 {
368  return ((unsigned long) buf->end) - ((unsigned long) buf->start);
369 }
370 
371 static void lanai_buf_deallocate(struct lanai_buffer *buf,
372  struct pci_dev *pci)
373 {
374  if (buf->start != NULL) {
375  pci_free_consistent(pci, lanai_buf_size(buf),
376  buf->start, buf->dmaaddr);
377  buf->start = buf->end = buf->ptr = NULL;
378  }
379 }
380 
381 /* size of buffer as "card order" (0=1k .. 7=128k) */
382 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
383 {
384  int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
385 
386  /* This can only happen if PAGE_SIZE is gigantic, but just in case */
387  if (order > 7)
388  order = 7;
389  return order;
390 }
391 
392 /* -------------------- PORT I/O UTILITIES: */
393 
394 /* Registers (and their bit-fields) */
396  Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
397 #define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
398 #define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
399 #define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
400  Endian_Reg = 0x04, /* Endian setting */
401  IntStatus_Reg = 0x08, /* Interrupt status */
402  IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
403  IntAck_Reg = 0x10, /* Interrupt acknowledge */
404  IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
405  IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
406  IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
407  IntControlEna_Reg = 0x20, /* Interrupt control enable */
408  IntControlDis_Reg = 0x24, /* Interrupt control disable */
409  Status_Reg = 0x28, /* Status */
410 #define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
411 #define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
412 #define STATUS_SOOL (0x00000004) /* SOOL alarm */
413 #define STATUS_LOCD (0x00000008) /* LOCD alarm */
414 #define STATUS_LED (0x00000010) /* LED (HAPPI) output */
415 #define STATUS_GPIN (0x00000020) /* GPIN pin */
416 #define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
417  Config1_Reg = 0x2C, /* Config word 1; bits: */
418 #define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
419 #define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
420 #define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
421 #define READMODE_PLAIN (0) /* Plain memory read */
422 #define READMODE_LINE (2) /* Memory read line */
423 #define READMODE_MULTIPLE (3) /* Memory read multiple */
424 #define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
425 #define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
426 #define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
427 #define LOOPMODE_NORMAL (0) /* Normal - no loop */
428 #define LOOPMODE_TIME (1)
429 #define LOOPMODE_DIAG (2)
430 #define LOOPMODE_LINE (3)
431 #define CONFIG1_MASK_LOOPMODE (0x00000180)
432 #define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
433 #define LEDMODE_NOT_SOOL (0) /* !SOOL */
434 #define LEDMODE_OFF (1) /* 0 */
435 #define LEDMODE_ON (2) /* 1 */
436 #define LEDMODE_NOT_LOCD (3) /* !LOCD */
437 #define LEDMORE_GPIN (4) /* GPIN */
438 #define LEDMODE_NOT_GPIN (7) /* !GPIN */
439 #define CONFIG1_MASK_LEDMODE (0x00000E00)
440 #define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
441 #define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
442 #define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
443  Config2_Reg = 0x30, /* Config word 2; bits: */
444 #define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
445 #define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
446 #define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
447 #define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
448 #define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
449 #define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
450 #define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
451 #define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
452 #define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
453  Statistics_Reg = 0x34, /* Statistics; bits: */
454 #define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
455 #define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
456 #define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
457 #define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
458  ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
459 #define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
460 #define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
461  ServWrite_Reg = 0x3C, /* ServWrite Pointer */
462  ServRead_Reg = 0x40, /* ServRead Pointer */
463  TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
464  Butt_Reg = 0x48, /* Butt register */
465  CBR_ICG_Reg = 0x50,
466  CBR_PTR_Reg = 0x54,
467  PingCount_Reg = 0x58, /* Ping count */
468  DMA_Addr_Reg = 0x5C /* DMA address */
469 };
470 
471 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
472  enum lanai_register reg)
473 {
474  return lanai->base + reg;
475 }
476 
477 static inline u32 reg_read(const struct lanai_dev *lanai,
478  enum lanai_register reg)
479 {
480  u32 t;
481  t = readl(reg_addr(lanai, reg));
482  RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
483  (int) reg, t);
484  return t;
485 }
486 
487 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
488  enum lanai_register reg)
489 {
490  RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
491  (int) reg, val);
492  writel(val, reg_addr(lanai, reg));
493 }
494 
495 static inline void conf1_write(const struct lanai_dev *lanai)
496 {
497  reg_write(lanai, lanai->conf1, Config1_Reg);
498 }
499 
500 static inline void conf2_write(const struct lanai_dev *lanai)
501 {
502  reg_write(lanai, lanai->conf2, Config2_Reg);
503 }
504 
505 /* Same as conf2_write(), but defers I/O if we're powered down */
506 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
507 {
508 #ifdef USE_POWERDOWN
509  if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
510  return;
511 #endif /* USE_POWERDOWN */
512  conf2_write(lanai);
513 }
514 
515 static inline void reset_board(const struct lanai_dev *lanai)
516 {
517  DPRINTK("about to reset board\n");
518  reg_write(lanai, 0, Reset_Reg);
519  /*
520  * If we don't delay a little while here then we can end up
521  * leaving the card in a VERY weird state and lock up the
522  * PCI bus. This isn't documented anywhere but I've convinced
523  * myself after a lot of painful experimentation
524  */
525  udelay(5);
526 }
527 
528 /* -------------------- CARD SRAM UTILITIES: */
529 
530 /* The SRAM is mapped into normal PCI memory space - the only catch is
531  * that it is only 16-bits wide but must be accessed as 32-bit. The
532  * 16 high bits will be zero. We don't hide this, since they get
533  * programmed mostly like discrete registers anyway
534  */
535 #define SRAM_START (0x20000)
536 #define SRAM_BYTES (0x20000) /* Again, half don't really exist */
537 
538 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
539 {
540  return lanai->base + SRAM_START + offset;
541 }
542 
543 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
544 {
545  return readl(sram_addr(lanai, offset));
546 }
547 
548 static inline void sram_write(const struct lanai_dev *lanai,
549  u32 val, int offset)
550 {
551  writel(val, sram_addr(lanai, offset));
552 }
553 
554 static int __devinit sram_test_word(const struct lanai_dev *lanai,
555  int offset, u32 pattern)
556 {
557  u32 readback;
558  sram_write(lanai, pattern, offset);
559  readback = sram_read(lanai, offset);
560  if (likely(readback == pattern))
561  return 0;
563  "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
564  lanai->number, offset,
565  (unsigned int) pattern, (unsigned int) readback);
566  return -EIO;
567 }
568 
569 static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
570 {
571  int offset, result = 0;
572  for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
573  result = sram_test_word(lanai, offset, pattern);
574  return result;
575 }
576 
577 static int __devinit sram_test_and_clear(const struct lanai_dev *lanai)
578 {
579 #ifdef FULL_MEMORY_TEST
580  int result;
581  DPRINTK("testing SRAM\n");
582  if ((result = sram_test_pass(lanai, 0x5555)) != 0)
583  return result;
584  if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
585  return result;
586 #endif
587  DPRINTK("clearing SRAM\n");
588  return sram_test_pass(lanai, 0x0000);
589 }
590 
591 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
592 
593 /* vcc table */
595  vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
596 #define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
597 #define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
598 #define RMMODE_TRASH (0) /* discard */
599 #define RMMODE_PRESERVE (1) /* input as AAL0 */
600 #define RMMODE_PIPE (2) /* pipe to coscheduler */
601 #define RMMODE_PIPEALL (3) /* pipe non-RM too */
602 #define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
603 #define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
604 #define RXMODE_TRASH (0) /* discard */
605 #define RXMODE_AAL0 (1) /* non-AAL5 mode */
606 #define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
607 #define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
608  vcc_rxaddr2 = 0x04, /* Location2 */
609  vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
610  vcc_rxcrc2 = 0x0C,
611  vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
612 #define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
613 #define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
614 #define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
615  vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
616 #define RXBUFSTART_CLP (0x00004000)
617 #define RXBUFSTART_CI (0x00008000)
618  vcc_rxreadptr = 0x18, /* RX readptr */
619  vcc_txicg = 0x1C, /* TX ICG */
620  vcc_txaddr1 = 0x20, /* Location1, plus bits: */
621 #define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
622 #define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
623  vcc_txaddr2 = 0x24, /* Location2 */
624  vcc_txcrc1 = 0x28, /* TX CRC claculation space */
625  vcc_txcrc2 = 0x2C,
626  vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
627 #define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
628 #define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
629  vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
630 #define TXENDPTR_CLP (0x00002000)
631 #define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
632 #define PDUMODE_AAL0 (0*0x04000)
633 #define PDUMODE_AAL5 (2*0x04000)
634 #define PDUMODE_AAL5STREAM (3*0x04000)
635  vcc_txwriteptr = 0x38, /* TX Writeptr */
636 #define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
637  vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
638 #define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
639 };
640 
641 #define CARDVCC_SIZE (0x40)
642 
643 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
644  vci_t vci)
645 {
646  return sram_addr(lanai, vci * CARDVCC_SIZE);
647 }
648 
649 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
650  enum lanai_vcc_offset offset)
651 {
652  u32 val;
653  APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
654  val= readl(lvcc->vbase + offset);
655  RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
656  lvcc->vci, (int) offset, val);
657  return val;
658 }
659 
660 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
661  u32 val, enum lanai_vcc_offset offset)
662 {
663  APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
664  APRINTK((val & ~0xFFFF) == 0,
665  "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
666  (unsigned int) val, lvcc->vci, (unsigned int) offset);
667  RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
668  lvcc->vci, (unsigned int) offset, (unsigned int) val);
669  writel(val, lvcc->vbase + offset);
670 }
671 
672 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
673 
674 /* How many bytes will an AAL5 PDU take to transmit - remember that:
675  * o we need to add 8 bytes for length, CPI, UU, and CRC
676  * o we need to round up to 48 bytes for cells
677  */
678 static inline int aal5_size(int size)
679 {
680  int cells = (size + 8 + 47) / 48;
681  return cells * 48;
682 }
683 
684 /* How many bytes can we send if we have "space" space, assuming we have
685  * to send full cells
686  */
687 static inline int aal5_spacefor(int space)
688 {
689  int cells = space / 48;
690  return cells * 48;
691 }
692 
693 /* -------------------- FREE AN ATM SKB: */
694 
695 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
696 {
697  if (atmvcc->pop != NULL)
698  atmvcc->pop(atmvcc, skb);
699  else
700  dev_kfree_skb_any(skb);
701 }
702 
703 /* -------------------- TURN VCCS ON AND OFF: */
704 
705 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
706 {
707  u32 addr1;
708  if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
709  dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
710  cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
711  cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
712  cardvcc_write(lvcc, 0, vcc_rxwriteptr);
713  cardvcc_write(lvcc, 0, vcc_rxbufstart);
714  cardvcc_write(lvcc, 0, vcc_rxreadptr);
715  cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
716  addr1 = ((dmaaddr >> 8) & 0xFF) |
717  RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
718  RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
719  /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
721  } else
722  addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
723  RXADDR1_OAM_PRESERVE | /* ??? */
725  /* This one must be last! */
726  cardvcc_write(lvcc, addr1, vcc_rxaddr1);
727 }
728 
729 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
730 {
731  dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
732  cardvcc_write(lvcc, 0, vcc_txicg);
733  cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
734  cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
735  cardvcc_write(lvcc, 0, vcc_txreadptr);
736  cardvcc_write(lvcc, 0, vcc_txendptr);
737  cardvcc_write(lvcc, 0, vcc_txwriteptr);
738  cardvcc_write(lvcc,
739  (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
740  TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
741  cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
742  cardvcc_write(lvcc,
743  ((dmaaddr >> 8) & 0xFF) |
744  TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
745  vcc_txaddr1);
746 }
747 
748 /* Shutdown receiving on card */
749 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
750 {
751  if (lvcc->vbase == NULL) /* We were never bound to a VCI */
752  return;
753  /* 15.1.1 - set to trashing, wait one cell time (15us) */
754  cardvcc_write(lvcc,
757  udelay(15);
758  /* 15.1.2 - clear rest of entries */
759  cardvcc_write(lvcc, 0, vcc_rxaddr2);
760  cardvcc_write(lvcc, 0, vcc_rxcrc1);
761  cardvcc_write(lvcc, 0, vcc_rxcrc2);
762  cardvcc_write(lvcc, 0, vcc_rxwriteptr);
763  cardvcc_write(lvcc, 0, vcc_rxbufstart);
764  cardvcc_write(lvcc, 0, vcc_rxreadptr);
765 }
766 
767 /* Shutdown transmitting on card.
768  * Unfortunately the lanai needs us to wait until all the data
769  * drains out of the buffer before we can dealloc it, so this
770  * can take awhile -- up to 370ms for a full 128KB buffer
771  * assuming everone else is quiet. In theory the time is
772  * boundless if there's a CBR VCC holding things up.
773  */
774 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
775  struct lanai_vcc *lvcc)
776 {
777  struct sk_buff *skb;
778  unsigned long flags, timeout;
779  int read, write, lastread = -1;
781  "lanai_shutdown_tx_vci called w/o process context!\n");
782  if (lvcc->vbase == NULL) /* We were never bound to a VCI */
783  return;
784  /* 15.2.1 - wait for queue to drain */
785  while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
786  lanai_free_skb(lvcc->tx.atmvcc, skb);
787  read_lock_irqsave(&vcc_sklist_lock, flags);
788  __clear_bit(lvcc->vci, lanai->backlog_vccs);
789  read_unlock_irqrestore(&vcc_sklist_lock, flags);
790  /*
791  * We need to wait for the VCC to drain but don't wait forever. We
792  * give each 1K of buffer size 1/128th of a second to clear out.
793  * TODO: maybe disable CBR if we're about to timeout?
794  */
795  timeout = jiffies +
796  (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
797  write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
798  for (;;) {
799  read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
800  if (read == write && /* Is TX buffer empty? */
801  (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
802  (cardvcc_read(lvcc, vcc_txcbr_next) &
803  TXCBR_NEXT_BOZO) == 0))
804  break;
805  if (read != lastread) { /* Has there been any progress? */
806  lastread = read;
807  timeout += HZ / 10;
808  }
809  if (unlikely(time_after(jiffies, timeout))) {
810  printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
811  "backlog closing vci %d\n",
812  lvcc->tx.atmvcc->dev->number, lvcc->vci);
813  DPRINTK("read, write = %d, %d\n", read, write);
814  break;
815  }
816  msleep(40);
817  }
818  /* 15.2.2 - clear out all tx registers */
819  cardvcc_write(lvcc, 0, vcc_txreadptr);
820  cardvcc_write(lvcc, 0, vcc_txwriteptr);
821  cardvcc_write(lvcc, 0, vcc_txendptr);
822  cardvcc_write(lvcc, 0, vcc_txcrc1);
823  cardvcc_write(lvcc, 0, vcc_txcrc2);
824  cardvcc_write(lvcc, 0, vcc_txaddr2);
825  cardvcc_write(lvcc, 0, vcc_txaddr1);
826 }
827 
828 /* -------------------- MANAGING AAL0 RX BUFFER: */
829 
830 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
831 {
832  DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
833  lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
834  lanai->pci);
835  return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
836 }
837 
838 static inline void aal0_buffer_free(struct lanai_dev *lanai)
839 {
840  DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
841  lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
842 }
843 
844 /* -------------------- EEPROM UTILITIES: */
845 
846 /* Offsets of data in the EEPROM */
847 #define EEPROM_COPYRIGHT (0)
848 #define EEPROM_COPYRIGHT_LEN (44)
849 #define EEPROM_CHECKSUM (62)
850 #define EEPROM_CHECKSUM_REV (63)
851 #define EEPROM_MAC (64)
852 #define EEPROM_MAC_REV (70)
853 #define EEPROM_SERIAL (112)
854 #define EEPROM_SERIAL_REV (116)
855 #define EEPROM_MAGIC (120)
856 #define EEPROM_MAGIC_REV (124)
857 
858 #define EEPROM_MAGIC_VALUE (0x5AB478D2)
859 
860 #ifndef READ_EEPROM
861 
862 /* Stub functions to use if EEPROM reading is disabled */
863 static int __devinit eeprom_read(struct lanai_dev *lanai)
864 {
865  printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
866  lanai->number);
867  memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
868  return 0;
869 }
870 
871 static int __devinit eeprom_validate(struct lanai_dev *lanai)
872 {
873  lanai->serialno = 0;
874  lanai->magicno = EEPROM_MAGIC_VALUE;
875  return 0;
876 }
877 
878 #else /* READ_EEPROM */
879 
880 static int __devinit eeprom_read(struct lanai_dev *lanai)
881 {
882  int i, address;
883  u8 data;
884  u32 tmp;
885 #define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
886  } while (0)
887 #define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
888 #define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
889 #define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
890 #define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
891 #define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
892 #define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
893 #define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
894  data_h(); udelay(5); } while (0)
895  /* start with both clock and data high */
896  data_h(); clock_h(); udelay(5);
897  for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
898  data = (address << 1) | 1; /* Command=read + address */
899  /* send start bit */
900  data_l(); udelay(5);
901  clock_l(); udelay(5);
902  for (i = 128; i != 0; i >>= 1) { /* write command out */
903  tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
904  ((data & i) ? CONFIG1_PROMDATA : 0);
905  if (lanai->conf1 != tmp) {
906  set_config1(tmp);
907  udelay(5); /* Let new data settle */
908  }
909  clock_h(); udelay(5); clock_l(); udelay(5);
910  }
911  /* look for ack */
912  data_h(); clock_h(); udelay(5);
913  if (read_pin() != 0)
914  goto error; /* No ack seen */
915  clock_l(); udelay(5);
916  /* read back result */
917  for (data = 0, i = 7; i >= 0; i--) {
918  data_h(); clock_h(); udelay(5);
919  data = (data << 1) | !!read_pin();
920  clock_l(); udelay(5);
921  }
922  /* look again for ack */
923  data_h(); clock_h(); udelay(5);
924  if (read_pin() == 0)
925  goto error; /* Spurious ack */
926  clock_l(); udelay(5);
927  send_stop();
928  lanai->eeprom[address] = data;
929  DPRINTK("EEPROM 0x%04X %02X\n",
930  (unsigned int) address, (unsigned int) data);
931  }
932  return 0;
933  error:
934  clock_l(); udelay(5); /* finish read */
935  send_stop();
936  printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
937  lanai->number, address);
938  return -EIO;
939 #undef set_config1
940 #undef clock_h
941 #undef clock_l
942 #undef data_h
943 #undef data_l
944 #undef pre_read
945 #undef read_pin
946 #undef send_stop
947 }
948 
949 /* read a big-endian 4-byte value out of eeprom */
950 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
951 {
952  return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
953 }
954 
955 /* Checksum/validate EEPROM contents */
956 static int __devinit eeprom_validate(struct lanai_dev *lanai)
957 {
958  int i, s;
959  u32 v;
960  const u8 *e = lanai->eeprom;
961 #ifdef DEBUG
962  /* First, see if we can get an ASCIIZ string out of the copyright */
963  for (i = EEPROM_COPYRIGHT;
965  if (e[i] < 0x20 || e[i] > 0x7E)
966  break;
967  if ( i != EEPROM_COPYRIGHT &&
968  i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
969  DPRINTK("eeprom: copyright = \"%s\"\n",
970  (char *) &e[EEPROM_COPYRIGHT]);
971  else
972  DPRINTK("eeprom: copyright not found\n");
973 #endif
974  /* Validate checksum */
975  for (i = s = 0; i < EEPROM_CHECKSUM; i++)
976  s += e[i];
977  s &= 0xFF;
978  if (s != e[EEPROM_CHECKSUM]) {
979  printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
980  "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
981  (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
982  return -EIO;
983  }
984  s ^= 0xFF;
985  if (s != e[EEPROM_CHECKSUM_REV]) {
986  printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
987  "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
988  (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
989  return -EIO;
990  }
991  /* Verify MAC address */
992  for (i = 0; i < 6; i++)
993  if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
995  "(itf %d) : EEPROM MAC addresses don't match "
996  "(0x%02X, inverse 0x%02X)\n", lanai->number,
997  (unsigned int) e[EEPROM_MAC + i],
998  (unsigned int) e[EEPROM_MAC_REV + i]);
999  return -EIO;
1000  }
1001  DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
1002  /* Verify serial number */
1003  lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
1004  v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
1005  if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
1006  printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
1007  "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1008  (unsigned int) lanai->serialno, (unsigned int) v);
1009  return -EIO;
1010  }
1011  DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1012  /* Verify magic number */
1013  lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1014  v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1015  if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1016  printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1017  "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1018  lanai->magicno, v);
1019  return -EIO;
1020  }
1021  DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1022  if (lanai->magicno != EEPROM_MAGIC_VALUE)
1023  printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1024  "magic not what expected (got 0x%08X, not 0x%08X)\n",
1025  lanai->number, (unsigned int) lanai->magicno,
1026  (unsigned int) EEPROM_MAGIC_VALUE);
1027  return 0;
1028 }
1029 
1030 #endif /* READ_EEPROM */
1031 
1032 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1033 {
1034  return &lanai->eeprom[EEPROM_MAC];
1035 }
1036 
1037 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1038 
1039 /* Interrupt types */
1040 #define INT_STATS (0x00000002) /* Statistics counter overflow */
1041 #define INT_SOOL (0x00000004) /* SOOL changed state */
1042 #define INT_LOCD (0x00000008) /* LOCD changed state */
1043 #define INT_LED (0x00000010) /* LED (HAPPI) changed state */
1044 #define INT_GPIN (0x00000020) /* GPIN changed state */
1045 #define INT_PING (0x00000040) /* PING_COUNT fulfilled */
1046 #define INT_WAKE (0x00000080) /* Lanai wants bus */
1047 #define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
1048 #define INT_LOCK (0x00000200) /* Service list overflow */
1049 #define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
1050 #define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
1051 #define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
1052 #define INT_SERVICE (0x00002000) /* Service list entries available */
1053 #define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
1054 #define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
1055 #define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
1056 #define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
1057 
1058 /* Sets of the above */
1059 #define INT_ALL (0x0003FFFE) /* All interrupts */
1060 #define INT_STATUS (0x0000003C) /* Some status pin changed */
1061 #define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
1062 #define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
1063 
1064 static inline u32 intr_pending(const struct lanai_dev *lanai)
1065 {
1066  return reg_read(lanai, IntStatusMasked_Reg);
1067 }
1068 
1069 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1070 {
1071  reg_write(lanai, i, IntControlEna_Reg);
1072 }
1073 
1074 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1075 {
1076  reg_write(lanai, i, IntControlDis_Reg);
1077 }
1078 
1079 /* -------------------- CARD/PCI STATUS: */
1080 
1081 static void status_message(int itf, const char *name, int status)
1082 {
1083  static const char *onoff[2] = { "off to on", "on to off" };
1084  printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1085  itf, name, onoff[!status]);
1086 }
1087 
1088 static void lanai_check_status(struct lanai_dev *lanai)
1089 {
1090  u32 new = reg_read(lanai, Status_Reg);
1091  u32 changes = new ^ lanai->status;
1092  lanai->status = new;
1093 #define e(flag, name) \
1094  if (changes & flag) \
1095  status_message(lanai->number, name, new & flag)
1096  e(STATUS_SOOL, "SOOL");
1097  e(STATUS_LOCD, "LOCD");
1098  e(STATUS_LED, "LED");
1099  e(STATUS_GPIN, "GPIN");
1100 #undef e
1101 }
1102 
1103 static void pcistatus_got(int itf, const char *name)
1104 {
1105  printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1106 }
1107 
1108 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1109 {
1110  u16 s;
1111  int result;
1112  result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1113  if (result != PCIBIOS_SUCCESSFUL) {
1114  printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1115  "%d\n", lanai->number, result);
1116  return;
1117  }
1121  if (s == 0)
1122  return;
1123  result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1124  if (result != PCIBIOS_SUCCESSFUL)
1125  printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1126  "%d\n", lanai->number, result);
1127  if (clearonly)
1128  return;
1129 #define e(flag, name, stat) \
1130  if (s & flag) { \
1131  pcistatus_got(lanai->number, name); \
1132  ++lanai->stats.pcierr_##stat; \
1133  }
1134  e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1135  e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1136  e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1137  e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1138  e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1139  e(PCI_STATUS_PARITY, "master parity", master_parity);
1140 #undef e
1141 }
1142 
1143 /* -------------------- VCC TX BUFFER UTILITIES: */
1144 
1145 /* space left in tx buffer in bytes */
1146 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1147 {
1148  int r;
1149  r = endptr * 16;
1150  r -= ((unsigned long) lvcc->tx.buf.ptr) -
1151  ((unsigned long) lvcc->tx.buf.start);
1152  r -= 16; /* Leave "bubble" - if start==end it looks empty */
1153  if (r < 0)
1154  r += lanai_buf_size(&lvcc->tx.buf);
1155  return r;
1156 }
1157 
1158 /* test if VCC is currently backlogged */
1159 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1160 {
1161  return !skb_queue_empty(&lvcc->tx.backlog);
1162 }
1163 
1164 /* Bit fields in the segmentation buffer descriptor */
1165 #define DESCRIPTOR_MAGIC (0xD0000000)
1166 #define DESCRIPTOR_AAL5 (0x00008000)
1167 #define DESCRIPTOR_AAL5_STREAM (0x00004000)
1168 #define DESCRIPTOR_CLP (0x00002000)
1169 
1170 /* Add 32-bit descriptor with its padding */
1171 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1172  u32 flags, int len)
1173 {
1174  int pos;
1175  APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1176  "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1177  lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
1178  pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1179  (unsigned char *) lvcc->tx.buf.start;
1180  APRINTK((pos & ~0x0001FFF0) == 0,
1181  "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1182  "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1183  lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1184  pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1185  APRINTK((pos & ~0x0001FFF0) == 0,
1186  "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1187  "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1188  lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1189  lvcc->tx.buf.ptr[-1] =
1191  ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1192  DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1193  if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194  lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195 }
1196 
1197 /* Add 32-bit AAL5 trailer and leave room for its CRC */
1198 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1199  int len, int cpi, int uu)
1200 {
1201  APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1202  "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1203  lvcc->tx.buf.ptr += 2;
1204  lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1205  if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1206  lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1207 }
1208 
1209 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1210  const unsigned char *src, int n)
1211 {
1212  unsigned char *e;
1213  int m;
1214  e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1215  m = e - (unsigned char *) lvcc->tx.buf.end;
1216  if (m < 0)
1217  m = 0;
1218  memcpy(lvcc->tx.buf.ptr, src, n - m);
1219  if (m != 0) {
1220  memcpy(lvcc->tx.buf.start, src + n - m, m);
1221  e = ((unsigned char *) lvcc->tx.buf.start) + m;
1222  }
1223  lvcc->tx.buf.ptr = (u32 *) e;
1224 }
1225 
1226 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1227 {
1228  unsigned char *e;
1229  int m;
1230  if (n == 0)
1231  return;
1232  e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1233  m = e - (unsigned char *) lvcc->tx.buf.end;
1234  if (m < 0)
1235  m = 0;
1236  memset(lvcc->tx.buf.ptr, 0, n - m);
1237  if (m != 0) {
1238  memset(lvcc->tx.buf.start, 0, m);
1239  e = ((unsigned char *) lvcc->tx.buf.start) + m;
1240  }
1241  lvcc->tx.buf.ptr = (u32 *) e;
1242 }
1243 
1244 /* Update "butt" register to specify new WritePtr */
1245 static inline void lanai_endtx(struct lanai_dev *lanai,
1246  const struct lanai_vcc *lvcc)
1247 {
1248  int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1249  (unsigned char *) lvcc->tx.buf.start;
1250  APRINTK((ptr & ~0x0001FFF0) == 0,
1251  "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1252  ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1253  lvcc->tx.buf.end);
1254 
1255  /*
1256  * Since the "butt register" is a shared resounce on the card we
1257  * serialize all accesses to it through this spinlock. This is
1258  * mostly just paranoia since the register is rarely "busy" anyway
1259  * but is needed for correctness.
1260  */
1261  spin_lock(&lanai->endtxlock);
1262  /*
1263  * We need to check if the "butt busy" bit is set before
1264  * updating the butt register. In theory this should
1265  * never happen because the ATM card is plenty fast at
1266  * updating the register. Still, we should make sure
1267  */
1268  for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1269  if (unlikely(i > 50)) {
1270  printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1271  "always busy!\n", lanai->number);
1272  break;
1273  }
1274  udelay(5);
1275  }
1276  /*
1277  * Before we tall the card to start work we need to be sure 100% of
1278  * the info in the service buffer has been written before we tell
1279  * the card about it
1280  */
1281  wmb();
1282  reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1283  spin_unlock(&lanai->endtxlock);
1284 }
1285 
1286 /*
1287  * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
1288  * space available. "pdusize" is the number of bytes the PDU will take
1289  */
1290 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1291  struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1292 {
1293  int pad;
1294  APRINTK(pdusize == aal5_size(skb->len),
1295  "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1296  pdusize, aal5_size(skb->len));
1297  vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1298  pad = pdusize - skb->len - 8;
1299  APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1300  APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1301  vcc_tx_memcpy(lvcc, skb->data, skb->len);
1302  vcc_tx_memzero(lvcc, pad);
1303  vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1304  lanai_endtx(lanai, lvcc);
1305  lanai_free_skb(lvcc->tx.atmvcc, skb);
1306  atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1307 }
1308 
1309 /* Try to fill the buffer - don't call unless there is backlog */
1310 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1311  struct lanai_vcc *lvcc, int endptr)
1312 {
1313  int n;
1314  struct sk_buff *skb;
1315  int space = vcc_tx_space(lvcc, endptr);
1316  APRINTK(vcc_is_backlogged(lvcc),
1317  "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1318  lvcc->vci);
1319  while (space >= 64) {
1320  skb = skb_dequeue(&lvcc->tx.backlog);
1321  if (skb == NULL)
1322  goto no_backlog;
1323  n = aal5_size(skb->len);
1324  if (n + 16 > space) {
1325  /* No room for this packet - put it back on queue */
1326  skb_queue_head(&lvcc->tx.backlog, skb);
1327  return;
1328  }
1329  lanai_send_one_aal5(lanai, lvcc, skb, n);
1330  space -= n + 16;
1331  }
1332  if (!vcc_is_backlogged(lvcc)) {
1333  no_backlog:
1334  __clear_bit(lvcc->vci, lanai->backlog_vccs);
1335  }
1336 }
1337 
1338 /* Given an skb that we want to transmit either send it now or queue */
1339 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1340  struct sk_buff *skb)
1341 {
1342  int space, n;
1343  if (vcc_is_backlogged(lvcc)) /* Already backlogged */
1344  goto queue_it;
1345  space = vcc_tx_space(lvcc,
1346  TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1347  n = aal5_size(skb->len);
1348  APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1349  if (space < n + 16) { /* No space for this PDU */
1350  __set_bit(lvcc->vci, lanai->backlog_vccs);
1351  queue_it:
1352  skb_queue_tail(&lvcc->tx.backlog, skb);
1353  return;
1354  }
1355  lanai_send_one_aal5(lanai, lvcc, skb, n);
1356 }
1357 
1358 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1359  struct lanai_vcc *lvcc, int endptr)
1360 {
1362  ": vcc_tx_unqueue_aal0: not implemented\n");
1363 }
1364 
1365 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1366  struct sk_buff *skb)
1367 {
1368  printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1369  /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1370  lanai_free_skb(lvcc->tx.atmvcc, skb);
1371 }
1372 
1373 /* -------------------- VCC RX BUFFER UTILITIES: */
1374 
1375 /* unlike the _tx_ cousins, this doesn't update ptr */
1376 static inline void vcc_rx_memcpy(unsigned char *dest,
1377  const struct lanai_vcc *lvcc, int n)
1378 {
1379  int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1380  ((const unsigned char *) (lvcc->rx.buf.end));
1381  if (m < 0)
1382  m = 0;
1383  memcpy(dest, lvcc->rx.buf.ptr, n - m);
1384  memcpy(dest + n - m, lvcc->rx.buf.start, m);
1385  /* Make sure that these copies don't get reordered */
1386  barrier();
1387 }
1388 
1389 /* Receive AAL5 data on a VCC with a particular endptr */
1390 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1391 {
1392  int size;
1393  struct sk_buff *skb;
1394  const u32 *x;
1395  u32 *end = &lvcc->rx.buf.start[endptr * 4];
1396  int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1397  if (n < 0)
1398  n += lanai_buf_size(&lvcc->rx.buf);
1399  APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1400  "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1401  n, lanai_buf_size(&lvcc->rx.buf));
1402  /* Recover the second-to-last word to get true pdu length */
1403  if ((x = &end[-2]) < lvcc->rx.buf.start)
1404  x = &lvcc->rx.buf.end[-2];
1405  /*
1406  * Before we actually read from the buffer, make sure the memory
1407  * changes have arrived
1408  */
1409  rmb();
1410  size = be32_to_cpup(x) & 0xffff;
1411  if (unlikely(n != aal5_size(size))) {
1412  /* Make sure size matches padding */
1413  printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1414  "on vci=%d - size=%d n=%d\n",
1415  lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1416  lvcc->stats.x.aal5.rx_badlen++;
1417  goto out;
1418  }
1419  skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1420  if (unlikely(skb == NULL)) {
1421  lvcc->stats.rx_nomem++;
1422  goto out;
1423  }
1424  skb_put(skb, size);
1425  vcc_rx_memcpy(skb->data, lvcc, size);
1426  ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1427  __net_timestamp(skb);
1428  lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1429  atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1430  out:
1431  lvcc->rx.buf.ptr = end;
1432  cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1433 }
1434 
1435 static void vcc_rx_aal0(struct lanai_dev *lanai)
1436 {
1437  printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1438  /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1439  /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1440 }
1441 
1442 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1443 
1444 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1445 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1446 #define VCCTABLE_GETFREEPAGE
1447 #else
1448 #include <linux/vmalloc.h>
1449 #endif
1450 
1451 static int __devinit vcc_table_allocate(struct lanai_dev *lanai)
1452 {
1453 #ifdef VCCTABLE_GETFREEPAGE
1454  APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1455  "vcc table > PAGE_SIZE!");
1456  lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1457  return (lanai->vccs == NULL) ? -ENOMEM : 0;
1458 #else
1459  int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1460  lanai->vccs = vzalloc(bytes);
1461  if (unlikely(lanai->vccs == NULL))
1462  return -ENOMEM;
1463  return 0;
1464 #endif
1465 }
1466 
1467 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1468 {
1469 #ifdef VCCTABLE_GETFREEPAGE
1470  free_page((unsigned long) lanai->vccs);
1471 #else
1472  vfree(lanai->vccs);
1473 #endif
1474 }
1475 
1476 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1477 static inline struct lanai_vcc *new_lanai_vcc(void)
1478 {
1479  struct lanai_vcc *lvcc;
1480  lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
1481  if (likely(lvcc != NULL)) {
1482  skb_queue_head_init(&lvcc->tx.backlog);
1483 #ifdef DEBUG
1484  lvcc->vci = -1;
1485 #endif
1486  }
1487  return lvcc;
1488 }
1489 
1490 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1491  struct lanai_buffer *buf, int max_sdu, int multiplier,
1492  const char *name)
1493 {
1494  int size;
1495  if (unlikely(max_sdu < 1))
1496  max_sdu = 1;
1497  max_sdu = aal5_size(max_sdu);
1498  size = (max_sdu + 16) * multiplier + 16;
1499  lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1500  if (unlikely(buf->start == NULL))
1501  return -ENOMEM;
1502  if (unlikely(lanai_buf_size(buf) < size))
1503  printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1504  "for %s buffer, got only %Zu\n", lanai->number, size,
1505  name, lanai_buf_size(buf));
1506  DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1507  return 0;
1508 }
1509 
1510 /* Setup a RX buffer for a currently unbound AAL5 vci */
1511 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1512  struct lanai_vcc *lvcc, const struct atm_qos *qos)
1513 {
1514  return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1515  qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1516 }
1517 
1518 /* Setup a TX buffer for a currently unbound AAL5 vci */
1519 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1520  const struct atm_qos *qos)
1521 {
1522  int max_sdu, multiplier;
1523  if (qos->aal == ATM_AAL0) {
1524  lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1525  max_sdu = ATM_CELL_SIZE - 1;
1526  multiplier = AAL0_TX_MULTIPLIER;
1527  } else {
1528  lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1529  max_sdu = qos->txtp.max_sdu;
1530  multiplier = AAL5_TX_MULTIPLIER;
1531  }
1532  return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1533  multiplier, "TX");
1534 }
1535 
1536 static inline void host_vcc_bind(struct lanai_dev *lanai,
1537  struct lanai_vcc *lvcc, vci_t vci)
1538 {
1539  if (lvcc->vbase != NULL)
1540  return; /* We already were bound in the other direction */
1541  DPRINTK("Binding vci %d\n", vci);
1542 #ifdef USE_POWERDOWN
1543  if (lanai->nbound++ == 0) {
1544  DPRINTK("Coming out of powerdown\n");
1545  lanai->conf1 &= ~CONFIG1_POWERDOWN;
1546  conf1_write(lanai);
1547  conf2_write(lanai);
1548  }
1549 #endif
1550  lvcc->vbase = cardvcc_addr(lanai, vci);
1551  lanai->vccs[lvcc->vci = vci] = lvcc;
1552 }
1553 
1554 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1555  struct lanai_vcc *lvcc)
1556 {
1557  if (lvcc->vbase == NULL)
1558  return; /* This vcc was never bound */
1559  DPRINTK("Unbinding vci %d\n", lvcc->vci);
1560  lvcc->vbase = NULL;
1561  lanai->vccs[lvcc->vci] = NULL;
1562 #ifdef USE_POWERDOWN
1563  if (--lanai->nbound == 0) {
1564  DPRINTK("Going into powerdown\n");
1565  lanai->conf1 |= CONFIG1_POWERDOWN;
1566  conf1_write(lanai);
1567  }
1568 #endif
1569 }
1570 
1571 /* -------------------- RESET CARD: */
1572 
1573 static void lanai_reset(struct lanai_dev *lanai)
1574 {
1575  printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1576  "implemented\n", lanai->number);
1577  /* TODO */
1578  /* The following is just a hack until we write the real
1579  * resetter - at least ack whatever interrupt sent us
1580  * here
1581  */
1582  reg_write(lanai, INT_ALL, IntAck_Reg);
1583  lanai->stats.card_reset++;
1584 }
1585 
1586 /* -------------------- SERVICE LIST UTILITIES: */
1587 
1588 /*
1589  * Allocate service buffer and tell card about it
1590  */
1591 static int __devinit service_buffer_allocate(struct lanai_dev *lanai)
1592 {
1593  lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1594  lanai->pci);
1595  if (unlikely(lanai->service.start == NULL))
1596  return -ENOMEM;
1597  DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1598  (unsigned long) lanai->service.start,
1599  lanai_buf_size(&lanai->service),
1600  lanai_buf_size_cardorder(&lanai->service));
1601  /* Clear ServWrite register to be safe */
1602  reg_write(lanai, 0, ServWrite_Reg);
1603  /* ServiceStuff register contains size and address of buffer */
1604  reg_write(lanai,
1605  SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1606  SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1608  return 0;
1609 }
1610 
1611 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1612 {
1613  lanai_buf_deallocate(&lanai->service, lanai->pci);
1614 }
1615 
1616 /* Bitfields in service list */
1617 #define SERVICE_TX (0x80000000) /* Was from transmission */
1618 #define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
1619 #define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
1620 #define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
1621 #define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
1622 #define SERVICE_STREAM (0x04000000) /* RX Stream mode */
1623 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1624 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1625 
1626 /* Handle one thing from the service list - returns true if it marked a
1627  * VCC ready for xmit
1628  */
1629 static int handle_service(struct lanai_dev *lanai, u32 s)
1630 {
1631  vci_t vci = SERVICE_GET_VCI(s);
1632  struct lanai_vcc *lvcc;
1634  lvcc = lanai->vccs[vci];
1635  if (unlikely(lvcc == NULL)) {
1637  DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1638  "vcc %d\n", lanai->number, (unsigned int) s, vci);
1639  if (s & SERVICE_TX)
1640  lanai->stats.service_notx++;
1641  else
1642  lanai->stats.service_norx++;
1643  return 0;
1644  }
1645  if (s & SERVICE_TX) { /* segmentation interrupt */
1646  if (unlikely(lvcc->tx.atmvcc == NULL)) {
1648  DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1649  "vcc %d\n", lanai->number, (unsigned int) s, vci);
1650  lanai->stats.service_notx++;
1651  return 0;
1652  }
1653  __set_bit(vci, lanai->transmit_ready);
1654  lvcc->tx.endptr = SERVICE_GET_END(s);
1656  return 1;
1657  }
1658  if (unlikely(lvcc->rx.atmvcc == NULL)) {
1660  DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1661  "vcc %d\n", lanai->number, (unsigned int) s, vci);
1662  lanai->stats.service_norx++;
1663  return 0;
1664  }
1665  if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1667  DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1668  "vcc %d\n", lanai->number, (unsigned int) s, vci);
1669  lanai->stats.service_rxnotaal5++;
1670  atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1671  return 0;
1672  }
1673  if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1674  vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1676  return 0;
1677  }
1678  if (s & SERVICE_TRASH) {
1679  int bytes;
1681  DPRINTK("got trashed rx pdu on vci %d\n", vci);
1682  atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1683  lvcc->stats.x.aal5.service_trash++;
1684  bytes = (SERVICE_GET_END(s) * 16) -
1685  (((unsigned long) lvcc->rx.buf.ptr) -
1686  ((unsigned long) lvcc->rx.buf.start)) + 47;
1687  if (bytes < 0)
1688  bytes += lanai_buf_size(&lvcc->rx.buf);
1689  lanai->stats.ovfl_trash += (bytes / 48);
1690  return 0;
1691  }
1692  if (s & SERVICE_STREAM) {
1694  atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1695  lvcc->stats.x.aal5.service_stream++;
1696  printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1697  "PDU on VCI %d!\n", lanai->number, vci);
1698  lanai_reset(lanai);
1699  return 0;
1700  }
1701  DPRINTK("got rx crc error on vci %d\n", vci);
1702  atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1703  lvcc->stats.x.aal5.service_rxcrc++;
1704  lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1705  cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1707  return 0;
1708 }
1709 
1710 /* Try transmitting on all VCIs that we marked ready to serve */
1711 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1712 {
1713  struct lanai_vcc *lvcc = lanai->vccs[vci];
1714  if (vcc_is_backlogged(lvcc))
1715  lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1716 }
1717 
1718 /* Run service queue -- called from interrupt context or with
1719  * interrupts otherwise disabled and with the lanai->servicelock
1720  * lock held
1721  */
1722 static void run_service(struct lanai_dev *lanai)
1723 {
1724  int ntx = 0;
1725  u32 wreg = reg_read(lanai, ServWrite_Reg);
1726  const u32 *end = lanai->service.start + wreg;
1727  while (lanai->service.ptr != end) {
1728  ntx += handle_service(lanai,
1729  le32_to_cpup(lanai->service.ptr++));
1730  if (lanai->service.ptr >= lanai->service.end)
1731  lanai->service.ptr = lanai->service.start;
1732  }
1733  reg_write(lanai, wreg, ServRead_Reg);
1734  if (ntx != 0) {
1735  read_lock(&vcc_sklist_lock);
1736  vci_bitfield_iterate(lanai, lanai->transmit_ready,
1737  iter_transmit);
1738  bitmap_zero(lanai->transmit_ready, NUM_VCI);
1739  read_unlock(&vcc_sklist_lock);
1740  }
1741 }
1742 
1743 /* -------------------- GATHER STATISTICS: */
1744 
1745 static void get_statistics(struct lanai_dev *lanai)
1746 {
1747  u32 statreg = reg_read(lanai, Statistics_Reg);
1748  lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1749  lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1750  lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1751  lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1752 }
1753 
1754 /* -------------------- POLLING TIMER: */
1755 
1756 #ifndef DEBUG_RW
1757 /* Try to undequeue 1 backlogged vcc */
1758 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1759 {
1760  struct lanai_vcc *lvcc = lanai->vccs[vci];
1761  int endptr;
1762  if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1763  !vcc_is_backlogged(lvcc)) {
1764  __clear_bit(vci, lanai->backlog_vccs);
1765  return;
1766  }
1767  endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1768  lvcc->tx.unqueue(lanai, lvcc, endptr);
1769 }
1770 #endif /* !DEBUG_RW */
1771 
1772 static void lanai_timed_poll(unsigned long arg)
1773 {
1774  struct lanai_dev *lanai = (struct lanai_dev *) arg;
1775 #ifndef DEBUG_RW
1776  unsigned long flags;
1777 #ifdef USE_POWERDOWN
1778  if (lanai->conf1 & CONFIG1_POWERDOWN)
1779  return;
1780 #endif /* USE_POWERDOWN */
1781  local_irq_save(flags);
1782  /* If we can grab the spinlock, check if any services need to be run */
1783  if (spin_trylock(&lanai->servicelock)) {
1784  run_service(lanai);
1785  spin_unlock(&lanai->servicelock);
1786  }
1787  /* ...and see if any backlogged VCs can make progress */
1788  /* unfortunately linux has no read_trylock() currently */
1789  read_lock(&vcc_sklist_lock);
1790  vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1791  read_unlock(&vcc_sklist_lock);
1792  local_irq_restore(flags);
1793 
1794  get_statistics(lanai);
1795 #endif /* !DEBUG_RW */
1796  mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1797 }
1798 
1799 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1800 {
1801  init_timer(&lanai->timer);
1802  lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1803  lanai->timer.data = (unsigned long) lanai;
1804  lanai->timer.function = lanai_timed_poll;
1805  add_timer(&lanai->timer);
1806 }
1807 
1808 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1809 {
1810  del_timer_sync(&lanai->timer);
1811 }
1812 
1813 /* -------------------- INTERRUPT SERVICE: */
1814 
1815 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1816 {
1817  u32 ack = 0;
1818  if (reason & INT_SERVICE) {
1819  ack = INT_SERVICE;
1820  spin_lock(&lanai->servicelock);
1821  run_service(lanai);
1822  spin_unlock(&lanai->servicelock);
1823  }
1824  if (reason & (INT_AAL0_STR | INT_AAL0)) {
1825  ack |= reason & (INT_AAL0_STR | INT_AAL0);
1826  vcc_rx_aal0(lanai);
1827  }
1828  /* The rest of the interrupts are pretty rare */
1829  if (ack == reason)
1830  goto done;
1831  if (reason & INT_STATS) {
1832  reason &= ~INT_STATS; /* No need to ack */
1833  get_statistics(lanai);
1834  }
1835  if (reason & INT_STATUS) {
1836  ack |= reason & INT_STATUS;
1837  lanai_check_status(lanai);
1838  }
1839  if (unlikely(reason & INT_DMASHUT)) {
1840  printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1841  "shutdown, reason=0x%08X, address=0x%08X\n",
1842  lanai->number, (unsigned int) (reason & INT_DMASHUT),
1843  (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1844  if (reason & INT_TABORTBM) {
1845  lanai_reset(lanai);
1846  return;
1847  }
1848  ack |= (reason & INT_DMASHUT);
1849  printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1850  lanai->number);
1851  conf1_write(lanai);
1852  lanai->stats.dma_reenable++;
1853  pcistatus_check(lanai, 0);
1854  }
1855  if (unlikely(reason & INT_TABORTSENT)) {
1856  ack |= (reason & INT_TABORTSENT);
1857  printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1858  lanai->number);
1859  pcistatus_check(lanai, 0);
1860  }
1861  if (unlikely(reason & INT_SEGSHUT)) {
1862  printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1863  "segmentation shutdown, reason=0x%08X\n", lanai->number,
1864  (unsigned int) (reason & INT_SEGSHUT));
1865  lanai_reset(lanai);
1866  return;
1867  }
1868  if (unlikely(reason & (INT_PING | INT_WAKE))) {
1869  printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1870  "unexpected interrupt 0x%08X, resetting\n",
1871  lanai->number,
1872  (unsigned int) (reason & (INT_PING | INT_WAKE)));
1873  lanai_reset(lanai);
1874  return;
1875  }
1876 #ifdef DEBUG
1877  if (unlikely(ack != reason)) {
1878  DPRINTK("unacked ints: 0x%08X\n",
1879  (unsigned int) (reason & ~ack));
1880  ack = reason;
1881  }
1882 #endif
1883  done:
1884  if (ack != 0)
1885  reg_write(lanai, ack, IntAck_Reg);
1886 }
1887 
1888 static irqreturn_t lanai_int(int irq, void *devid)
1889 {
1890  struct lanai_dev *lanai = devid;
1891  u32 reason;
1892 
1893 #ifdef USE_POWERDOWN
1894  /*
1895  * If we're powered down we shouldn't be generating any interrupts -
1896  * so assume that this is a shared interrupt line and it's for someone
1897  * else
1898  */
1899  if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1900  return IRQ_NONE;
1901 #endif
1902 
1903  reason = intr_pending(lanai);
1904  if (reason == 0)
1905  return IRQ_NONE; /* Must be for someone else */
1906 
1907  do {
1908  if (unlikely(reason == 0xFFFFFFFF))
1909  break; /* Maybe we've been unplugged? */
1910  lanai_int_1(lanai, reason);
1911  reason = intr_pending(lanai);
1912  } while (reason != 0);
1913 
1914  return IRQ_HANDLED;
1915 }
1916 
1917 /* TODO - it would be nice if we could use the "delayed interrupt" system
1918  * to some advantage
1919  */
1920 
1921 /* -------------------- CHECK BOARD ID/REV: */
1922 
1923 /*
1924  * The board id and revision are stored both in the reset register and
1925  * in the PCI configuration space - the documentation says to check
1926  * each of them. If revp!=NULL we store the revision there
1927  */
1928 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1929 {
1930  DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1931  (int) RESET_GET_BOARD_ID(val),
1932  (int) RESET_GET_BOARD_REV(val));
1933  if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1934  printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1935  "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1936  return -ENODEV;
1937  }
1938  if (revp != NULL)
1939  *revp = RESET_GET_BOARD_REV(val);
1940  return 0;
1941 }
1942 
1943 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1944 
1945 static int __devinit lanai_pci_start(struct lanai_dev *lanai)
1946 {
1947  struct pci_dev *pci = lanai->pci;
1948  int result;
1949 
1950  if (pci_enable_device(pci) != 0) {
1951  printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1952  "PCI device", lanai->number);
1953  return -ENXIO;
1954  }
1955  pci_set_master(pci);
1956  if (pci_set_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1957  printk(KERN_WARNING DEV_LABEL
1958  "(itf %d): No suitable DMA available.\n", lanai->number);
1959  return -EBUSY;
1960  }
1961  if (pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1962  printk(KERN_WARNING DEV_LABEL
1963  "(itf %d): No suitable DMA available.\n", lanai->number);
1964  return -EBUSY;
1965  }
1966  result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1967  if (result != 0)
1968  return result;
1969  /* Set latency timer to zero as per lanai docs */
1970  result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1971  if (result != PCIBIOS_SUCCESSFUL) {
1972  printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1973  "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1974  return -EINVAL;
1975  }
1976  pcistatus_check(lanai, 1);
1977  pcistatus_check(lanai, 0);
1978  return 0;
1979 }
1980 
1981 /* -------------------- VPI/VCI ALLOCATION: */
1982 
1983 /*
1984  * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1985  * get a CBRZERO interrupt), and we can use it only if no one is receiving
1986  * AAL0 traffic (since they will use the same queue) - according to the
1987  * docs we shouldn't even use it for AAL0 traffic
1988  */
1989 static inline int vci0_is_ok(struct lanai_dev *lanai,
1990  const struct atm_qos *qos)
1991 {
1992  if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1993  return 0;
1994  if (qos->rxtp.traffic_class != ATM_NONE) {
1995  if (lanai->naal0 != 0)
1996  return 0;
1997  lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1998  conf2_write_if_powerup(lanai);
1999  }
2000  return 1;
2001 }
2002 
2003 /* return true if vci is currently unused, or if requested qos is
2004  * compatible
2005  */
2006 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
2007  const struct atm_vcc *atmvcc)
2008 {
2009  const struct atm_qos *qos = &atmvcc->qos;
2010  const struct lanai_vcc *lvcc = lanai->vccs[vci];
2011  if (vci == 0 && !vci0_is_ok(lanai, qos))
2012  return 0;
2013  if (unlikely(lvcc != NULL)) {
2014  if (qos->rxtp.traffic_class != ATM_NONE &&
2015  lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2016  return 0;
2017  if (qos->txtp.traffic_class != ATM_NONE &&
2018  lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2019  return 0;
2020  if (qos->txtp.traffic_class == ATM_CBR &&
2021  lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2022  return 0;
2023  }
2024  if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2025  qos->rxtp.traffic_class != ATM_NONE) {
2026  const struct lanai_vcc *vci0 = lanai->vccs[0];
2027  if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2028  return 0;
2029  lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2030  conf2_write_if_powerup(lanai);
2031  }
2032  return 1;
2033 }
2034 
2035 static int lanai_normalize_ci(struct lanai_dev *lanai,
2036  const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2037 {
2038  switch (*vpip) {
2039  case ATM_VPI_ANY:
2040  *vpip = 0;
2041  /* FALLTHROUGH */
2042  case 0:
2043  break;
2044  default:
2045  return -EADDRINUSE;
2046  }
2047  switch (*vcip) {
2048  case ATM_VCI_ANY:
2049  for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2050  (*vcip)++)
2051  if (vci_is_ok(lanai, *vcip, atmvcc))
2052  return 0;
2053  return -EADDRINUSE;
2054  default:
2055  if (*vcip >= lanai->num_vci || *vcip < 0 ||
2056  !vci_is_ok(lanai, *vcip, atmvcc))
2057  return -EADDRINUSE;
2058  }
2059  return 0;
2060 }
2061 
2062 /* -------------------- MANAGE CBR: */
2063 
2064 /*
2065  * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2066  * Note that storing a number greater than 2046.0 will result in
2067  * incorrect shaping
2068  */
2069 #define CBRICG_FRAC_BITS (4)
2070 #define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
2071 
2072 /*
2073  * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2074  * where MAXPCR is (according to the docs) 25600000/(54*8),
2075  * which is equal to (3125<<9)/27.
2076  *
2077  * Solving for ICG, we get:
2078  * ICG = MAXPCR/PCR - 1
2079  * ICG = (3125<<9)/(27*PCR) - 1
2080  * ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2081  *
2082  * The end result is supposed to be a fixed-point number with FRAC_BITS
2083  * bits of a fractional part, so we keep everything in the numerator
2084  * shifted by that much as we compute
2085  *
2086  */
2087 static int pcr_to_cbricg(const struct atm_qos *qos)
2088 {
2089  int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
2090  int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2091  if (pcr == 0) /* Use maximum bandwidth */
2092  return 0;
2093  if (pcr < 0) {
2094  rounddown = 1;
2095  pcr = -pcr;
2096  }
2097  x = pcr * 27;
2098  icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2099  if (rounddown)
2100  icg += x - 1;
2101  icg /= x;
2102  if (icg > CBRICG_MAX)
2103  icg = CBRICG_MAX;
2104  DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2105  pcr, rounddown ? 'Y' : 'N', icg);
2106  return icg;
2107 }
2108 
2109 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2110 {
2111  reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2112  reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2113  lanai->conf2 |= CONFIG2_CBR_ENABLE;
2114  conf2_write(lanai);
2115 }
2116 
2117 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2118 {
2119  lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2120  conf2_write(lanai);
2121 }
2122 
2123 /* -------------------- OPERATIONS: */
2124 
2125 /* setup a newly detected device */
2126 static int __devinit lanai_dev_open(struct atm_dev *atmdev)
2127 {
2128  struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2129  unsigned long raw_base;
2130  int result;
2131 
2132  DPRINTK("In lanai_dev_open()\n");
2133  /* Basic device fields */
2134  lanai->number = atmdev->number;
2135  lanai->num_vci = NUM_VCI;
2136  bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2137  bitmap_zero(lanai->transmit_ready, NUM_VCI);
2138  lanai->naal0 = 0;
2139 #ifdef USE_POWERDOWN
2140  lanai->nbound = 0;
2141 #endif
2142  lanai->cbrvcc = NULL;
2143  memset(&lanai->stats, 0, sizeof lanai->stats);
2144  spin_lock_init(&lanai->endtxlock);
2145  spin_lock_init(&lanai->servicelock);
2146  atmdev->ci_range.vpi_bits = 0;
2147  atmdev->ci_range.vci_bits = 0;
2148  while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2149  atmdev->ci_range.vci_bits++;
2150  atmdev->link_rate = ATM_25_PCR;
2151 
2152  /* 3.2: PCI initialization */
2153  if ((result = lanai_pci_start(lanai)) != 0)
2154  goto error;
2155  raw_base = lanai->pci->resource[0].start;
2156  lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2157  if (lanai->base == NULL) {
2158  printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2159  goto error_pci;
2160  }
2161  /* 3.3: Reset lanai and PHY */
2162  reset_board(lanai);
2163  lanai->conf1 = reg_read(lanai, Config1_Reg);
2164  lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2167  reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2168  udelay(1000);
2169  conf1_write(lanai);
2170 
2171  /*
2172  * 3.4: Turn on endian mode for big-endian hardware
2173  * We don't actually want to do this - the actual bit fields
2174  * in the endian register are not documented anywhere.
2175  * Instead we do the bit-flipping ourselves on big-endian
2176  * hardware.
2177  *
2178  * 3.5: get the board ID/rev by reading the reset register
2179  */
2180  result = check_board_id_and_rev("register",
2181  reg_read(lanai, Reset_Reg), &lanai->board_rev);
2182  if (result != 0)
2183  goto error_unmap;
2184 
2185  /* 3.6: read EEPROM */
2186  if ((result = eeprom_read(lanai)) != 0)
2187  goto error_unmap;
2188  if ((result = eeprom_validate(lanai)) != 0)
2189  goto error_unmap;
2190 
2191  /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2192  reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2193  udelay(1000);
2194  conf1_write(lanai);
2195  /* TODO - loopback tests */
2197  conf1_write(lanai);
2198 
2199  /* 3.8/3.9: test and initialize card SRAM */
2200  if ((result = sram_test_and_clear(lanai)) != 0)
2201  goto error_unmap;
2202 
2203  /* 3.10: initialize lanai registers */
2204  lanai->conf1 |= CONFIG1_DMA_ENABLE;
2205  conf1_write(lanai);
2206  if ((result = service_buffer_allocate(lanai)) != 0)
2207  goto error_unmap;
2208  if ((result = vcc_table_allocate(lanai)) != 0)
2209  goto error_service;
2210  lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2211  CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
2212  conf2_write(lanai);
2214  reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
2215  if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2216  DEV_LABEL, lanai)) != 0) {
2217  printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2218  goto error_vcctable;
2219  }
2220  mb(); /* Make sure that all that made it */
2221  intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2222  /* 3.11: initialize loop mode (i.e. turn looping off) */
2223  lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2226  conf1_write(lanai);
2227  lanai->status = reg_read(lanai, Status_Reg);
2228  /* We're now done initializing this card */
2229 #ifdef USE_POWERDOWN
2230  lanai->conf1 |= CONFIG1_POWERDOWN;
2231  conf1_write(lanai);
2232 #endif
2233  memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2234  lanai_timed_poll_start(lanai);
2235  printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2236  "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2237  (unsigned long) lanai->base, lanai->pci->irq, atmdev->esi);
2238  printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2239  "board_rev=%d\n", lanai->number,
2240  lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2241  (unsigned int) lanai->serialno, lanai->board_rev);
2242  return 0;
2243 
2244  error_vcctable:
2245  vcc_table_deallocate(lanai);
2246  error_service:
2247  service_buffer_deallocate(lanai);
2248  error_unmap:
2249  reset_board(lanai);
2250 #ifdef USE_POWERDOWN
2251  lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2252  conf1_write(lanai);
2253 #endif
2254  iounmap(lanai->base);
2255  error_pci:
2256  pci_disable_device(lanai->pci);
2257  error:
2258  return result;
2259 }
2260 
2261 /* called when device is being shutdown, and all vcc's are gone - higher
2262  * levels will deallocate the atm device for us
2263  */
2264 static void lanai_dev_close(struct atm_dev *atmdev)
2265 {
2266  struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2267  printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2268  lanai->number);
2269  lanai_timed_poll_stop(lanai);
2270 #ifdef USE_POWERDOWN
2271  lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2272  conf1_write(lanai);
2273 #endif
2274  intr_disable(lanai, INT_ALL);
2275  free_irq(lanai->pci->irq, lanai);
2276  reset_board(lanai);
2277 #ifdef USE_POWERDOWN
2278  lanai->conf1 |= CONFIG1_POWERDOWN;
2279  conf1_write(lanai);
2280 #endif
2281  pci_disable_device(lanai->pci);
2282  vcc_table_deallocate(lanai);
2283  service_buffer_deallocate(lanai);
2284  iounmap(lanai->base);
2285  kfree(lanai);
2286 }
2287 
2288 /* close a vcc */
2289 static void lanai_close(struct atm_vcc *atmvcc)
2290 {
2291  struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2292  struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2293  if (lvcc == NULL)
2294  return;
2295  clear_bit(ATM_VF_READY, &atmvcc->flags);
2296  clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2297  if (lvcc->rx.atmvcc == atmvcc) {
2298  lanai_shutdown_rx_vci(lvcc);
2299  if (atmvcc->qos.aal == ATM_AAL0) {
2300  if (--lanai->naal0 <= 0)
2301  aal0_buffer_free(lanai);
2302  } else
2303  lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2304  lvcc->rx.atmvcc = NULL;
2305  }
2306  if (lvcc->tx.atmvcc == atmvcc) {
2307  if (atmvcc == lanai->cbrvcc) {
2308  if (lvcc->vbase != NULL)
2309  lanai_cbr_shutdown(lanai);
2310  lanai->cbrvcc = NULL;
2311  }
2312  lanai_shutdown_tx_vci(lanai, lvcc);
2313  lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2314  lvcc->tx.atmvcc = NULL;
2315  }
2316  if (--lvcc->nref == 0) {
2317  host_vcc_unbind(lanai, lvcc);
2318  kfree(lvcc);
2319  }
2320  atmvcc->dev_data = NULL;
2321  clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2322 }
2323 
2324 /* open a vcc on the card to vpi/vci */
2325 static int lanai_open(struct atm_vcc *atmvcc)
2326 {
2327  struct lanai_dev *lanai;
2328  struct lanai_vcc *lvcc;
2329  int result = 0;
2330  int vci = atmvcc->vci;
2331  short vpi = atmvcc->vpi;
2332  /* we don't support partial open - it's not really useful anyway */
2333  if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2334  (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2335  return -EINVAL;
2336  lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2337  result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2338  if (unlikely(result != 0))
2339  goto out;
2340  set_bit(ATM_VF_ADDR, &atmvcc->flags);
2341  if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2342  return -EINVAL;
2343  DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2344  (int) vpi, vci);
2345  lvcc = lanai->vccs[vci];
2346  if (lvcc == NULL) {
2347  lvcc = new_lanai_vcc();
2348  if (unlikely(lvcc == NULL))
2349  return -ENOMEM;
2350  atmvcc->dev_data = lvcc;
2351  }
2352  lvcc->nref++;
2353  if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2354  APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2355  vci);
2356  if (atmvcc->qos.aal == ATM_AAL0) {
2357  if (lanai->naal0 == 0)
2358  result = aal0_buffer_allocate(lanai);
2359  } else
2360  result = lanai_setup_rx_vci_aal5(
2361  lanai, lvcc, &atmvcc->qos);
2362  if (unlikely(result != 0))
2363  goto out_free;
2364  lvcc->rx.atmvcc = atmvcc;
2365  lvcc->stats.rx_nomem = 0;
2366  lvcc->stats.x.aal5.rx_badlen = 0;
2367  lvcc->stats.x.aal5.service_trash = 0;
2368  lvcc->stats.x.aal5.service_stream = 0;
2369  lvcc->stats.x.aal5.service_rxcrc = 0;
2370  if (atmvcc->qos.aal == ATM_AAL0)
2371  lanai->naal0++;
2372  }
2373  if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2374  APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2375  vci);
2376  result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2377  if (unlikely(result != 0))
2378  goto out_free;
2379  lvcc->tx.atmvcc = atmvcc;
2380  if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2381  APRINTK(lanai->cbrvcc == NULL,
2382  "cbrvcc!=NULL, vci=%d\n", vci);
2383  lanai->cbrvcc = atmvcc;
2384  }
2385  }
2386  host_vcc_bind(lanai, lvcc, vci);
2387  /*
2388  * Make sure everything made it to RAM before we tell the card about
2389  * the VCC
2390  */
2391  wmb();
2392  if (atmvcc == lvcc->rx.atmvcc)
2393  host_vcc_start_rx(lvcc);
2394  if (atmvcc == lvcc->tx.atmvcc) {
2395  host_vcc_start_tx(lvcc);
2396  if (lanai->cbrvcc == atmvcc)
2397  lanai_cbr_setup(lanai);
2398  }
2399  set_bit(ATM_VF_READY, &atmvcc->flags);
2400  return 0;
2401  out_free:
2402  lanai_close(atmvcc);
2403  out:
2404  return result;
2405 }
2406 
2407 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2408 {
2409  struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2410  struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2411  unsigned long flags;
2412  if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2413  lvcc->tx.atmvcc != atmvcc))
2414  goto einval;
2415 #ifdef DEBUG
2416  if (unlikely(skb == NULL)) {
2417  DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2418  goto einval;
2419  }
2420  if (unlikely(lanai == NULL)) {
2421  DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2422  goto einval;
2423  }
2424 #endif
2425  ATM_SKB(skb)->vcc = atmvcc;
2426  switch (atmvcc->qos.aal) {
2427  case ATM_AAL5:
2428  read_lock_irqsave(&vcc_sklist_lock, flags);
2429  vcc_tx_aal5(lanai, lvcc, skb);
2430  read_unlock_irqrestore(&vcc_sklist_lock, flags);
2431  return 0;
2432  case ATM_AAL0:
2433  if (unlikely(skb->len != ATM_CELL_SIZE-1))
2434  goto einval;
2435  /* NOTE - this next line is technically invalid - we haven't unshared skb */
2436  cpu_to_be32s((u32 *) skb->data);
2437  read_lock_irqsave(&vcc_sklist_lock, flags);
2438  vcc_tx_aal0(lanai, lvcc, skb);
2439  read_unlock_irqrestore(&vcc_sklist_lock, flags);
2440  return 0;
2441  }
2442  DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2443  atmvcc->vci);
2444  einval:
2445  lanai_free_skb(atmvcc, skb);
2446  return -EINVAL;
2447 }
2448 
2449 static int lanai_change_qos(struct atm_vcc *atmvcc,
2450  /*const*/ struct atm_qos *qos, int flags)
2451 {
2452  return -EBUSY; /* TODO: need to write this */
2453 }
2454 
2455 #ifndef CONFIG_PROC_FS
2456 #define lanai_proc_read NULL
2457 #else
2458 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2459 {
2460  struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2461  loff_t left = *pos;
2462  struct lanai_vcc *lvcc;
2463  if (left-- == 0)
2464  return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2465  "serial=%u, magic=0x%08X, num_vci=%d\n",
2466  atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2467  (unsigned int) lanai->serialno,
2468  (unsigned int) lanai->magicno, lanai->num_vci);
2469  if (left-- == 0)
2470  return sprintf(page, "revision: board=%d, pci_if=%d\n",
2471  lanai->board_rev, (int) lanai->pci->revision);
2472  if (left-- == 0)
2473  return sprintf(page, "EEPROM ESI: %pM\n",
2474  &lanai->eeprom[EEPROM_MAC]);
2475  if (left-- == 0)
2476  return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2477  "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2478  (lanai->status & STATUS_LOCD) ? 1 : 0,
2479  (lanai->status & STATUS_LED) ? 1 : 0,
2480  (lanai->status & STATUS_GPIN) ? 1 : 0);
2481  if (left-- == 0)
2482  return sprintf(page, "global buffer sizes: service=%Zu, "
2483  "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2484  lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2485  if (left-- == 0) {
2486  get_statistics(lanai);
2487  return sprintf(page, "cells in error: overflow=%u, "
2488  "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2489  lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2490  lanai->stats.hec_err, lanai->stats.atm_ovfl);
2491  }
2492  if (left-- == 0)
2493  return sprintf(page, "PCI errors: parity_detect=%u, "
2494  "master_abort=%u, master_target_abort=%u,\n",
2495  lanai->stats.pcierr_parity_detect,
2496  lanai->stats.pcierr_serr_set,
2497  lanai->stats.pcierr_m_target_abort);
2498  if (left-- == 0)
2499  return sprintf(page, " slave_target_abort=%u, "
2500  "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2501  lanai->stats.pcierr_master_parity);
2502  if (left-- == 0)
2503  return sprintf(page, " no_tx=%u, "
2504  "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2505  lanai->stats.service_notx,
2506  lanai->stats.service_rxnotaal5);
2507  if (left-- == 0)
2508  return sprintf(page, "resets: dma=%u, card=%u\n",
2509  lanai->stats.dma_reenable, lanai->stats.card_reset);
2510  /* At this point, "left" should be the VCI we're looking for */
2512  for (; ; left++) {
2513  if (left >= NUM_VCI) {
2514  left = 0;
2515  goto out;
2516  }
2517  if ((lvcc = lanai->vccs[left]) != NULL)
2518  break;
2519  (*pos)++;
2520  }
2521  /* Note that we re-use "left" here since we're done with it */
2522  left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
2523  lvcc->nref, lvcc->stats.rx_nomem);
2524  if (lvcc->rx.atmvcc != NULL) {
2525  left += sprintf(&page[left], ",\n rx_AAL=%d",
2526  lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2527  if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2528  left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2529  "rx_bad_len=%u,\n rx_service_trash=%u, "
2530  "rx_service_stream=%u, rx_bad_crc=%u",
2531  lanai_buf_size(&lvcc->rx.buf),
2532  lvcc->stats.x.aal5.rx_badlen,
2533  lvcc->stats.x.aal5.service_trash,
2534  lvcc->stats.x.aal5.service_stream,
2535  lvcc->stats.x.aal5.service_rxcrc);
2536  }
2537  if (lvcc->tx.atmvcc != NULL)
2538  left += sprintf(&page[left], ",\n tx_AAL=%d, "
2539  "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2540  lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2541  lanai_buf_size(&lvcc->tx.buf),
2542  lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2543  vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2544  page[left++] = '\n';
2545  page[left] = '\0';
2546  out:
2548  return left;
2549 }
2550 #endif /* CONFIG_PROC_FS */
2551 
2552 /* -------------------- HOOKS: */
2553 
2554 static const struct atmdev_ops ops = {
2555  .dev_close = lanai_dev_close,
2556  .open = lanai_open,
2557  .close = lanai_close,
2558  .getsockopt = NULL,
2559  .setsockopt = NULL,
2560  .send = lanai_send,
2561  .phy_put = NULL,
2562  .phy_get = NULL,
2563  .change_qos = lanai_change_qos,
2564  .proc_read = lanai_proc_read,
2565  .owner = THIS_MODULE
2566 };
2567 
2568 /* initialize one probed card */
2569 static int __devinit lanai_init_one(struct pci_dev *pci,
2570  const struct pci_device_id *ident)
2571 {
2572  struct lanai_dev *lanai;
2573  struct atm_dev *atmdev;
2574  int result;
2575 
2576  lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2577  if (lanai == NULL) {
2578  printk(KERN_ERR DEV_LABEL
2579  ": couldn't allocate dev_data structure!\n");
2580  return -ENOMEM;
2581  }
2582 
2583  atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2584  if (atmdev == NULL) {
2585  printk(KERN_ERR DEV_LABEL
2586  ": couldn't register atm device!\n");
2587  kfree(lanai);
2588  return -EBUSY;
2589  }
2590 
2591  atmdev->dev_data = lanai;
2592  lanai->pci = pci;
2593  lanai->type = (enum lanai_type) ident->device;
2594 
2595  result = lanai_dev_open(atmdev);
2596  if (result != 0) {
2597  DPRINTK("lanai_start() failed, err=%d\n", -result);
2598  atm_dev_deregister(atmdev);
2599  kfree(lanai);
2600  }
2601  return result;
2602 }
2603 
2604 static struct pci_device_id lanai_pci_tbl[] = {
2607  { 0, } /* terminal entry */
2608 };
2609 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2610 
2611 static struct pci_driver lanai_driver = {
2612  .name = DEV_LABEL,
2613  .id_table = lanai_pci_tbl,
2614  .probe = lanai_init_one,
2615 };
2616 
2617 static int __init lanai_module_init(void)
2618 {
2619  int x;
2620 
2621  x = pci_register_driver(&lanai_driver);
2622  if (x != 0)
2623  printk(KERN_ERR DEV_LABEL ": no adapter found\n");
2624  return x;
2625 }
2626 
2627 static void __exit lanai_module_exit(void)
2628 {
2629  /* We'll only get called when all the interfaces are already
2630  * gone, so there isn't much to do
2631  */
2632  DPRINTK("cleanup_module()\n");
2633  pci_unregister_driver(&lanai_driver);
2634 }
2635 
2636 module_init(lanai_module_init);
2637 module_exit(lanai_module_exit);
2638 
2639 MODULE_AUTHOR("Mitchell Blank Jr <[email protected]>");
2640 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2641 MODULE_LICENSE("GPL");