Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lowcomms.c
Go to the documentation of this file.
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/user.h>
57 #include <net/ipv6.h>
58 
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "config.h"
63 
64 #define NEEDED_RMEM (4*1024*1024)
65 #define CONN_HASH_SIZE 32
66 
67 /* Number of messages to send before rescheduling */
68 #define MAX_SEND_MSG_COUNT 25
69 
70 struct cbuf {
71  unsigned int base;
72  unsigned int len;
73  unsigned int mask;
74 };
75 
76 static void cbuf_add(struct cbuf *cb, int n)
77 {
78  cb->len += n;
79 }
80 
81 static int cbuf_data(struct cbuf *cb)
82 {
83  return ((cb->base + cb->len) & cb->mask);
84 }
85 
86 static void cbuf_init(struct cbuf *cb, int size)
87 {
88  cb->base = cb->len = 0;
89  cb->mask = size-1;
90 }
91 
92 static void cbuf_eat(struct cbuf *cb, int n)
93 {
94  cb->len -= n;
95  cb->base += n;
96  cb->base &= cb->mask;
97 }
98 
99 static bool cbuf_empty(struct cbuf *cb)
100 {
101  return cb->len == 0;
102 }
103 
104 struct connection {
105  struct socket *sock; /* NULL if not connected */
106  uint32_t nodeid; /* So we know who we are in the list */
108  unsigned long flags;
109 #define CF_READ_PENDING 1
110 #define CF_WRITE_PENDING 2
111 #define CF_CONNECT_PENDING 3
112 #define CF_INIT_PENDING 4
113 #define CF_IS_OTHERCON 5
114 #define CF_CLOSE 6
115 #define CF_APP_LIMITED 7
116  struct list_head writequeue; /* List of outgoing writequeue_entries */
118  int (*rx_action) (struct connection *); /* What to do when active */
119  void (*connect_action) (struct connection *); /* What to do to connect */
120  struct page *rx_page;
121  struct cbuf cb;
122  int retries;
123 #define MAX_CONNECT_RETRIES 3
125  struct hlist_node list;
127  struct work_struct rwork; /* Receive workqueue */
128  struct work_struct swork; /* Send workqueue */
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131 
132 /* An entry waiting to be sent */
134  struct list_head list;
135  struct page *page;
136  int offset;
137  int len;
138  int end;
139  int users;
140  struct connection *con;
141 };
142 
144  struct list_head list;
145  int nodeid;
148 };
149 
150 static LIST_HEAD(dlm_node_addrs);
151 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
152 
153 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
154 static int dlm_local_count;
155 static int dlm_allow_conn;
156 
157 /* Work queues */
158 static struct workqueue_struct *recv_workqueue;
159 static struct workqueue_struct *send_workqueue;
160 
161 static struct hlist_head connection_hash[CONN_HASH_SIZE];
162 static DEFINE_MUTEX(connections_lock);
163 static struct kmem_cache *con_cache;
164 
165 static void process_recv_sockets(struct work_struct *work);
166 static void process_send_sockets(struct work_struct *work);
167 
168 
169 /* This is deliberately very simple because most clusters have simple
170  sequential nodeids, so we should be able to go straight to a connection
171  struct in the array */
172 static inline int nodeid_hash(int nodeid)
173 {
174  return nodeid & (CONN_HASH_SIZE-1);
175 }
176 
177 static struct connection *__find_con(int nodeid)
178 {
179  int r;
180  struct hlist_node *h;
181  struct connection *con;
182 
183  r = nodeid_hash(nodeid);
184 
185  hlist_for_each_entry(con, h, &connection_hash[r], list) {
186  if (con->nodeid == nodeid)
187  return con;
188  }
189  return NULL;
190 }
191 
192 /*
193  * If 'allocation' is zero then we don't attempt to create a new
194  * connection structure for this node.
195  */
196 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
197 {
198  struct connection *con = NULL;
199  int r;
200 
201  con = __find_con(nodeid);
202  if (con || !alloc)
203  return con;
204 
205  con = kmem_cache_zalloc(con_cache, alloc);
206  if (!con)
207  return NULL;
208 
209  r = nodeid_hash(nodeid);
210  hlist_add_head(&con->list, &connection_hash[r]);
211 
212  con->nodeid = nodeid;
213  mutex_init(&con->sock_mutex);
214  INIT_LIST_HEAD(&con->writequeue);
216  INIT_WORK(&con->swork, process_send_sockets);
217  INIT_WORK(&con->rwork, process_recv_sockets);
218 
219  /* Setup action pointers for child sockets */
220  if (con->nodeid) {
221  struct connection *zerocon = __find_con(0);
222 
223  con->connect_action = zerocon->connect_action;
224  if (!con->rx_action)
225  con->rx_action = zerocon->rx_action;
226  }
227 
228  return con;
229 }
230 
231 /* Loop round all connections */
232 static void foreach_conn(void (*conn_func)(struct connection *c))
233 {
234  int i;
235  struct hlist_node *h, *n;
236  struct connection *con;
237 
238  for (i = 0; i < CONN_HASH_SIZE; i++) {
239  hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
240  conn_func(con);
241  }
242  }
243 }
244 
245 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
246 {
247  struct connection *con;
248 
249  mutex_lock(&connections_lock);
250  con = __nodeid2con(nodeid, allocation);
251  mutex_unlock(&connections_lock);
252 
253  return con;
254 }
255 
256 /* This is a bit drastic, but only called when things go wrong */
257 static struct connection *assoc2con(int assoc_id)
258 {
259  int i;
260  struct hlist_node *h;
261  struct connection *con;
262 
263  mutex_lock(&connections_lock);
264 
265  for (i = 0 ; i < CONN_HASH_SIZE; i++) {
266  hlist_for_each_entry(con, h, &connection_hash[i], list) {
267  if (con->sctp_assoc == assoc_id) {
268  mutex_unlock(&connections_lock);
269  return con;
270  }
271  }
272  }
273  mutex_unlock(&connections_lock);
274  return NULL;
275 }
276 
277 static struct dlm_node_addr *find_node_addr(int nodeid)
278 {
279  struct dlm_node_addr *na;
280 
281  list_for_each_entry(na, &dlm_node_addrs, list) {
282  if (na->nodeid == nodeid)
283  return na;
284  }
285  return NULL;
286 }
287 
288 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
289 {
290  switch (x->ss_family) {
291  case AF_INET: {
292  struct sockaddr_in *sinx = (struct sockaddr_in *)x;
293  struct sockaddr_in *siny = (struct sockaddr_in *)y;
294  if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
295  return 0;
296  if (sinx->sin_port != siny->sin_port)
297  return 0;
298  break;
299  }
300  case AF_INET6: {
301  struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
302  struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
303  if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
304  return 0;
305  if (sinx->sin6_port != siny->sin6_port)
306  return 0;
307  break;
308  }
309  default:
310  return 0;
311  }
312  return 1;
313 }
314 
315 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
316  struct sockaddr *sa_out)
317 {
318  struct sockaddr_storage sas;
319  struct dlm_node_addr *na;
320 
321  if (!dlm_local_count)
322  return -1;
323 
324  spin_lock(&dlm_node_addrs_spin);
325  na = find_node_addr(nodeid);
326  if (na && na->addr_count)
327  memcpy(&sas, na->addr[0], sizeof(struct sockaddr_storage));
328  spin_unlock(&dlm_node_addrs_spin);
329 
330  if (!na)
331  return -EEXIST;
332 
333  if (!na->addr_count)
334  return -ENOENT;
335 
336  if (sas_out)
337  memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
338 
339  if (!sa_out)
340  return 0;
341 
342  if (dlm_local_addr[0]->ss_family == AF_INET) {
343  struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
344  struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
345  ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
346  } else {
347  struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
348  struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
349  ret6->sin6_addr = in6->sin6_addr;
350  }
351 
352  return 0;
353 }
354 
355 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
356 {
357  struct dlm_node_addr *na;
358  int rv = -EEXIST;
359 
360  spin_lock(&dlm_node_addrs_spin);
361  list_for_each_entry(na, &dlm_node_addrs, list) {
362  if (!na->addr_count)
363  continue;
364 
365  if (!addr_compare(na->addr[0], addr))
366  continue;
367 
368  *nodeid = na->nodeid;
369  rv = 0;
370  break;
371  }
372  spin_unlock(&dlm_node_addrs_spin);
373  return rv;
374 }
375 
376 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
377 {
378  struct sockaddr_storage *new_addr;
379  struct dlm_node_addr *new_node, *na;
380 
381  new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
382  if (!new_node)
383  return -ENOMEM;
384 
385  new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
386  if (!new_addr) {
387  kfree(new_node);
388  return -ENOMEM;
389  }
390 
391  memcpy(new_addr, addr, len);
392 
393  spin_lock(&dlm_node_addrs_spin);
394  na = find_node_addr(nodeid);
395  if (!na) {
396  new_node->nodeid = nodeid;
397  new_node->addr[0] = new_addr;
398  new_node->addr_count = 1;
399  list_add(&new_node->list, &dlm_node_addrs);
400  spin_unlock(&dlm_node_addrs_spin);
401  return 0;
402  }
403 
404  if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
405  spin_unlock(&dlm_node_addrs_spin);
406  kfree(new_addr);
407  kfree(new_node);
408  return -ENOSPC;
409  }
410 
411  na->addr[na->addr_count++] = new_addr;
412  spin_unlock(&dlm_node_addrs_spin);
413  kfree(new_node);
414  return 0;
415 }
416 
417 /* Data available on socket or listen socket received a connect */
418 static void lowcomms_data_ready(struct sock *sk, int count_unused)
419 {
420  struct connection *con = sock2con(sk);
421  if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
422  queue_work(recv_workqueue, &con->rwork);
423 }
424 
425 static void lowcomms_write_space(struct sock *sk)
426 {
427  struct connection *con = sock2con(sk);
428 
429  if (!con)
430  return;
431 
432  clear_bit(SOCK_NOSPACE, &con->sock->flags);
433 
435  con->sock->sk->sk_write_pending--;
436  clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
437  }
438 
440  queue_work(send_workqueue, &con->swork);
441 }
442 
443 static inline void lowcomms_connect_sock(struct connection *con)
444 {
445  if (test_bit(CF_CLOSE, &con->flags))
446  return;
448  queue_work(send_workqueue, &con->swork);
449 }
450 
451 static void lowcomms_state_change(struct sock *sk)
452 {
453  if (sk->sk_state == TCP_ESTABLISHED)
454  lowcomms_write_space(sk);
455 }
456 
458 {
459  struct connection *con;
460 
461  /* with sctp there's no connecting without sending */
462  if (dlm_config.ci_protocol != 0)
463  return 0;
464 
465  if (nodeid == dlm_our_nodeid())
466  return 0;
467 
468  con = nodeid2con(nodeid, GFP_NOFS);
469  if (!con)
470  return -ENOMEM;
471  lowcomms_connect_sock(con);
472  return 0;
473 }
474 
475 /* Make a socket active */
476 static void add_sock(struct socket *sock, struct connection *con)
477 {
478  con->sock = sock;
479 
480  /* Install a data_ready callback */
481  con->sock->sk->sk_data_ready = lowcomms_data_ready;
482  con->sock->sk->sk_write_space = lowcomms_write_space;
483  con->sock->sk->sk_state_change = lowcomms_state_change;
484  con->sock->sk->sk_user_data = con;
485  con->sock->sk->sk_allocation = GFP_NOFS;
486 }
487 
488 /* Add the port number to an IPv6 or 4 sockaddr and return the address
489  length */
490 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
491  int *addr_len)
492 {
493  saddr->ss_family = dlm_local_addr[0]->ss_family;
494  if (saddr->ss_family == AF_INET) {
495  struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
496  in4_addr->sin_port = cpu_to_be16(port);
497  *addr_len = sizeof(struct sockaddr_in);
498  memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
499  } else {
500  struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
501  in6_addr->sin6_port = cpu_to_be16(port);
502  *addr_len = sizeof(struct sockaddr_in6);
503  }
504  memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
505 }
506 
507 /* Close a remote connection and tidy up */
508 static void close_connection(struct connection *con, bool and_other)
509 {
510  mutex_lock(&con->sock_mutex);
511 
512  if (con->sock) {
513  sock_release(con->sock);
514  con->sock = NULL;
515  }
516  if (con->othercon && and_other) {
517  /* Will only re-enter once. */
518  close_connection(con->othercon, false);
519  }
520  if (con->rx_page) {
521  __free_page(con->rx_page);
522  con->rx_page = NULL;
523  }
524 
525  con->retries = 0;
526  mutex_unlock(&con->sock_mutex);
527 }
528 
529 /* We only send shutdown messages to nodes that are not part of the cluster */
530 static void sctp_send_shutdown(sctp_assoc_t associd)
531 {
532  static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
533  struct msghdr outmessage;
534  struct cmsghdr *cmsg;
535  struct sctp_sndrcvinfo *sinfo;
536  int ret;
537  struct connection *con;
538 
539  con = nodeid2con(0,0);
540  BUG_ON(con == NULL);
541 
542  outmessage.msg_name = NULL;
543  outmessage.msg_namelen = 0;
544  outmessage.msg_control = outcmsg;
545  outmessage.msg_controllen = sizeof(outcmsg);
546  outmessage.msg_flags = MSG_EOR;
547 
548  cmsg = CMSG_FIRSTHDR(&outmessage);
549  cmsg->cmsg_level = IPPROTO_SCTP;
550  cmsg->cmsg_type = SCTP_SNDRCV;
551  cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
552  outmessage.msg_controllen = cmsg->cmsg_len;
553  sinfo = CMSG_DATA(cmsg);
554  memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
555 
556  sinfo->sinfo_flags |= MSG_EOF;
557  sinfo->sinfo_assoc_id = associd;
558 
559  ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
560 
561  if (ret != 0)
562  log_print("send EOF to node failed: %d", ret);
563 }
564 
565 static void sctp_init_failed_foreach(struct connection *con)
566 {
567  con->sctp_assoc = 0;
570  queue_work(send_workqueue, &con->swork);
571  }
572 }
573 
574 /* INIT failed but we don't know which node...
575  restart INIT on all pending nodes */
576 static void sctp_init_failed(void)
577 {
578  mutex_lock(&connections_lock);
579 
580  foreach_conn(sctp_init_failed_foreach);
581 
582  mutex_unlock(&connections_lock);
583 }
584 
585 /* Something happened to an association */
586 static void process_sctp_notification(struct connection *con,
587  struct msghdr *msg, char *buf)
588 {
589  union sctp_notification *sn = (union sctp_notification *)buf;
590 
591  if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
592  switch (sn->sn_assoc_change.sac_state) {
593 
594  case SCTP_COMM_UP:
595  case SCTP_RESTART:
596  {
597  /* Check that the new node is in the lockspace */
598  struct sctp_prim prim;
599  int nodeid;
600  int prim_len, ret;
601  int addr_len;
602  struct connection *new_con;
603 
604  /*
605  * We get this before any data for an association.
606  * We verify that the node is in the cluster and
607  * then peel off a socket for it.
608  */
609  if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
610  log_print("COMM_UP for invalid assoc ID %d",
611  (int)sn->sn_assoc_change.sac_assoc_id);
612  sctp_init_failed();
613  return;
614  }
615  memset(&prim, 0, sizeof(struct sctp_prim));
616  prim_len = sizeof(struct sctp_prim);
617  prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
618 
619  ret = kernel_getsockopt(con->sock,
620  IPPROTO_SCTP,
622  (char*)&prim,
623  &prim_len);
624  if (ret < 0) {
625  log_print("getsockopt/sctp_primary_addr on "
626  "new assoc %d failed : %d",
627  (int)sn->sn_assoc_change.sac_assoc_id,
628  ret);
629 
630  /* Retry INIT later */
631  new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
632  if (new_con)
634  return;
635  }
636  make_sockaddr(&prim.ssp_addr, 0, &addr_len);
637  if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
638  unsigned char *b=(unsigned char *)&prim.ssp_addr;
639  log_print("reject connect from unknown addr");
640  print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
641  b, sizeof(struct sockaddr_storage));
642  sctp_send_shutdown(prim.ssp_assoc_id);
643  return;
644  }
645 
646  new_con = nodeid2con(nodeid, GFP_NOFS);
647  if (!new_con)
648  return;
649 
650  /* Peel off a new sock */
651  sctp_lock_sock(con->sock->sk);
652  ret = sctp_do_peeloff(con->sock->sk,
653  sn->sn_assoc_change.sac_assoc_id,
654  &new_con->sock);
655  sctp_release_sock(con->sock->sk);
656  if (ret < 0) {
657  log_print("Can't peel off a socket for "
658  "connection %d to node %d: err=%d",
659  (int)sn->sn_assoc_change.sac_assoc_id,
660  nodeid, ret);
661  return;
662  }
663  add_sock(new_con->sock, new_con);
664 
665  log_print("connecting to %d sctp association %d",
666  nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
667 
668  /* Send any pending writes */
669  clear_bit(CF_CONNECT_PENDING, &new_con->flags);
671  if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
672  queue_work(send_workqueue, &new_con->swork);
673  }
674  if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
675  queue_work(recv_workqueue, &new_con->rwork);
676  }
677  break;
678 
679  case SCTP_COMM_LOST:
680  case SCTP_SHUTDOWN_COMP:
681  {
682  con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
683  if (con) {
684  con->sctp_assoc = 0;
685  }
686  }
687  break;
688 
689  /* We don't know which INIT failed, so clear the PENDING flags
690  * on them all. if assoc_id is zero then it will then try
691  * again */
692 
693  case SCTP_CANT_STR_ASSOC:
694  {
695  log_print("Can't start SCTP association - retrying");
696  sctp_init_failed();
697  }
698  break;
699 
700  default:
701  log_print("unexpected SCTP assoc change id=%d state=%d",
702  (int)sn->sn_assoc_change.sac_assoc_id,
703  sn->sn_assoc_change.sac_state);
704  }
705  }
706 }
707 
708 /* Data received from remote end */
709 static int receive_from_sock(struct connection *con)
710 {
711  int ret = 0;
712  struct msghdr msg = {};
713  struct kvec iov[2];
714  unsigned len;
715  int r;
716  int call_again_soon = 0;
717  int nvec;
718  char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
719 
720  mutex_lock(&con->sock_mutex);
721 
722  if (con->sock == NULL) {
723  ret = -EAGAIN;
724  goto out_close;
725  }
726 
727  if (con->rx_page == NULL) {
728  /*
729  * This doesn't need to be atomic, but I think it should
730  * improve performance if it is.
731  */
732  con->rx_page = alloc_page(GFP_ATOMIC);
733  if (con->rx_page == NULL)
734  goto out_resched;
735  cbuf_init(&con->cb, PAGE_CACHE_SIZE);
736  }
737 
738  /* Only SCTP needs these really */
739  memset(&incmsg, 0, sizeof(incmsg));
740  msg.msg_control = incmsg;
741  msg.msg_controllen = sizeof(incmsg);
742 
743  /*
744  * iov[0] is the bit of the circular buffer between the current end
745  * point (cb.base + cb.len) and the end of the buffer.
746  */
747  iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
748  iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
749  iov[1].iov_len = 0;
750  nvec = 1;
751 
752  /*
753  * iov[1] is the bit of the circular buffer between the start of the
754  * buffer and the start of the currently used section (cb.base)
755  */
756  if (cbuf_data(&con->cb) >= con->cb.base) {
757  iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
758  iov[1].iov_len = con->cb.base;
759  iov[1].iov_base = page_address(con->rx_page);
760  nvec = 2;
761  }
762  len = iov[0].iov_len + iov[1].iov_len;
763 
764  r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
766  if (ret <= 0)
767  goto out_close;
768 
769  /* Process SCTP notifications */
770  if (msg.msg_flags & MSG_NOTIFICATION) {
771  msg.msg_control = incmsg;
772  msg.msg_controllen = sizeof(incmsg);
773 
774  process_sctp_notification(con, &msg,
775  page_address(con->rx_page) + con->cb.base);
776  mutex_unlock(&con->sock_mutex);
777  return 0;
778  }
779  BUG_ON(con->nodeid == 0);
780 
781  if (ret == len)
782  call_again_soon = 1;
783  cbuf_add(&con->cb, ret);
785  page_address(con->rx_page),
786  con->cb.base, con->cb.len,
788  if (ret == -EBADMSG) {
789  log_print("lowcomms: addr=%p, base=%u, len=%u, "
790  "iov_len=%u, iov_base[0]=%p, read=%d",
791  page_address(con->rx_page), con->cb.base, con->cb.len,
792  len, iov[0].iov_base, r);
793  }
794  if (ret < 0)
795  goto out_close;
796  cbuf_eat(&con->cb, ret);
797 
798  if (cbuf_empty(&con->cb) && !call_again_soon) {
799  __free_page(con->rx_page);
800  con->rx_page = NULL;
801  }
802 
803  if (call_again_soon)
804  goto out_resched;
805  mutex_unlock(&con->sock_mutex);
806  return 0;
807 
808 out_resched:
810  queue_work(recv_workqueue, &con->rwork);
811  mutex_unlock(&con->sock_mutex);
812  return -EAGAIN;
813 
814 out_close:
815  mutex_unlock(&con->sock_mutex);
816  if (ret != -EAGAIN) {
817  close_connection(con, false);
818  /* Reconnect when there is something to send */
819  }
820  /* Don't return success if we really got EOF */
821  if (ret == 0)
822  ret = -EAGAIN;
823 
824  return ret;
825 }
826 
827 /* Listening socket is busy, accept a connection */
828 static int tcp_accept_from_sock(struct connection *con)
829 {
830  int result;
831  struct sockaddr_storage peeraddr;
832  struct socket *newsock;
833  int len;
834  int nodeid;
835  struct connection *newcon;
836  struct connection *addcon;
837 
838  mutex_lock(&connections_lock);
839  if (!dlm_allow_conn) {
840  mutex_unlock(&connections_lock);
841  return -1;
842  }
843  mutex_unlock(&connections_lock);
844 
845  memset(&peeraddr, 0, sizeof(peeraddr));
846  result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
847  IPPROTO_TCP, &newsock);
848  if (result < 0)
849  return -ENOMEM;
850 
851  mutex_lock_nested(&con->sock_mutex, 0);
852 
853  result = -ENOTCONN;
854  if (con->sock == NULL)
855  goto accept_err;
856 
857  newsock->type = con->sock->type;
858  newsock->ops = con->sock->ops;
859 
860  result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
861  if (result < 0)
862  goto accept_err;
863 
864  /* Get the connected socket's peer */
865  memset(&peeraddr, 0, sizeof(peeraddr));
866  if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
867  &len, 2)) {
868  result = -ECONNABORTED;
869  goto accept_err;
870  }
871 
872  /* Get the new node's NODEID */
873  make_sockaddr(&peeraddr, 0, &len);
874  if (addr_to_nodeid(&peeraddr, &nodeid)) {
875  unsigned char *b=(unsigned char *)&peeraddr;
876  log_print("connect from non cluster node");
877  print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
878  b, sizeof(struct sockaddr_storage));
879  sock_release(newsock);
880  mutex_unlock(&con->sock_mutex);
881  return -1;
882  }
883 
884  log_print("got connection from %d", nodeid);
885 
886  /* Check to see if we already have a connection to this node. This
887  * could happen if the two nodes initiate a connection at roughly
888  * the same time and the connections cross on the wire.
889  * In this case we store the incoming one in "othercon"
890  */
891  newcon = nodeid2con(nodeid, GFP_NOFS);
892  if (!newcon) {
893  result = -ENOMEM;
894  goto accept_err;
895  }
896  mutex_lock_nested(&newcon->sock_mutex, 1);
897  if (newcon->sock) {
898  struct connection *othercon = newcon->othercon;
899 
900  if (!othercon) {
901  othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
902  if (!othercon) {
903  log_print("failed to allocate incoming socket");
904  mutex_unlock(&newcon->sock_mutex);
905  result = -ENOMEM;
906  goto accept_err;
907  }
908  othercon->nodeid = nodeid;
909  othercon->rx_action = receive_from_sock;
910  mutex_init(&othercon->sock_mutex);
911  INIT_WORK(&othercon->swork, process_send_sockets);
912  INIT_WORK(&othercon->rwork, process_recv_sockets);
913  set_bit(CF_IS_OTHERCON, &othercon->flags);
914  }
915  if (!othercon->sock) {
916  newcon->othercon = othercon;
917  othercon->sock = newsock;
918  newsock->sk->sk_user_data = othercon;
919  add_sock(newsock, othercon);
920  addcon = othercon;
921  }
922  else {
923  printk("Extra connection from node %d attempted\n", nodeid);
924  result = -EAGAIN;
925  mutex_unlock(&newcon->sock_mutex);
926  goto accept_err;
927  }
928  }
929  else {
930  newsock->sk->sk_user_data = newcon;
931  newcon->rx_action = receive_from_sock;
932  add_sock(newsock, newcon);
933  addcon = newcon;
934  }
935 
936  mutex_unlock(&newcon->sock_mutex);
937 
938  /*
939  * Add it to the active queue in case we got data
940  * between processing the accept adding the socket
941  * to the read_sockets list
942  */
943  if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
944  queue_work(recv_workqueue, &addcon->rwork);
945  mutex_unlock(&con->sock_mutex);
946 
947  return 0;
948 
949 accept_err:
950  mutex_unlock(&con->sock_mutex);
951  sock_release(newsock);
952 
953  if (result != -EAGAIN)
954  log_print("error accepting connection from node: %d", result);
955  return result;
956 }
957 
958 static void free_entry(struct writequeue_entry *e)
959 {
960  __free_page(e->page);
961  kfree(e);
962 }
963 
964 /* Initiate an SCTP association.
965  This is a special case of send_to_sock() in that we don't yet have a
966  peeled-off socket for this association, so we use the listening socket
967  and add the primary IP address of the remote node.
968  */
969 static void sctp_init_assoc(struct connection *con)
970 {
971  struct sockaddr_storage rem_addr;
972  char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
973  struct msghdr outmessage;
974  struct cmsghdr *cmsg;
975  struct sctp_sndrcvinfo *sinfo;
976  struct connection *base_con;
977  struct writequeue_entry *e;
978  int len, offset;
979  int ret;
980  int addrlen;
981  struct kvec iov[1];
982 
984  return;
985 
986  if (con->retries++ > MAX_CONNECT_RETRIES)
987  return;
988 
989  if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr)) {
990  log_print("no address for nodeid %d", con->nodeid);
991  return;
992  }
993  base_con = nodeid2con(0, 0);
994  BUG_ON(base_con == NULL);
995 
996  make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
997 
998  outmessage.msg_name = &rem_addr;
999  outmessage.msg_namelen = addrlen;
1000  outmessage.msg_control = outcmsg;
1001  outmessage.msg_controllen = sizeof(outcmsg);
1002  outmessage.msg_flags = MSG_EOR;
1003 
1004  spin_lock(&con->writequeue_lock);
1005 
1006  if (list_empty(&con->writequeue)) {
1007  spin_unlock(&con->writequeue_lock);
1008  log_print("writequeue empty for nodeid %d", con->nodeid);
1009  return;
1010  }
1011 
1012  e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1013  len = e->len;
1014  offset = e->offset;
1015  spin_unlock(&con->writequeue_lock);
1016 
1017  /* Send the first block off the write queue */
1018  iov[0].iov_base = page_address(e->page)+offset;
1019  iov[0].iov_len = len;
1020 
1021  cmsg = CMSG_FIRSTHDR(&outmessage);
1022  cmsg->cmsg_level = IPPROTO_SCTP;
1023  cmsg->cmsg_type = SCTP_SNDRCV;
1024  cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1025  sinfo = CMSG_DATA(cmsg);
1026  memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
1028  outmessage.msg_controllen = cmsg->cmsg_len;
1029 
1030  ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
1031  if (ret < 0) {
1032  log_print("Send first packet to node %d failed: %d",
1033  con->nodeid, ret);
1034 
1035  /* Try again later */
1038  }
1039  else {
1040  spin_lock(&con->writequeue_lock);
1041  e->offset += ret;
1042  e->len -= ret;
1043 
1044  if (e->len == 0 && e->users == 0) {
1045  list_del(&e->list);
1046  free_entry(e);
1047  }
1048  spin_unlock(&con->writequeue_lock);
1049  }
1050 }
1051 
1052 /* Connect a new socket to its peer */
1053 static void tcp_connect_to_sock(struct connection *con)
1054 {
1055  struct sockaddr_storage saddr, src_addr;
1056  int addr_len;
1057  struct socket *sock = NULL;
1058  int one = 1;
1059  int result;
1060 
1061  if (con->nodeid == 0) {
1062  log_print("attempt to connect sock 0 foiled");
1063  return;
1064  }
1065 
1066  mutex_lock(&con->sock_mutex);
1067  if (con->retries++ > MAX_CONNECT_RETRIES)
1068  goto out;
1069 
1070  /* Some odd races can cause double-connects, ignore them */
1071  if (con->sock)
1072  goto out;
1073 
1074  /* Create a socket to communicate with */
1075  result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1076  IPPROTO_TCP, &sock);
1077  if (result < 0)
1078  goto out_err;
1079 
1080  memset(&saddr, 0, sizeof(saddr));
1081  result = nodeid_to_addr(con->nodeid, &saddr, NULL);
1082  if (result < 0) {
1083  log_print("no address for nodeid %d", con->nodeid);
1084  goto out_err;
1085  }
1086 
1087  sock->sk->sk_user_data = con;
1088  con->rx_action = receive_from_sock;
1089  con->connect_action = tcp_connect_to_sock;
1090  add_sock(sock, con);
1091 
1092  /* Bind to our cluster-known address connecting to avoid
1093  routing problems */
1094  memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1095  make_sockaddr(&src_addr, 0, &addr_len);
1096  result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1097  addr_len);
1098  if (result < 0) {
1099  log_print("could not bind for connect: %d", result);
1100  /* This *may* not indicate a critical error */
1101  }
1102 
1103  make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1104 
1105  log_print("connecting to %d", con->nodeid);
1106 
1107  /* Turn off Nagle's algorithm */
1108  kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1109  sizeof(one));
1110 
1111  result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1112  O_NONBLOCK);
1113  if (result == -EINPROGRESS)
1114  result = 0;
1115  if (result == 0)
1116  goto out;
1117 
1118 out_err:
1119  if (con->sock) {
1120  sock_release(con->sock);
1121  con->sock = NULL;
1122  } else if (sock) {
1123  sock_release(sock);
1124  }
1125  /*
1126  * Some errors are fatal and this list might need adjusting. For other
1127  * errors we try again until the max number of retries is reached.
1128  */
1129  if (result != -EHOSTUNREACH &&
1130  result != -ENETUNREACH &&
1131  result != -ENETDOWN &&
1132  result != -EINVAL &&
1133  result != -EPROTONOSUPPORT) {
1134  log_print("connect %d try %d error %d", con->nodeid,
1135  con->retries, result);
1136  mutex_unlock(&con->sock_mutex);
1137  msleep(1000);
1138  lowcomms_connect_sock(con);
1139  return;
1140  }
1141 out:
1142  mutex_unlock(&con->sock_mutex);
1143  return;
1144 }
1145 
1146 static struct socket *tcp_create_listen_sock(struct connection *con,
1147  struct sockaddr_storage *saddr)
1148 {
1149  struct socket *sock = NULL;
1150  int result = 0;
1151  int one = 1;
1152  int addr_len;
1153 
1154  if (dlm_local_addr[0]->ss_family == AF_INET)
1155  addr_len = sizeof(struct sockaddr_in);
1156  else
1157  addr_len = sizeof(struct sockaddr_in6);
1158 
1159  /* Create a socket to communicate with */
1160  result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1161  IPPROTO_TCP, &sock);
1162  if (result < 0) {
1163  log_print("Can't create listening comms socket");
1164  goto create_out;
1165  }
1166 
1167  /* Turn off Nagle's algorithm */
1168  kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1169  sizeof(one));
1170 
1171  result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1172  (char *)&one, sizeof(one));
1173 
1174  if (result < 0) {
1175  log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1176  }
1177  con->rx_action = tcp_accept_from_sock;
1178  con->connect_action = tcp_connect_to_sock;
1179 
1180  /* Bind to our port */
1181  make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1182  result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1183  if (result < 0) {
1184  log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1185  sock_release(sock);
1186  sock = NULL;
1187  con->sock = NULL;
1188  goto create_out;
1189  }
1190  result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1191  (char *)&one, sizeof(one));
1192  if (result < 0) {
1193  log_print("Set keepalive failed: %d", result);
1194  }
1195 
1196  result = sock->ops->listen(sock, 5);
1197  if (result < 0) {
1198  log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1199  sock_release(sock);
1200  sock = NULL;
1201  goto create_out;
1202  }
1203 
1204 create_out:
1205  return sock;
1206 }
1207 
1208 /* Get local addresses */
1209 static void init_local(void)
1210 {
1211  struct sockaddr_storage sas, *addr;
1212  int i;
1213 
1214  dlm_local_count = 0;
1215  for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1216  if (dlm_our_addr(&sas, i))
1217  break;
1218 
1219  addr = kmalloc(sizeof(*addr), GFP_NOFS);
1220  if (!addr)
1221  break;
1222  memcpy(addr, &sas, sizeof(*addr));
1223  dlm_local_addr[dlm_local_count++] = addr;
1224  }
1225 }
1226 
1227 /* Bind to an IP address. SCTP allows multiple address so it can do
1228  multi-homing */
1229 static int add_sctp_bind_addr(struct connection *sctp_con,
1230  struct sockaddr_storage *addr,
1231  int addr_len, int num)
1232 {
1233  int result = 0;
1234 
1235  if (num == 1)
1236  result = kernel_bind(sctp_con->sock,
1237  (struct sockaddr *) addr,
1238  addr_len);
1239  else
1240  result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1242  (char *)addr, addr_len);
1243 
1244  if (result < 0)
1245  log_print("Can't bind to port %d addr number %d",
1246  dlm_config.ci_tcp_port, num);
1247 
1248  return result;
1249 }
1250 
1251 /* Initialise SCTP socket and bind to all interfaces */
1252 static int sctp_listen_for_all(void)
1253 {
1254  struct socket *sock = NULL;
1255  struct sockaddr_storage localaddr;
1256  struct sctp_event_subscribe subscribe;
1257  int result = -EINVAL, num = 1, i, addr_len;
1258  struct connection *con = nodeid2con(0, GFP_NOFS);
1259  int bufsize = NEEDED_RMEM;
1260 
1261  if (!con)
1262  return -ENOMEM;
1263 
1264  log_print("Using SCTP for communications");
1265 
1266  result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1267  IPPROTO_SCTP, &sock);
1268  if (result < 0) {
1269  log_print("Can't create comms socket, check SCTP is loaded");
1270  goto out;
1271  }
1272 
1273  /* Listen for events */
1274  memset(&subscribe, 0, sizeof(subscribe));
1275  subscribe.sctp_data_io_event = 1;
1276  subscribe.sctp_association_event = 1;
1277  subscribe.sctp_send_failure_event = 1;
1278  subscribe.sctp_shutdown_event = 1;
1279  subscribe.sctp_partial_delivery_event = 1;
1280 
1282  (char *)&bufsize, sizeof(bufsize));
1283  if (result)
1284  log_print("Error increasing buffer space on socket %d", result);
1285 
1286  result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1287  (char *)&subscribe, sizeof(subscribe));
1288  if (result < 0) {
1289  log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1290  result);
1291  goto create_delsock;
1292  }
1293 
1294  /* Init con struct */
1295  sock->sk->sk_user_data = con;
1296  con->sock = sock;
1297  con->sock->sk->sk_data_ready = lowcomms_data_ready;
1298  con->rx_action = receive_from_sock;
1299  con->connect_action = sctp_init_assoc;
1300 
1301  /* Bind to all interfaces. */
1302  for (i = 0; i < dlm_local_count; i++) {
1303  memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1304  make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1305 
1306  result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1307  if (result)
1308  goto create_delsock;
1309  ++num;
1310  }
1311 
1312  result = sock->ops->listen(sock, 5);
1313  if (result < 0) {
1314  log_print("Can't set socket listening");
1315  goto create_delsock;
1316  }
1317 
1318  return 0;
1319 
1320 create_delsock:
1321  sock_release(sock);
1322  con->sock = NULL;
1323 out:
1324  return result;
1325 }
1326 
1327 static int tcp_listen_for_all(void)
1328 {
1329  struct socket *sock = NULL;
1330  struct connection *con = nodeid2con(0, GFP_NOFS);
1331  int result = -EINVAL;
1332 
1333  if (!con)
1334  return -ENOMEM;
1335 
1336  /* We don't support multi-homed hosts */
1337  if (dlm_local_addr[1] != NULL) {
1338  log_print("TCP protocol can't handle multi-homed hosts, "
1339  "try SCTP");
1340  return -EINVAL;
1341  }
1342 
1343  log_print("Using TCP for communications");
1344 
1345  sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1346  if (sock) {
1347  add_sock(sock, con);
1348  result = 0;
1349  }
1350  else {
1351  result = -EADDRINUSE;
1352  }
1353 
1354  return result;
1355 }
1356 
1357 
1358 
1359 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1360  gfp_t allocation)
1361 {
1362  struct writequeue_entry *entry;
1363 
1364  entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1365  if (!entry)
1366  return NULL;
1367 
1368  entry->page = alloc_page(allocation);
1369  if (!entry->page) {
1370  kfree(entry);
1371  return NULL;
1372  }
1373 
1374  entry->offset = 0;
1375  entry->len = 0;
1376  entry->end = 0;
1377  entry->users = 0;
1378  entry->con = con;
1379 
1380  return entry;
1381 }
1382 
1383 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1384 {
1385  struct connection *con;
1386  struct writequeue_entry *e;
1387  int offset = 0;
1388  int users = 0;
1389 
1390  con = nodeid2con(nodeid, allocation);
1391  if (!con)
1392  return NULL;
1393 
1394  spin_lock(&con->writequeue_lock);
1395  e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1396  if ((&e->list == &con->writequeue) ||
1397  (PAGE_CACHE_SIZE - e->end < len)) {
1398  e = NULL;
1399  } else {
1400  offset = e->end;
1401  e->end += len;
1402  users = e->users++;
1403  }
1404  spin_unlock(&con->writequeue_lock);
1405 
1406  if (e) {
1407  got_one:
1408  *ppc = page_address(e->page) + offset;
1409  return e;
1410  }
1411 
1412  e = new_writequeue_entry(con, allocation);
1413  if (e) {
1414  spin_lock(&con->writequeue_lock);
1415  offset = e->end;
1416  e->end += len;
1417  users = e->users++;
1418  list_add_tail(&e->list, &con->writequeue);
1419  spin_unlock(&con->writequeue_lock);
1420  goto got_one;
1421  }
1422  return NULL;
1423 }
1424 
1426 {
1427  struct writequeue_entry *e = (struct writequeue_entry *)mh;
1428  struct connection *con = e->con;
1429  int users;
1430 
1431  spin_lock(&con->writequeue_lock);
1432  users = --e->users;
1433  if (users)
1434  goto out;
1435  e->len = e->end - e->offset;
1436  spin_unlock(&con->writequeue_lock);
1437 
1438  if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1439  queue_work(send_workqueue, &con->swork);
1440  }
1441  return;
1442 
1443 out:
1444  spin_unlock(&con->writequeue_lock);
1445  return;
1446 }
1447 
1448 /* Send a message */
1449 static void send_to_sock(struct connection *con)
1450 {
1451  int ret = 0;
1452  const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1453  struct writequeue_entry *e;
1454  int len, offset;
1455  int count = 0;
1456 
1457  mutex_lock(&con->sock_mutex);
1458  if (con->sock == NULL)
1459  goto out_connect;
1460 
1461  spin_lock(&con->writequeue_lock);
1462  for (;;) {
1463  e = list_entry(con->writequeue.next, struct writequeue_entry,
1464  list);
1465  if ((struct list_head *) e == &con->writequeue)
1466  break;
1467 
1468  len = e->len;
1469  offset = e->offset;
1470  BUG_ON(len == 0 && e->users == 0);
1471  spin_unlock(&con->writequeue_lock);
1472 
1473  ret = 0;
1474  if (len) {
1475  ret = kernel_sendpage(con->sock, e->page, offset, len,
1476  msg_flags);
1477  if (ret == -EAGAIN || ret == 0) {
1478  if (ret == -EAGAIN &&
1479  test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1481  /* Notify TCP that we're limited by the
1482  * application window size.
1483  */
1484  set_bit(SOCK_NOSPACE, &con->sock->flags);
1485  con->sock->sk->sk_write_pending++;
1486  }
1487  cond_resched();
1488  goto out;
1489  } else if (ret < 0)
1490  goto send_error;
1491  }
1492 
1493  /* Don't starve people filling buffers */
1494  if (++count >= MAX_SEND_MSG_COUNT) {
1495  cond_resched();
1496  count = 0;
1497  }
1498 
1499  spin_lock(&con->writequeue_lock);
1500  e->offset += ret;
1501  e->len -= ret;
1502 
1503  if (e->len == 0 && e->users == 0) {
1504  list_del(&e->list);
1505  free_entry(e);
1506  }
1507  }
1508  spin_unlock(&con->writequeue_lock);
1509 out:
1510  mutex_unlock(&con->sock_mutex);
1511  return;
1512 
1513 send_error:
1514  mutex_unlock(&con->sock_mutex);
1515  close_connection(con, false);
1516  lowcomms_connect_sock(con);
1517  return;
1518 
1519 out_connect:
1520  mutex_unlock(&con->sock_mutex);
1521  if (!test_bit(CF_INIT_PENDING, &con->flags))
1522  lowcomms_connect_sock(con);
1523 }
1524 
1525 static void clean_one_writequeue(struct connection *con)
1526 {
1527  struct writequeue_entry *e, *safe;
1528 
1529  spin_lock(&con->writequeue_lock);
1530  list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1531  list_del(&e->list);
1532  free_entry(e);
1533  }
1534  spin_unlock(&con->writequeue_lock);
1535 }
1536 
1537 /* Called from recovery when it knows that a node has
1538  left the cluster */
1539 int dlm_lowcomms_close(int nodeid)
1540 {
1541  struct connection *con;
1542  struct dlm_node_addr *na;
1543 
1544  log_print("closing connection to node %d", nodeid);
1545  con = nodeid2con(nodeid, 0);
1546  if (con) {
1549  set_bit(CF_CLOSE, &con->flags);
1550  if (cancel_work_sync(&con->swork))
1551  log_print("canceled swork for node %d", nodeid);
1552  if (cancel_work_sync(&con->rwork))
1553  log_print("canceled rwork for node %d", nodeid);
1554  clean_one_writequeue(con);
1555  close_connection(con, true);
1556  }
1557 
1558  spin_lock(&dlm_node_addrs_spin);
1559  na = find_node_addr(nodeid);
1560  if (na) {
1561  list_del(&na->list);
1562  while (na->addr_count--)
1563  kfree(na->addr[na->addr_count]);
1564  kfree(na);
1565  }
1566  spin_unlock(&dlm_node_addrs_spin);
1567 
1568  return 0;
1569 }
1570 
1571 /* Receive workqueue function */
1572 static void process_recv_sockets(struct work_struct *work)
1573 {
1574  struct connection *con = container_of(work, struct connection, rwork);
1575  int err;
1576 
1578  do {
1579  err = con->rx_action(con);
1580  } while (!err);
1581 }
1582 
1583 /* Send workqueue function */
1584 static void process_send_sockets(struct work_struct *work)
1585 {
1586  struct connection *con = container_of(work, struct connection, swork);
1587 
1589  con->connect_action(con);
1590  set_bit(CF_WRITE_PENDING, &con->flags);
1591  }
1593  send_to_sock(con);
1594 }
1595 
1596 
1597 /* Discard all entries on the write queues */
1598 static void clean_writequeues(void)
1599 {
1600  foreach_conn(clean_one_writequeue);
1601 }
1602 
1603 static void work_stop(void)
1604 {
1605  destroy_workqueue(recv_workqueue);
1606  destroy_workqueue(send_workqueue);
1607 }
1608 
1609 static int work_start(void)
1610 {
1611  recv_workqueue = alloc_workqueue("dlm_recv",
1612  WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1613  if (!recv_workqueue) {
1614  log_print("can't start dlm_recv");
1615  return -ENOMEM;
1616  }
1617 
1618  send_workqueue = alloc_workqueue("dlm_send",
1619  WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1620  if (!send_workqueue) {
1621  log_print("can't start dlm_send");
1622  destroy_workqueue(recv_workqueue);
1623  return -ENOMEM;
1624  }
1625 
1626  return 0;
1627 }
1628 
1629 static void stop_conn(struct connection *con)
1630 {
1631  con->flags |= 0x0F;
1632  if (con->sock && con->sock->sk)
1633  con->sock->sk->sk_user_data = NULL;
1634 }
1635 
1636 static void free_conn(struct connection *con)
1637 {
1638  close_connection(con, true);
1639  if (con->othercon)
1640  kmem_cache_free(con_cache, con->othercon);
1641  hlist_del(&con->list);
1642  kmem_cache_free(con_cache, con);
1643 }
1644 
1646 {
1647  /* Set all the flags to prevent any
1648  socket activity.
1649  */
1650  mutex_lock(&connections_lock);
1651  dlm_allow_conn = 0;
1652  foreach_conn(stop_conn);
1653  mutex_unlock(&connections_lock);
1654 
1655  work_stop();
1656 
1657  mutex_lock(&connections_lock);
1658  clean_writequeues();
1659 
1660  foreach_conn(free_conn);
1661 
1662  mutex_unlock(&connections_lock);
1663  kmem_cache_destroy(con_cache);
1664 }
1665 
1667 {
1668  int error = -EINVAL;
1669  struct connection *con;
1670  int i;
1671 
1672  for (i = 0; i < CONN_HASH_SIZE; i++)
1673  INIT_HLIST_HEAD(&connection_hash[i]);
1674 
1675  init_local();
1676  if (!dlm_local_count) {
1677  error = -ENOTCONN;
1678  log_print("no local IP address has been set");
1679  goto fail;
1680  }
1681 
1682  error = -ENOMEM;
1683  con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1684  __alignof__(struct connection), 0,
1685  NULL);
1686  if (!con_cache)
1687  goto fail;
1688 
1689  error = work_start();
1690  if (error)
1691  goto fail_destroy;
1692 
1693  dlm_allow_conn = 1;
1694 
1695  /* Start listening */
1696  if (dlm_config.ci_protocol == 0)
1697  error = tcp_listen_for_all();
1698  else
1699  error = sctp_listen_for_all();
1700  if (error)
1701  goto fail_unlisten;
1702 
1703  return 0;
1704 
1705 fail_unlisten:
1706  dlm_allow_conn = 0;
1707  con = nodeid2con(0,0);
1708  if (con) {
1709  close_connection(con, false);
1710  kmem_cache_free(con_cache, con);
1711  }
1712 fail_destroy:
1713  kmem_cache_destroy(con_cache);
1714 fail:
1715  return error;
1716 }
1717 
1719 {
1720  struct dlm_node_addr *na, *safe;
1721 
1722  spin_lock(&dlm_node_addrs_spin);
1723  list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1724  list_del(&na->list);
1725  while (na->addr_count--)
1726  kfree(na->addr[na->addr_count]);
1727  kfree(na);
1728  }
1729  spin_unlock(&dlm_node_addrs_spin);
1730 }