Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
macmace.c
Go to the documentation of this file.
1 /*
2  * Driver for the Macintosh 68K onboard MACE controller with PSC
3  * driven DMA. The MACE driver code is derived from mace.c. The
4  * Mac68k theory of operation is courtesy of the MacBSD wizards.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  * Copyright (C) 1996 Paul Mackerras.
12  * Copyright (C) 1998 Alan Cox <[email protected]>
13  *
14  * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
15  *
16  * Copyright (C) 2007 Finn Thain
17  *
18  * Converted to DMA API, converted to unified driver model,
19  * sync'd some routines with mace.c and fixed various bugs.
20  */
21 
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/crc32.h>
30 #include <linux/bitrev.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/platform_device.h>
33 #include <linux/gfp.h>
34 #include <linux/interrupt.h>
35 #include <asm/io.h>
36 #include <asm/macints.h>
37 #include <asm/mac_psc.h>
38 #include <asm/page.h>
39 #include "mace.h"
40 
41 static char mac_mace_string[] = "macmace";
42 
43 #define N_TX_BUFF_ORDER 0
44 #define N_TX_RING (1 << N_TX_BUFF_ORDER)
45 #define N_RX_BUFF_ORDER 3
46 #define N_RX_RING (1 << N_RX_BUFF_ORDER)
47 
48 #define TX_TIMEOUT HZ
49 
50 #define MACE_BUFF_SIZE 0x800
51 
52 /* Chip rev needs workaround on HW & multicast addr change */
53 #define BROKEN_ADDRCHG_REV 0x0941
54 
55 /* The MACE is simply wired down on a Mac68K box */
56 
57 #define MACE_BASE (void *)(0x50F1C000)
58 #define MACE_PROM (void *)(0x50F08001)
59 
60 struct mace_data {
61  volatile struct mace *mace;
62  unsigned char *tx_ring;
64  unsigned char *rx_ring;
66  int dma_intr;
69  int chipid;
70  struct device *device;
71 };
72 
73 struct mace_frame {
84  u8 data[1];
85  /* And frame continues.. */
86 };
87 
88 #define PRIV_BYTES sizeof(struct mace_data)
89 
90 static int mace_open(struct net_device *dev);
91 static int mace_close(struct net_device *dev);
92 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
93 static void mace_set_multicast(struct net_device *dev);
94 static int mace_set_address(struct net_device *dev, void *addr);
95 static void mace_reset(struct net_device *dev);
96 static irqreturn_t mace_interrupt(int irq, void *dev_id);
97 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
98 static void mace_tx_timeout(struct net_device *dev);
99 static void __mace_set_address(struct net_device *dev, void *addr);
100 
101 /*
102  * Load a receive DMA channel with a base address and ring length
103  */
104 
105 static void mace_load_rxdma_base(struct net_device *dev, int set)
106 {
107  struct mace_data *mp = netdev_priv(dev);
108 
109  psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
110  psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
111  psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
112  psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
113  mp->rx_tail = 0;
114 }
115 
116 /*
117  * Reset the receive DMA subsystem
118  */
119 
120 static void mace_rxdma_reset(struct net_device *dev)
121 {
122  struct mace_data *mp = netdev_priv(dev);
123  volatile struct mace *mace = mp->mace;
124  u8 maccc = mace->maccc;
125 
126  mace->maccc = maccc & ~ENRCV;
127 
128  psc_write_word(PSC_ENETRD_CTL, 0x8800);
129  mace_load_rxdma_base(dev, 0x00);
130  psc_write_word(PSC_ENETRD_CTL, 0x0400);
131 
132  psc_write_word(PSC_ENETRD_CTL, 0x8800);
133  mace_load_rxdma_base(dev, 0x10);
134  psc_write_word(PSC_ENETRD_CTL, 0x0400);
135 
136  mace->maccc = maccc;
137  mp->rx_slot = 0;
138 
139  psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
140  psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
141 }
142 
143 /*
144  * Reset the transmit DMA subsystem
145  */
146 
147 static void mace_txdma_reset(struct net_device *dev)
148 {
149  struct mace_data *mp = netdev_priv(dev);
150  volatile struct mace *mace = mp->mace;
151  u8 maccc;
152 
153  psc_write_word(PSC_ENETWR_CTL, 0x8800);
154 
155  maccc = mace->maccc;
156  mace->maccc = maccc & ~ENXMT;
157 
158  mp->tx_slot = mp->tx_sloti = 0;
159  mp->tx_count = N_TX_RING;
160 
161  psc_write_word(PSC_ENETWR_CTL, 0x0400);
162  mace->maccc = maccc;
163 }
164 
165 /*
166  * Disable DMA
167  */
168 
169 static void mace_dma_off(struct net_device *dev)
170 {
171  psc_write_word(PSC_ENETRD_CTL, 0x8800);
172  psc_write_word(PSC_ENETRD_CTL, 0x1000);
173  psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
174  psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
175 
176  psc_write_word(PSC_ENETWR_CTL, 0x8800);
177  psc_write_word(PSC_ENETWR_CTL, 0x1000);
178  psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
179  psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
180 }
181 
182 static const struct net_device_ops mace_netdev_ops = {
183  .ndo_open = mace_open,
184  .ndo_stop = mace_close,
185  .ndo_start_xmit = mace_xmit_start,
186  .ndo_tx_timeout = mace_tx_timeout,
187  .ndo_set_rx_mode = mace_set_multicast,
188  .ndo_set_mac_address = mace_set_address,
189  .ndo_change_mtu = eth_change_mtu,
190  .ndo_validate_addr = eth_validate_addr,
191 };
192 
193 /*
194  * Not really much of a probe. The hardware table tells us if this
195  * model of Macintrash has a MACE (AV macintoshes)
196  */
197 
198 static int __devinit mace_probe(struct platform_device *pdev)
199 {
200  int j;
201  struct mace_data *mp;
202  unsigned char *addr;
203  struct net_device *dev;
204  unsigned char checksum = 0;
205  int err;
206 
207  dev = alloc_etherdev(PRIV_BYTES);
208  if (!dev)
209  return -ENOMEM;
210 
211  mp = netdev_priv(dev);
212 
213  mp->device = &pdev->dev;
214  SET_NETDEV_DEV(dev, &pdev->dev);
215 
216  dev->base_addr = (u32)MACE_BASE;
217  mp->mace = MACE_BASE;
218 
219  dev->irq = IRQ_MAC_MACE;
221 
222  mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
223 
224  /*
225  * The PROM contains 8 bytes which total 0xFF when XOR'd
226  * together. Due to the usual peculiar apple brain damage
227  * the bytes are spaced out in a strange boundary and the
228  * bits are reversed.
229  */
230 
231  addr = MACE_PROM;
232 
233  for (j = 0; j < 6; ++j) {
234  u8 v = bitrev8(addr[j<<4]);
235  checksum ^= v;
236  dev->dev_addr[j] = v;
237  }
238  for (; j < 8; ++j) {
239  checksum ^= bitrev8(addr[j<<4]);
240  }
241 
242  if (checksum != 0xFF) {
243  free_netdev(dev);
244  return -ENODEV;
245  }
246 
247  dev->netdev_ops = &mace_netdev_ops;
248  dev->watchdog_timeo = TX_TIMEOUT;
249 
250  printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
251  dev->name, dev->dev_addr);
252 
253  err = register_netdev(dev);
254  if (!err)
255  return 0;
256 
257  free_netdev(dev);
258  return err;
259 }
260 
261 /*
262  * Reset the chip.
263  */
264 
265 static void mace_reset(struct net_device *dev)
266 {
267  struct mace_data *mp = netdev_priv(dev);
268  volatile struct mace *mb = mp->mace;
269  int i;
270 
271  /* soft-reset the chip */
272  i = 200;
273  while (--i) {
274  mb->biucc = SWRST;
275  if (mb->biucc & SWRST) {
276  udelay(10);
277  continue;
278  }
279  break;
280  }
281  if (!i) {
282  printk(KERN_ERR "macmace: cannot reset chip!\n");
283  return;
284  }
285 
286  mb->maccc = 0; /* turn off tx, rx */
287  mb->imr = 0xFF; /* disable all intrs for now */
288  i = mb->ir;
289 
290  mb->biucc = XMTSP_64;
291  mb->utr = RTRD;
292  mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
293 
294  mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
295  mb->rcvfc = 0;
296 
297  /* load up the hardware address */
298  __mace_set_address(dev, dev->dev_addr);
299 
300  /* clear the multicast filter */
301  if (mp->chipid == BROKEN_ADDRCHG_REV)
302  mb->iac = LOGADDR;
303  else {
304  mb->iac = ADDRCHG | LOGADDR;
305  while ((mb->iac & ADDRCHG) != 0)
306  ;
307  }
308  for (i = 0; i < 8; ++i)
309  mb->ladrf = 0;
310 
311  /* done changing address */
312  if (mp->chipid != BROKEN_ADDRCHG_REV)
313  mb->iac = 0;
314 
315  mb->plscc = PORTSEL_AUI;
316 }
317 
318 /*
319  * Load the address on a mace controller.
320  */
321 
322 static void __mace_set_address(struct net_device *dev, void *addr)
323 {
324  struct mace_data *mp = netdev_priv(dev);
325  volatile struct mace *mb = mp->mace;
326  unsigned char *p = addr;
327  int i;
328 
329  /* load up the hardware address */
330  if (mp->chipid == BROKEN_ADDRCHG_REV)
331  mb->iac = PHYADDR;
332  else {
333  mb->iac = ADDRCHG | PHYADDR;
334  while ((mb->iac & ADDRCHG) != 0)
335  ;
336  }
337  for (i = 0; i < 6; ++i)
338  mb->padr = dev->dev_addr[i] = p[i];
339  if (mp->chipid != BROKEN_ADDRCHG_REV)
340  mb->iac = 0;
341 }
342 
343 static int mace_set_address(struct net_device *dev, void *addr)
344 {
345  struct mace_data *mp = netdev_priv(dev);
346  volatile struct mace *mb = mp->mace;
347  unsigned long flags;
348  u8 maccc;
349 
350  local_irq_save(flags);
351 
352  maccc = mb->maccc;
353 
354  __mace_set_address(dev, addr);
355 
356  mb->maccc = maccc;
357 
358  local_irq_restore(flags);
359 
360  return 0;
361 }
362 
363 /*
364  * Open the Macintosh MACE. Most of this is playing with the DMA
365  * engine. The ethernet chip is quite friendly.
366  */
367 
368 static int mace_open(struct net_device *dev)
369 {
370  struct mace_data *mp = netdev_priv(dev);
371  volatile struct mace *mb = mp->mace;
372 
373  /* reset the chip */
374  mace_reset(dev);
375 
376  if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
377  printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
378  return -EAGAIN;
379  }
380  if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
381  printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
382  free_irq(dev->irq, dev);
383  return -EAGAIN;
384  }
385 
386  /* Allocate the DMA ring buffers */
387 
390  &mp->tx_ring_phys, GFP_KERNEL);
391  if (mp->tx_ring == NULL) {
392  printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name);
393  goto out1;
394  }
395 
398  &mp->rx_ring_phys, GFP_KERNEL);
399  if (mp->rx_ring == NULL) {
400  printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name);
401  goto out2;
402  }
403 
404  mace_dma_off(dev);
405 
406  /* Not sure what these do */
407 
408  psc_write_word(PSC_ENETWR_CTL, 0x9000);
409  psc_write_word(PSC_ENETRD_CTL, 0x9000);
410  psc_write_word(PSC_ENETWR_CTL, 0x0400);
411  psc_write_word(PSC_ENETRD_CTL, 0x0400);
412 
413  mace_rxdma_reset(dev);
414  mace_txdma_reset(dev);
415 
416  /* turn it on! */
417  mb->maccc = ENXMT | ENRCV;
418  /* enable all interrupts except receive interrupts */
419  mb->imr = RCVINT;
420  return 0;
421 
422 out2:
424  mp->tx_ring, mp->tx_ring_phys);
425 out1:
426  free_irq(dev->irq, dev);
427  free_irq(mp->dma_intr, dev);
428  return -ENOMEM;
429 }
430 
431 /*
432  * Shut down the mace and its interrupt channel
433  */
434 
435 static int mace_close(struct net_device *dev)
436 {
437  struct mace_data *mp = netdev_priv(dev);
438  volatile struct mace *mb = mp->mace;
439 
440  mb->maccc = 0; /* disable rx and tx */
441  mb->imr = 0xFF; /* disable all irqs */
442  mace_dma_off(dev); /* disable rx and tx dma */
443 
444  return 0;
445 }
446 
447 /*
448  * Transmit a frame
449  */
450 
451 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
452 {
453  struct mace_data *mp = netdev_priv(dev);
454  unsigned long flags;
455 
456  /* Stop the queue since there's only the one buffer */
457 
458  local_irq_save(flags);
459  netif_stop_queue(dev);
460  if (!mp->tx_count) {
461  printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
462  local_irq_restore(flags);
463  return NETDEV_TX_BUSY;
464  }
465  mp->tx_count--;
466  local_irq_restore(flags);
467 
468  dev->stats.tx_packets++;
469  dev->stats.tx_bytes += skb->len;
470 
471  /* We need to copy into our xmit buffer to take care of alignment and caching issues */
472  skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
473 
474  /* load the Tx DMA and fire it off */
475 
476  psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
477  psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
478  psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
479 
480  mp->tx_slot ^= 0x10;
481 
482  dev_kfree_skb(skb);
483 
484  return NETDEV_TX_OK;
485 }
486 
487 static void mace_set_multicast(struct net_device *dev)
488 {
489  struct mace_data *mp = netdev_priv(dev);
490  volatile struct mace *mb = mp->mace;
491  int i;
492  u32 crc;
493  u8 maccc;
494  unsigned long flags;
495 
496  local_irq_save(flags);
497  maccc = mb->maccc;
498  mb->maccc &= ~PROM;
499 
500  if (dev->flags & IFF_PROMISC) {
501  mb->maccc |= PROM;
502  } else {
503  unsigned char multicast_filter[8];
504  struct netdev_hw_addr *ha;
505 
506  if (dev->flags & IFF_ALLMULTI) {
507  for (i = 0; i < 8; i++) {
508  multicast_filter[i] = 0xFF;
509  }
510  } else {
511  for (i = 0; i < 8; i++)
512  multicast_filter[i] = 0;
513  netdev_for_each_mc_addr(ha, dev) {
514  crc = ether_crc_le(6, ha->addr);
515  /* bit number in multicast_filter */
516  i = crc >> 26;
517  multicast_filter[i >> 3] |= 1 << (i & 7);
518  }
519  }
520 
521  if (mp->chipid == BROKEN_ADDRCHG_REV)
522  mb->iac = LOGADDR;
523  else {
524  mb->iac = ADDRCHG | LOGADDR;
525  while ((mb->iac & ADDRCHG) != 0)
526  ;
527  }
528  for (i = 0; i < 8; ++i)
529  mb->ladrf = multicast_filter[i];
530  if (mp->chipid != BROKEN_ADDRCHG_REV)
531  mb->iac = 0;
532  }
533 
534  mb->maccc = maccc;
535  local_irq_restore(flags);
536 }
537 
538 static void mace_handle_misc_intrs(struct net_device *dev, int intr)
539 {
540  struct mace_data *mp = netdev_priv(dev);
541  volatile struct mace *mb = mp->mace;
542  static int mace_babbles, mace_jabbers;
543 
544  if (intr & MPCO)
545  dev->stats.rx_missed_errors += 256;
546  dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
547  if (intr & RNTPCO)
548  dev->stats.rx_length_errors += 256;
549  dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
550  if (intr & CERR)
551  ++dev->stats.tx_heartbeat_errors;
552  if (intr & BABBLE)
553  if (mace_babbles++ < 4)
554  printk(KERN_DEBUG "macmace: babbling transmitter\n");
555  if (intr & JABBER)
556  if (mace_jabbers++ < 4)
557  printk(KERN_DEBUG "macmace: jabbering transceiver\n");
558 }
559 
560 static irqreturn_t mace_interrupt(int irq, void *dev_id)
561 {
562  struct net_device *dev = (struct net_device *) dev_id;
563  struct mace_data *mp = netdev_priv(dev);
564  volatile struct mace *mb = mp->mace;
565  int intr, fs;
566  unsigned long flags;
567 
568  /* don't want the dma interrupt handler to fire */
569  local_irq_save(flags);
570 
571  intr = mb->ir; /* read interrupt register */
572  mace_handle_misc_intrs(dev, intr);
573 
574  if (intr & XMTINT) {
575  fs = mb->xmtfs;
576  if ((fs & XMTSV) == 0) {
577  printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
578  mace_reset(dev);
579  /*
580  * XXX mace likes to hang the machine after a xmtfs error.
581  * This is hard to reproduce, reseting *may* help
582  */
583  }
584  /* dma should have finished */
585  if (!mp->tx_count) {
586  printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
587  }
588  /* Update stats */
589  if (fs & (UFLO|LCOL|LCAR|RTRY)) {
590  ++dev->stats.tx_errors;
591  if (fs & LCAR)
592  ++dev->stats.tx_carrier_errors;
593  else if (fs & (UFLO|LCOL|RTRY)) {
594  ++dev->stats.tx_aborted_errors;
595  if (mb->xmtfs & UFLO) {
596  printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
597  dev->stats.tx_fifo_errors++;
598  mace_txdma_reset(dev);
599  }
600  }
601  }
602  }
603 
604  if (mp->tx_count)
605  netif_wake_queue(dev);
606 
607  local_irq_restore(flags);
608 
609  return IRQ_HANDLED;
610 }
611 
612 static void mace_tx_timeout(struct net_device *dev)
613 {
614  struct mace_data *mp = netdev_priv(dev);
615  volatile struct mace *mb = mp->mace;
616  unsigned long flags;
617 
618  local_irq_save(flags);
619 
620  /* turn off both tx and rx and reset the chip */
621  mb->maccc = 0;
622  printk(KERN_ERR "macmace: transmit timeout - resetting\n");
623  mace_txdma_reset(dev);
624  mace_reset(dev);
625 
626  /* restart rx dma */
627  mace_rxdma_reset(dev);
628 
629  mp->tx_count = N_TX_RING;
630  netif_wake_queue(dev);
631 
632  /* turn it on! */
633  mb->maccc = ENXMT | ENRCV;
634  /* enable all interrupts except receive interrupts */
635  mb->imr = RCVINT;
636 
637  local_irq_restore(flags);
638 }
639 
640 /*
641  * Handle a newly arrived frame
642  */
643 
644 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
645 {
646  struct sk_buff *skb;
647  unsigned int frame_status = mf->rcvsts;
648 
649  if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
650  dev->stats.rx_errors++;
651  if (frame_status & RS_OFLO) {
652  printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
653  dev->stats.rx_fifo_errors++;
654  }
655  if (frame_status & RS_CLSN)
656  dev->stats.collisions++;
657  if (frame_status & RS_FRAMERR)
658  dev->stats.rx_frame_errors++;
659  if (frame_status & RS_FCSERR)
660  dev->stats.rx_crc_errors++;
661  } else {
662  unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
663 
664  skb = netdev_alloc_skb(dev, frame_length + 2);
665  if (!skb) {
666  dev->stats.rx_dropped++;
667  return;
668  }
669  skb_reserve(skb, 2);
670  memcpy(skb_put(skb, frame_length), mf->data, frame_length);
671 
672  skb->protocol = eth_type_trans(skb, dev);
673  netif_rx(skb);
674  dev->stats.rx_packets++;
675  dev->stats.rx_bytes += frame_length;
676  }
677 }
678 
679 /*
680  * The PSC has passed us a DMA interrupt event.
681  */
682 
683 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
684 {
685  struct net_device *dev = (struct net_device *) dev_id;
686  struct mace_data *mp = netdev_priv(dev);
687  int left, head;
688  u16 status;
689  u32 baka;
690 
691  /* Not sure what this does */
692 
693  while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
694  if (!(baka & 0x60000000)) return IRQ_NONE;
695 
696  /*
697  * Process the read queue
698  */
699 
700  status = psc_read_word(PSC_ENETRD_CTL);
701 
702  if (status & 0x2000) {
703  mace_rxdma_reset(dev);
704  } else if (status & 0x0100) {
705  psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
706 
707  left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
708  head = N_RX_RING - left;
709 
710  /* Loop through the ring buffer and process new packages */
711 
712  while (mp->rx_tail < head) {
713  mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
714  + (mp->rx_tail * MACE_BUFF_SIZE)));
715  mp->rx_tail++;
716  }
717 
718  /* If we're out of buffers in this ring then switch to */
719  /* the other set, otherwise just reactivate this one. */
720 
721  if (!left) {
722  mace_load_rxdma_base(dev, mp->rx_slot);
723  mp->rx_slot ^= 0x10;
724  } else {
725  psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
726  }
727  }
728 
729  /*
730  * Process the write queue
731  */
732 
733  status = psc_read_word(PSC_ENETWR_CTL);
734 
735  if (status & 0x2000) {
736  mace_txdma_reset(dev);
737  } else if (status & 0x0100) {
738  psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
739  mp->tx_sloti ^= 0x10;
740  mp->tx_count++;
741  }
742  return IRQ_HANDLED;
743 }
744 
745 MODULE_LICENSE("GPL");
746 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
747 MODULE_ALIAS("platform:macmace");
748 
749 static int __devexit mac_mace_device_remove (struct platform_device *pdev)
750 {
751  struct net_device *dev = platform_get_drvdata(pdev);
752  struct mace_data *mp = netdev_priv(dev);
753 
754  unregister_netdev(dev);
755 
756  free_irq(dev->irq, dev);
758 
760  mp->rx_ring, mp->rx_ring_phys);
762  mp->tx_ring, mp->tx_ring_phys);
763 
764  free_netdev(dev);
765 
766  return 0;
767 }
768 
769 static struct platform_driver mac_mace_driver = {
770  .probe = mace_probe,
771  .remove = __devexit_p(mac_mace_device_remove),
772  .driver = {
773  .name = mac_mace_string,
774  .owner = THIS_MODULE,
775  },
776 };
777 
778 static int __init mac_mace_init_module(void)
779 {
780  if (!MACH_IS_MAC)
781  return -ENODEV;
782 
783  return platform_driver_register(&mac_mace_driver);
784 }
785 
786 static void __exit mac_mace_cleanup_module(void)
787 {
788  platform_driver_unregister(&mac_mace_driver);
789 }
790 
791 module_init(mac_mace_init_module);
792 module_exit(mac_mace_cleanup_module);