Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
memory.c
Go to the documentation of this file.
1 /*
2  * linux/mm/memory.c
3  *
4  * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27  * Found it. Everything seems to work now.
28  * 20.12.91 - Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94 - Multi-page memory management added for v1.1.
33  * Idea by Alex Bligh ([email protected])
34  *
35  * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  * as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100  1;
101 #else
102  2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107  randomize_va_space = 0;
108  return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120  zero_pfn = page_to_pfn(ZERO_PAGE(0));
121  return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130  int i;
131 
132  for (i = 0; i < NR_MM_COUNTERS; i++) {
133  if (current->rss_stat.count[i]) {
134  add_mm_counter(mm, i, current->rss_stat.count[i]);
135  current->rss_stat.count[i] = 0;
136  }
137  }
138  current->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143  struct task_struct *task = current;
144 
145  if (likely(task->mm == mm))
146  task->rss_stat.count[member] += val;
147  else
148  add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157  if (unlikely(task != current))
158  return;
159  if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160  sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163 
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166 
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170 
171 #endif /* SPLIT_RSS_COUNTING */
172 
173 #ifdef HAVE_GENERIC_MMU_GATHER
174 
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177  struct mmu_gather_batch *batch;
178 
179  batch = tlb->active;
180  if (batch->next) {
181  tlb->active = batch->next;
182  return 1;
183  }
184 
185  batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186  if (!batch)
187  return 0;
188 
189  batch->next = NULL;
190  batch->nr = 0;
191  batch->max = MAX_GATHER_BATCH;
192 
193  tlb->active->next = batch;
194  tlb->active = batch;
195 
196  return 1;
197 }
198 
199 /* tlb_gather_mmu
200  * Called to initialize an (on-stack) mmu_gather structure for page-table
201  * tear-down from @mm. The @fullmm argument is used when @mm is without
202  * users and we're going to destroy the full address space (exit/execve).
203  */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206  tlb->mm = mm;
207 
208  tlb->fullmm = fullmm;
209  tlb->start = -1UL;
210  tlb->end = 0;
211  tlb->need_flush = 0;
212  tlb->fast_mode = (num_possible_cpus() == 1);
213  tlb->local.next = NULL;
214  tlb->local.nr = 0;
215  tlb->local.max = ARRAY_SIZE(tlb->__pages);
216  tlb->active = &tlb->local;
217 
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
219  tlb->batch = NULL;
220 #endif
221 }
222 
223 void tlb_flush_mmu(struct mmu_gather *tlb)
224 {
225  struct mmu_gather_batch *batch;
226 
227  if (!tlb->need_flush)
228  return;
229  tlb->need_flush = 0;
230  tlb_flush(tlb);
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232  tlb_table_flush(tlb);
233 #endif
234 
235  if (tlb_fast_mode(tlb))
236  return;
237 
238  for (batch = &tlb->local; batch; batch = batch->next) {
239  free_pages_and_swap_cache(batch->pages, batch->nr);
240  batch->nr = 0;
241  }
242  tlb->active = &tlb->local;
243 }
244 
245 /* tlb_finish_mmu
246  * Called at the end of the shootdown operation to free up any resources
247  * that were required.
248  */
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250 {
251  struct mmu_gather_batch *batch, *next;
252 
253  tlb->start = start;
254  tlb->end = end;
255  tlb_flush_mmu(tlb);
256 
257  /* keep the page table cache within bounds */
258  check_pgt_cache();
259 
260  for (batch = tlb->local.next; batch; batch = next) {
261  next = batch->next;
262  free_pages((unsigned long)batch, 0);
263  }
264  tlb->local.next = NULL;
265 }
266 
267 /* __tlb_remove_page
268  * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269  * handling the additional races in SMP caused by other CPUs caching valid
270  * mappings in their TLBs. Returns the number of free page slots left.
271  * When out of page slots we must call tlb_flush_mmu().
272  */
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274 {
275  struct mmu_gather_batch *batch;
276 
277  VM_BUG_ON(!tlb->need_flush);
278 
279  if (tlb_fast_mode(tlb)) {
281  return 1; /* avoid calling tlb_flush_mmu() */
282  }
283 
284  batch = tlb->active;
285  batch->pages[batch->nr++] = page;
286  if (batch->nr == batch->max) {
287  if (!tlb_next_batch(tlb))
288  return 0;
289  batch = tlb->active;
290  }
291  VM_BUG_ON(batch->nr > batch->max);
292 
293  return batch->max - batch->nr;
294 }
295 
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297 
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299 
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303 
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306  /* Simply deliver the interrupt */
307 }
308 
309 static void tlb_remove_table_one(void *table)
310 {
311  /*
312  * This isn't an RCU grace period and hence the page-tables cannot be
313  * assumed to be actually RCU-freed.
314  *
315  * It is however sufficient for software page-table walkers that rely on
316  * IRQ disabling. See the comment near struct mmu_table_batch.
317  */
318  smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319  __tlb_remove_table(table);
320 }
321 
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324  struct mmu_table_batch *batch;
325  int i;
326 
327  batch = container_of(head, struct mmu_table_batch, rcu);
328 
329  for (i = 0; i < batch->nr; i++)
330  __tlb_remove_table(batch->tables[i]);
331 
332  free_page((unsigned long)batch);
333 }
334 
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337  struct mmu_table_batch **batch = &tlb->batch;
338 
339  if (*batch) {
340  call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341  *batch = NULL;
342  }
343 }
344 
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347  struct mmu_table_batch **batch = &tlb->batch;
348 
349  tlb->need_flush = 1;
350 
351  /*
352  * When there's less then two users of this mm there cannot be a
353  * concurrent page-table walk.
354  */
355  if (atomic_read(&tlb->mm->mm_users) < 2) {
356  __tlb_remove_table(table);
357  return;
358  }
359 
360  if (*batch == NULL) {
362  if (*batch == NULL) {
363  tlb_remove_table_one(table);
364  return;
365  }
366  (*batch)->nr = 0;
367  }
368  (*batch)->tables[(*batch)->nr++] = table;
369  if ((*batch)->nr == MAX_TABLE_BATCH)
370  tlb_table_flush(tlb);
371 }
372 
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374 
375 /*
376  * If a p?d_bad entry is found while walking page tables, report
377  * the error, before resetting entry to p?d_none. Usually (but
378  * very seldom) called out from the p?d_none_or_clear_bad macros.
379  */
380 
382 {
383  pgd_ERROR(*pgd);
384  pgd_clear(pgd);
385 }
386 
388 {
389  pud_ERROR(*pud);
390  pud_clear(pud);
391 }
392 
394 {
395  pmd_ERROR(*pmd);
396  pmd_clear(pmd);
397 }
398 
399 /*
400  * Note: this doesn't free the actual pages themselves. That
401  * has been handled earlier when unmapping all the memory regions.
402  */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404  unsigned long addr)
405 {
406  pgtable_t token = pmd_pgtable(*pmd);
407  pmd_clear(pmd);
408  pte_free_tlb(tlb, token, addr);
409  tlb->mm->nr_ptes--;
410 }
411 
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413  unsigned long addr, unsigned long end,
414  unsigned long floor, unsigned long ceiling)
415 {
416  pmd_t *pmd;
417  unsigned long next;
418  unsigned long start;
419 
420  start = addr;
421  pmd = pmd_offset(pud, addr);
422  do {
423  next = pmd_addr_end(addr, end);
424  if (pmd_none_or_clear_bad(pmd))
425  continue;
426  free_pte_range(tlb, pmd, addr);
427  } while (pmd++, addr = next, addr != end);
428 
429  start &= PUD_MASK;
430  if (start < floor)
431  return;
432  if (ceiling) {
433  ceiling &= PUD_MASK;
434  if (!ceiling)
435  return;
436  }
437  if (end - 1 > ceiling - 1)
438  return;
439 
440  pmd = pmd_offset(pud, start);
441  pud_clear(pud);
442  pmd_free_tlb(tlb, pmd, start);
443 }
444 
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446  unsigned long addr, unsigned long end,
447  unsigned long floor, unsigned long ceiling)
448 {
449  pud_t *pud;
450  unsigned long next;
451  unsigned long start;
452 
453  start = addr;
454  pud = pud_offset(pgd, addr);
455  do {
456  next = pud_addr_end(addr, end);
457  if (pud_none_or_clear_bad(pud))
458  continue;
459  free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460  } while (pud++, addr = next, addr != end);
461 
462  start &= PGDIR_MASK;
463  if (start < floor)
464  return;
465  if (ceiling) {
466  ceiling &= PGDIR_MASK;
467  if (!ceiling)
468  return;
469  }
470  if (end - 1 > ceiling - 1)
471  return;
472 
473  pud = pud_offset(pgd, start);
474  pgd_clear(pgd);
475  pud_free_tlb(tlb, pud, start);
476 }
477 
478 /*
479  * This function frees user-level page tables of a process.
480  *
481  * Must be called with pagetable lock held.
482  */
483 void free_pgd_range(struct mmu_gather *tlb,
484  unsigned long addr, unsigned long end,
485  unsigned long floor, unsigned long ceiling)
486 {
487  pgd_t *pgd;
488  unsigned long next;
489 
490  /*
491  * The next few lines have given us lots of grief...
492  *
493  * Why are we testing PMD* at this top level? Because often
494  * there will be no work to do at all, and we'd prefer not to
495  * go all the way down to the bottom just to discover that.
496  *
497  * Why all these "- 1"s? Because 0 represents both the bottom
498  * of the address space and the top of it (using -1 for the
499  * top wouldn't help much: the masks would do the wrong thing).
500  * The rule is that addr 0 and floor 0 refer to the bottom of
501  * the address space, but end 0 and ceiling 0 refer to the top
502  * Comparisons need to use "end - 1" and "ceiling - 1" (though
503  * that end 0 case should be mythical).
504  *
505  * Wherever addr is brought up or ceiling brought down, we must
506  * be careful to reject "the opposite 0" before it confuses the
507  * subsequent tests. But what about where end is brought down
508  * by PMD_SIZE below? no, end can't go down to 0 there.
509  *
510  * Whereas we round start (addr) and ceiling down, by different
511  * masks at different levels, in order to test whether a table
512  * now has no other vmas using it, so can be freed, we don't
513  * bother to round floor or end up - the tests don't need that.
514  */
515 
516  addr &= PMD_MASK;
517  if (addr < floor) {
518  addr += PMD_SIZE;
519  if (!addr)
520  return;
521  }
522  if (ceiling) {
523  ceiling &= PMD_MASK;
524  if (!ceiling)
525  return;
526  }
527  if (end - 1 > ceiling - 1)
528  end -= PMD_SIZE;
529  if (addr > end - 1)
530  return;
531 
532  pgd = pgd_offset(tlb->mm, addr);
533  do {
534  next = pgd_addr_end(addr, end);
535  if (pgd_none_or_clear_bad(pgd))
536  continue;
537  free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538  } while (pgd++, addr = next, addr != end);
539 }
540 
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542  unsigned long floor, unsigned long ceiling)
543 {
544  while (vma) {
545  struct vm_area_struct *next = vma->vm_next;
546  unsigned long addr = vma->vm_start;
547 
548  /*
549  * Hide vma from rmap and truncate_pagecache before freeing
550  * pgtables
551  */
552  unlink_anon_vmas(vma);
553  unlink_file_vma(vma);
554 
555  if (is_vm_hugetlb_page(vma)) {
556  hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557  floor, next? next->vm_start: ceiling);
558  } else {
559  /*
560  * Optimization: gather nearby vmas into one call down
561  */
562  while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563  && !is_vm_hugetlb_page(next)) {
564  vma = next;
565  next = vma->vm_next;
566  unlink_anon_vmas(vma);
567  unlink_file_vma(vma);
568  }
569  free_pgd_range(tlb, addr, vma->vm_end,
570  floor, next? next->vm_start: ceiling);
571  }
572  vma = next;
573  }
574 }
575 
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577  pmd_t *pmd, unsigned long address)
578 {
579  pgtable_t new = pte_alloc_one(mm, address);
581  if (!new)
582  return -ENOMEM;
583 
584  /*
585  * Ensure all pte setup (eg. pte page lock and page clearing) are
586  * visible before the pte is made visible to other CPUs by being
587  * put into page tables.
588  *
589  * The other side of the story is the pointer chasing in the page
590  * table walking code (when walking the page table without locking;
591  * ie. most of the time). Fortunately, these data accesses consist
592  * of a chain of data-dependent loads, meaning most CPUs (alpha
593  * being the notable exception) will already guarantee loads are
594  * seen in-order. See the alpha page table accessors for the
595  * smp_read_barrier_depends() barriers in page table walking code.
596  */
597  smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598 
599  spin_lock(&mm->page_table_lock);
600  wait_split_huge_page = 0;
601  if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602  mm->nr_ptes++;
603  pmd_populate(mm, pmd, new);
604  new = NULL;
605  } else if (unlikely(pmd_trans_splitting(*pmd)))
606  wait_split_huge_page = 1;
607  spin_unlock(&mm->page_table_lock);
608  if (new)
609  pte_free(mm, new);
610  if (wait_split_huge_page)
611  wait_split_huge_page(vma->anon_vma, pmd);
612  return 0;
613 }
614 
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617  pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618  if (!new)
619  return -ENOMEM;
620 
621  smp_wmb(); /* See comment in __pte_alloc */
622 
623  spin_lock(&init_mm.page_table_lock);
624  if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625  pmd_populate_kernel(&init_mm, pmd, new);
626  new = NULL;
627  } else
628  VM_BUG_ON(pmd_trans_splitting(*pmd));
629  spin_unlock(&init_mm.page_table_lock);
630  if (new)
631  pte_free_kernel(&init_mm, new);
632  return 0;
633 }
634 
635 static inline void init_rss_vec(int *rss)
636 {
637  memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638 }
639 
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641 {
642  int i;
643 
644  if (current->mm == mm)
645  sync_mm_rss(mm);
646  for (i = 0; i < NR_MM_COUNTERS; i++)
647  if (rss[i])
648  add_mm_counter(mm, i, rss[i]);
649 }
650 
651 /*
652  * This function is called to print an error when a bad pte
653  * is found. For example, we might have a PFN-mapped pte in
654  * a region that doesn't allow it.
655  *
656  * The calling function must still handle the error.
657  */
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659  pte_t pte, struct page *page)
660 {
661  pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662  pud_t *pud = pud_offset(pgd, addr);
663  pmd_t *pmd = pmd_offset(pud, addr);
664  struct address_space *mapping;
665  pgoff_t index;
666  static unsigned long resume;
667  static unsigned long nr_shown;
668  static unsigned long nr_unshown;
669 
670  /*
671  * Allow a burst of 60 reports, then keep quiet for that minute;
672  * or allow a steady drip of one report per second.
673  */
674  if (nr_shown == 60) {
675  if (time_before(jiffies, resume)) {
676  nr_unshown++;
677  return;
678  }
679  if (nr_unshown) {
681  "BUG: Bad page map: %lu messages suppressed\n",
682  nr_unshown);
683  nr_unshown = 0;
684  }
685  nr_shown = 0;
686  }
687  if (nr_shown++ == 0)
688  resume = jiffies + 60 * HZ;
689 
690  mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691  index = linear_page_index(vma, addr);
692 
694  "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
695  current->comm,
696  (long long)pte_val(pte), (long long)pmd_val(*pmd));
697  if (page)
698  dump_page(page);
700  "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702  /*
703  * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704  */
705  if (vma->vm_ops)
706  print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707  (unsigned long)vma->vm_ops->fault);
708  if (vma->vm_file && vma->vm_file->f_op)
709  print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710  (unsigned long)vma->vm_file->f_op->mmap);
711  dump_stack();
713 }
714 
715 static inline bool is_cow_mapping(vm_flags_t flags)
716 {
717  return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718 }
719 
720 #ifndef is_zero_pfn
721 static inline int is_zero_pfn(unsigned long pfn)
722 {
723  return pfn == zero_pfn;
724 }
725 #endif
726 
727 #ifndef my_zero_pfn
728 static inline unsigned long my_zero_pfn(unsigned long addr)
729 {
730  return zero_pfn;
731 }
732 #endif
733 
734 /*
735  * vm_normal_page -- This function gets the "struct page" associated with a pte.
736  *
737  * "Special" mappings do not wish to be associated with a "struct page" (either
738  * it doesn't exist, or it exists but they don't want to touch it). In this
739  * case, NULL is returned here. "Normal" mappings do have a struct page.
740  *
741  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742  * pte bit, in which case this function is trivial. Secondly, an architecture
743  * may not have a spare pte bit, which requires a more complicated scheme,
744  * described below.
745  *
746  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747  * special mapping (even if there are underlying and valid "struct pages").
748  * COWed pages of a VM_PFNMAP are always normal.
749  *
750  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753  * mapping will always honor the rule
754  *
755  * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
756  *
757  * And for normal mappings this is false.
758  *
759  * This restricts such mappings to be a linear translation from virtual address
760  * to pfn. To get around this restriction, we allow arbitrary mappings so long
761  * as the vma is not a COW mapping; in that case, we know that all ptes are
762  * special (because none can have been COWed).
763  *
764  *
765  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
766  *
767  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768  * page" backing, however the difference is that _all_ pages with a struct
769  * page (that is, those where pfn_valid is true) are refcounted and considered
770  * normal pages by the VM. The disadvantage is that pages are refcounted
771  * (which can be slower and simply not an option for some PFNMAP users). The
772  * advantage is that we don't have to follow the strict linearity rule of
773  * PFNMAP mappings in order to support COWable mappings.
774  *
775  */
776 #ifdef __HAVE_ARCH_PTE_SPECIAL
777 # define HAVE_PTE_SPECIAL 1
778 #else
779 # define HAVE_PTE_SPECIAL 0
780 #endif
781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782  pte_t pte)
783 {
784  unsigned long pfn = pte_pfn(pte);
785 
786  if (HAVE_PTE_SPECIAL) {
787  if (likely(!pte_special(pte)))
788  goto check_pfn;
789  if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790  return NULL;
791  if (!is_zero_pfn(pfn))
792  print_bad_pte(vma, addr, pte, NULL);
793  return NULL;
794  }
795 
796  /* !HAVE_PTE_SPECIAL case follows: */
797 
798  if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799  if (vma->vm_flags & VM_MIXEDMAP) {
800  if (!pfn_valid(pfn))
801  return NULL;
802  goto out;
803  } else {
804  unsigned long off;
805  off = (addr - vma->vm_start) >> PAGE_SHIFT;
806  if (pfn == vma->vm_pgoff + off)
807  return NULL;
808  if (!is_cow_mapping(vma->vm_flags))
809  return NULL;
810  }
811  }
812 
813  if (is_zero_pfn(pfn))
814  return NULL;
815 check_pfn:
816  if (unlikely(pfn > highest_memmap_pfn)) {
817  print_bad_pte(vma, addr, pte, NULL);
818  return NULL;
819  }
820 
821  /*
822  * NOTE! We still have PageReserved() pages in the page tables.
823  * eg. VDSO mappings can cause them to exist.
824  */
825 out:
826  return pfn_to_page(pfn);
827 }
828 
829 /*
830  * copy one vm_area from one task to the other. Assumes the page tables
831  * already present in the new task to be cleared in the whole range
832  * covered by this vma.
833  */
834 
835 static inline unsigned long
836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837  pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838  unsigned long addr, int *rss)
839 {
840  unsigned long vm_flags = vma->vm_flags;
841  pte_t pte = *src_pte;
842  struct page *page;
843 
844  /* pte contains position in swap or file, so copy. */
845  if (unlikely(!pte_present(pte))) {
846  if (!pte_file(pte)) {
847  swp_entry_t entry = pte_to_swp_entry(pte);
848 
849  if (swap_duplicate(entry) < 0)
850  return entry.val;
851 
852  /* make sure dst_mm is on swapoff's mmlist. */
853  if (unlikely(list_empty(&dst_mm->mmlist))) {
854  spin_lock(&mmlist_lock);
855  if (list_empty(&dst_mm->mmlist))
856  list_add(&dst_mm->mmlist,
857  &src_mm->mmlist);
858  spin_unlock(&mmlist_lock);
859  }
860  if (likely(!non_swap_entry(entry)))
861  rss[MM_SWAPENTS]++;
862  else if (is_migration_entry(entry)) {
863  page = migration_entry_to_page(entry);
864 
865  if (PageAnon(page))
866  rss[MM_ANONPAGES]++;
867  else
868  rss[MM_FILEPAGES]++;
869 
870  if (is_write_migration_entry(entry) &&
871  is_cow_mapping(vm_flags)) {
872  /*
873  * COW mappings require pages in both
874  * parent and child to be set to read.
875  */
876  make_migration_entry_read(&entry);
877  pte = swp_entry_to_pte(entry);
878  set_pte_at(src_mm, addr, src_pte, pte);
879  }
880  }
881  }
882  goto out_set_pte;
883  }
884 
885  /*
886  * If it's a COW mapping, write protect it both
887  * in the parent and the child
888  */
889  if (is_cow_mapping(vm_flags)) {
890  ptep_set_wrprotect(src_mm, addr, src_pte);
891  pte = pte_wrprotect(pte);
892  }
893 
894  /*
895  * If it's a shared mapping, mark it clean in
896  * the child
897  */
898  if (vm_flags & VM_SHARED)
899  pte = pte_mkclean(pte);
900  pte = pte_mkold(pte);
901 
902  page = vm_normal_page(vma, addr, pte);
903  if (page) {
904  get_page(page);
905  page_dup_rmap(page);
906  if (PageAnon(page))
907  rss[MM_ANONPAGES]++;
908  else
909  rss[MM_FILEPAGES]++;
910  }
911 
912 out_set_pte:
913  set_pte_at(dst_mm, addr, dst_pte, pte);
914  return 0;
915 }
916 
917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918  pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919  unsigned long addr, unsigned long end)
920 {
921  pte_t *orig_src_pte, *orig_dst_pte;
922  pte_t *src_pte, *dst_pte;
923  spinlock_t *src_ptl, *dst_ptl;
924  int progress = 0;
925  int rss[NR_MM_COUNTERS];
926  swp_entry_t entry = (swp_entry_t){0};
927 
928 again:
929  init_rss_vec(rss);
930 
931  dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
932  if (!dst_pte)
933  return -ENOMEM;
934  src_pte = pte_offset_map(src_pmd, addr);
935  src_ptl = pte_lockptr(src_mm, src_pmd);
937  orig_src_pte = src_pte;
938  orig_dst_pte = dst_pte;
940 
941  do {
942  /*
943  * We are holding two locks at this point - either of them
944  * could generate latencies in another task on another CPU.
945  */
946  if (progress >= 32) {
947  progress = 0;
948  if (need_resched() ||
949  spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
950  break;
951  }
952  if (pte_none(*src_pte)) {
953  progress++;
954  continue;
955  }
956  entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957  vma, addr, rss);
958  if (entry.val)
959  break;
960  progress += 8;
961  } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
962 
964  spin_unlock(src_ptl);
965  pte_unmap(orig_src_pte);
966  add_mm_rss_vec(dst_mm, rss);
967  pte_unmap_unlock(orig_dst_pte, dst_ptl);
968  cond_resched();
969 
970  if (entry.val) {
971  if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972  return -ENOMEM;
973  progress = 0;
974  }
975  if (addr != end)
976  goto again;
977  return 0;
978 }
979 
980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981  pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982  unsigned long addr, unsigned long end)
983 {
984  pmd_t *src_pmd, *dst_pmd;
985  unsigned long next;
986 
987  dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988  if (!dst_pmd)
989  return -ENOMEM;
990  src_pmd = pmd_offset(src_pud, addr);
991  do {
992  next = pmd_addr_end(addr, end);
993  if (pmd_trans_huge(*src_pmd)) {
994  int err;
995  VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996  err = copy_huge_pmd(dst_mm, src_mm,
997  dst_pmd, src_pmd, addr, vma);
998  if (err == -ENOMEM)
999  return -ENOMEM;
1000  if (!err)
1001  continue;
1002  /* fall through */
1003  }
1004  if (pmd_none_or_clear_bad(src_pmd))
1005  continue;
1006  if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007  vma, addr, next))
1008  return -ENOMEM;
1009  } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010  return 0;
1011 }
1012 
1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014  pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015  unsigned long addr, unsigned long end)
1016 {
1017  pud_t *src_pud, *dst_pud;
1018  unsigned long next;
1019 
1020  dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021  if (!dst_pud)
1022  return -ENOMEM;
1023  src_pud = pud_offset(src_pgd, addr);
1024  do {
1025  next = pud_addr_end(addr, end);
1026  if (pud_none_or_clear_bad(src_pud))
1027  continue;
1028  if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029  vma, addr, next))
1030  return -ENOMEM;
1031  } while (dst_pud++, src_pud++, addr = next, addr != end);
1032  return 0;
1033 }
1034 
1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036  struct vm_area_struct *vma)
1037 {
1038  pgd_t *src_pgd, *dst_pgd;
1039  unsigned long next;
1040  unsigned long addr = vma->vm_start;
1041  unsigned long end = vma->vm_end;
1042  unsigned long mmun_start; /* For mmu_notifiers */
1043  unsigned long mmun_end; /* For mmu_notifiers */
1044  bool is_cow;
1045  int ret;
1046 
1047  /*
1048  * Don't copy ptes where a page fault will fill them correctly.
1049  * Fork becomes much lighter when there are big shared or private
1050  * readonly mappings. The tradeoff is that copy_page_range is more
1051  * efficient than faulting.
1052  */
1053  if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1054  VM_PFNMAP | VM_MIXEDMAP))) {
1055  if (!vma->anon_vma)
1056  return 0;
1057  }
1058 
1059  if (is_vm_hugetlb_page(vma))
1060  return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1061 
1062  if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1063  /*
1064  * We do not free on error cases below as remove_vma
1065  * gets called on error from higher level routine
1066  */
1067  ret = track_pfn_copy(vma);
1068  if (ret)
1069  return ret;
1070  }
1071 
1072  /*
1073  * We need to invalidate the secondary MMU mappings only when
1074  * there could be a permission downgrade on the ptes of the
1075  * parent mm. And a permission downgrade will only happen if
1076  * is_cow_mapping() returns true.
1077  */
1078  is_cow = is_cow_mapping(vma->vm_flags);
1079  mmun_start = addr;
1080  mmun_end = end;
1081  if (is_cow)
1082  mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1083  mmun_end);
1084 
1085  ret = 0;
1086  dst_pgd = pgd_offset(dst_mm, addr);
1087  src_pgd = pgd_offset(src_mm, addr);
1088  do {
1089  next = pgd_addr_end(addr, end);
1090  if (pgd_none_or_clear_bad(src_pgd))
1091  continue;
1092  if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1093  vma, addr, next))) {
1094  ret = -ENOMEM;
1095  break;
1096  }
1097  } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1098 
1099  if (is_cow)
1100  mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1101  return ret;
1102 }
1103 
1104 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1105  struct vm_area_struct *vma, pmd_t *pmd,
1106  unsigned long addr, unsigned long end,
1107  struct zap_details *details)
1108 {
1109  struct mm_struct *mm = tlb->mm;
1110  int force_flush = 0;
1111  int rss[NR_MM_COUNTERS];
1112  spinlock_t *ptl;
1113  pte_t *start_pte;
1114  pte_t *pte;
1115 
1116 again:
1117  init_rss_vec(rss);
1118  start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1119  pte = start_pte;
1121  do {
1122  pte_t ptent = *pte;
1123  if (pte_none(ptent)) {
1124  continue;
1125  }
1126 
1127  if (pte_present(ptent)) {
1128  struct page *page;
1129 
1130  page = vm_normal_page(vma, addr, ptent);
1131  if (unlikely(details) && page) {
1132  /*
1133  * unmap_shared_mapping_pages() wants to
1134  * invalidate cache without truncating:
1135  * unmap shared but keep private pages.
1136  */
1137  if (details->check_mapping &&
1138  details->check_mapping != page->mapping)
1139  continue;
1140  /*
1141  * Each page->index must be checked when
1142  * invalidating or truncating nonlinear.
1143  */
1144  if (details->nonlinear_vma &&
1145  (page->index < details->first_index ||
1146  page->index > details->last_index))
1147  continue;
1148  }
1149  ptent = ptep_get_and_clear_full(mm, addr, pte,
1150  tlb->fullmm);
1151  tlb_remove_tlb_entry(tlb, pte, addr);
1152  if (unlikely(!page))
1153  continue;
1154  if (unlikely(details) && details->nonlinear_vma
1155  && linear_page_index(details->nonlinear_vma,
1156  addr) != page->index)
1157  set_pte_at(mm, addr, pte,
1158  pgoff_to_pte(page->index));
1159  if (PageAnon(page))
1160  rss[MM_ANONPAGES]--;
1161  else {
1162  if (pte_dirty(ptent))
1163  set_page_dirty(page);
1164  if (pte_young(ptent) &&
1165  likely(!VM_SequentialReadHint(vma)))
1166  mark_page_accessed(page);
1167  rss[MM_FILEPAGES]--;
1168  }
1169  page_remove_rmap(page);
1170  if (unlikely(page_mapcount(page) < 0))
1171  print_bad_pte(vma, addr, ptent, page);
1172  force_flush = !__tlb_remove_page(tlb, page);
1173  if (force_flush)
1174  break;
1175  continue;
1176  }
1177  /*
1178  * If details->check_mapping, we leave swap entries;
1179  * if details->nonlinear_vma, we leave file entries.
1180  */
1181  if (unlikely(details))
1182  continue;
1183  if (pte_file(ptent)) {
1184  if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1185  print_bad_pte(vma, addr, ptent, NULL);
1186  } else {
1187  swp_entry_t entry = pte_to_swp_entry(ptent);
1188 
1189  if (!non_swap_entry(entry))
1190  rss[MM_SWAPENTS]--;
1191  else if (is_migration_entry(entry)) {
1192  struct page *page;
1193 
1194  page = migration_entry_to_page(entry);
1195 
1196  if (PageAnon(page))
1197  rss[MM_ANONPAGES]--;
1198  else
1199  rss[MM_FILEPAGES]--;
1200  }
1201  if (unlikely(!free_swap_and_cache(entry)))
1202  print_bad_pte(vma, addr, ptent, NULL);
1203  }
1204  pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205  } while (pte++, addr += PAGE_SIZE, addr != end);
1206 
1207  add_mm_rss_vec(mm, rss);
1209  pte_unmap_unlock(start_pte, ptl);
1210 
1211  /*
1212  * mmu_gather ran out of room to batch pages, we break out of
1213  * the PTE lock to avoid doing the potential expensive TLB invalidate
1214  * and page-free while holding it.
1215  */
1216  if (force_flush) {
1217  force_flush = 0;
1218 
1219 #ifdef HAVE_GENERIC_MMU_GATHER
1220  tlb->start = addr;
1221  tlb->end = end;
1222 #endif
1223  tlb_flush_mmu(tlb);
1224  if (addr != end)
1225  goto again;
1226  }
1227 
1228  return addr;
1229 }
1230 
1231 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1232  struct vm_area_struct *vma, pud_t *pud,
1233  unsigned long addr, unsigned long end,
1234  struct zap_details *details)
1235 {
1236  pmd_t *pmd;
1237  unsigned long next;
1238 
1239  pmd = pmd_offset(pud, addr);
1240  do {
1241  next = pmd_addr_end(addr, end);
1242  if (pmd_trans_huge(*pmd)) {
1243  if (next - addr != HPAGE_PMD_SIZE) {
1244 #ifdef CONFIG_DEBUG_VM
1245  if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1246  pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1247  __func__, addr, end,
1248  vma->vm_start,
1249  vma->vm_end);
1250  BUG();
1251  }
1252 #endif
1253  split_huge_page_pmd(vma->vm_mm, pmd);
1254  } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1255  goto next;
1256  /* fall through */
1257  }
1258  /*
1259  * Here there can be other concurrent MADV_DONTNEED or
1260  * trans huge page faults running, and if the pmd is
1261  * none or trans huge it can change under us. This is
1262  * because MADV_DONTNEED holds the mmap_sem in read
1263  * mode.
1264  */
1265  if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1266  goto next;
1267  next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1268 next:
1269  cond_resched();
1270  } while (pmd++, addr = next, addr != end);
1271 
1272  return addr;
1273 }
1274 
1275 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1276  struct vm_area_struct *vma, pgd_t *pgd,
1277  unsigned long addr, unsigned long end,
1278  struct zap_details *details)
1279 {
1280  pud_t *pud;
1281  unsigned long next;
1282 
1283  pud = pud_offset(pgd, addr);
1284  do {
1285  next = pud_addr_end(addr, end);
1286  if (pud_none_or_clear_bad(pud))
1287  continue;
1288  next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1289  } while (pud++, addr = next, addr != end);
1290 
1291  return addr;
1292 }
1293 
1294 static void unmap_page_range(struct mmu_gather *tlb,
1295  struct vm_area_struct *vma,
1296  unsigned long addr, unsigned long end,
1297  struct zap_details *details)
1298 {
1299  pgd_t *pgd;
1300  unsigned long next;
1301 
1302  if (details && !details->check_mapping && !details->nonlinear_vma)
1303  details = NULL;
1304 
1305  BUG_ON(addr >= end);
1307  tlb_start_vma(tlb, vma);
1308  pgd = pgd_offset(vma->vm_mm, addr);
1309  do {
1310  next = pgd_addr_end(addr, end);
1311  if (pgd_none_or_clear_bad(pgd))
1312  continue;
1313  next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1314  } while (pgd++, addr = next, addr != end);
1315  tlb_end_vma(tlb, vma);
1317 }
1318 
1319 
1320 static void unmap_single_vma(struct mmu_gather *tlb,
1321  struct vm_area_struct *vma, unsigned long start_addr,
1322  unsigned long end_addr,
1323  struct zap_details *details)
1324 {
1325  unsigned long start = max(vma->vm_start, start_addr);
1326  unsigned long end;
1327 
1328  if (start >= vma->vm_end)
1329  return;
1330  end = min(vma->vm_end, end_addr);
1331  if (end <= vma->vm_start)
1332  return;
1333 
1334  if (vma->vm_file)
1335  uprobe_munmap(vma, start, end);
1336 
1337  if (unlikely(vma->vm_flags & VM_PFNMAP))
1338  untrack_pfn(vma, 0, 0);
1339 
1340  if (start != end) {
1341  if (unlikely(is_vm_hugetlb_page(vma))) {
1342  /*
1343  * It is undesirable to test vma->vm_file as it
1344  * should be non-null for valid hugetlb area.
1345  * However, vm_file will be NULL in the error
1346  * cleanup path of do_mmap_pgoff. When
1347  * hugetlbfs ->mmap method fails,
1348  * do_mmap_pgoff() nullifies vma->vm_file
1349  * before calling this function to clean up.
1350  * Since no pte has actually been setup, it is
1351  * safe to do nothing in this case.
1352  */
1353  if (vma->vm_file) {
1354  mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355  __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1356  mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1357  }
1358  } else
1359  unmap_page_range(tlb, vma, start, end, details);
1360  }
1361 }
1362 
1381 void unmap_vmas(struct mmu_gather *tlb,
1382  struct vm_area_struct *vma, unsigned long start_addr,
1383  unsigned long end_addr)
1384 {
1385  struct mm_struct *mm = vma->vm_mm;
1386 
1387  mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1388  for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1389  unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1390  mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1391 }
1392 
1402 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1403  unsigned long size, struct zap_details *details)
1404 {
1405  struct mm_struct *mm = vma->vm_mm;
1406  struct mmu_gather tlb;
1407  unsigned long end = start + size;
1408 
1409  lru_add_drain();
1410  tlb_gather_mmu(&tlb, mm, 0);
1411  update_hiwater_rss(mm);
1412  mmu_notifier_invalidate_range_start(mm, start, end);
1413  for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1414  unmap_single_vma(&tlb, vma, start, end, details);
1415  mmu_notifier_invalidate_range_end(mm, start, end);
1416  tlb_finish_mmu(&tlb, start, end);
1417 }
1418 
1428 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1429  unsigned long size, struct zap_details *details)
1430 {
1431  struct mm_struct *mm = vma->vm_mm;
1432  struct mmu_gather tlb;
1433  unsigned long end = address + size;
1434 
1435  lru_add_drain();
1436  tlb_gather_mmu(&tlb, mm, 0);
1437  update_hiwater_rss(mm);
1438  mmu_notifier_invalidate_range_start(mm, address, end);
1439  unmap_single_vma(&tlb, vma, address, end, details);
1440  mmu_notifier_invalidate_range_end(mm, address, end);
1441  tlb_finish_mmu(&tlb, address, end);
1442 }
1443 
1456 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1457  unsigned long size)
1458 {
1459  if (address < vma->vm_start || address + size > vma->vm_end ||
1460  !(vma->vm_flags & VM_PFNMAP))
1461  return -1;
1462  zap_page_range_single(vma, address, size, NULL);
1463  return 0;
1464 }
1466 
1479 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1480  unsigned int flags)
1481 {
1482  pgd_t *pgd;
1483  pud_t *pud;
1484  pmd_t *pmd;
1485  pte_t *ptep, pte;
1486  spinlock_t *ptl;
1487  struct page *page;
1488  struct mm_struct *mm = vma->vm_mm;
1489 
1490  page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1491  if (!IS_ERR(page)) {
1492  BUG_ON(flags & FOLL_GET);
1493  goto out;
1494  }
1495 
1496  page = NULL;
1497  pgd = pgd_offset(mm, address);
1498  if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1499  goto no_page_table;
1500 
1501  pud = pud_offset(pgd, address);
1502  if (pud_none(*pud))
1503  goto no_page_table;
1504  if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1505  BUG_ON(flags & FOLL_GET);
1506  page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1507  goto out;
1508  }
1509  if (unlikely(pud_bad(*pud)))
1510  goto no_page_table;
1511 
1512  pmd = pmd_offset(pud, address);
1513  if (pmd_none(*pmd))
1514  goto no_page_table;
1515  if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1516  BUG_ON(flags & FOLL_GET);
1517  page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1518  goto out;
1519  }
1520  if (pmd_trans_huge(*pmd)) {
1521  if (flags & FOLL_SPLIT) {
1522  split_huge_page_pmd(mm, pmd);
1523  goto split_fallthrough;
1524  }
1525  spin_lock(&mm->page_table_lock);
1526  if (likely(pmd_trans_huge(*pmd))) {
1527  if (unlikely(pmd_trans_splitting(*pmd))) {
1528  spin_unlock(&mm->page_table_lock);
1529  wait_split_huge_page(vma->anon_vma, pmd);
1530  } else {
1531  page = follow_trans_huge_pmd(vma, address,
1532  pmd, flags);
1533  spin_unlock(&mm->page_table_lock);
1534  goto out;
1535  }
1536  } else
1537  spin_unlock(&mm->page_table_lock);
1538  /* fall through */
1539  }
1540 split_fallthrough:
1541  if (unlikely(pmd_bad(*pmd)))
1542  goto no_page_table;
1543 
1544  ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1545 
1546  pte = *ptep;
1547  if (!pte_present(pte))
1548  goto no_page;
1549  if ((flags & FOLL_WRITE) && !pte_write(pte))
1550  goto unlock;
1551 
1552  page = vm_normal_page(vma, address, pte);
1553  if (unlikely(!page)) {
1554  if ((flags & FOLL_DUMP) ||
1555  !is_zero_pfn(pte_pfn(pte)))
1556  goto bad_page;
1557  page = pte_page(pte);
1558  }
1559 
1560  if (flags & FOLL_GET)
1561  get_page_foll(page);
1562  if (flags & FOLL_TOUCH) {
1563  if ((flags & FOLL_WRITE) &&
1564  !pte_dirty(pte) && !PageDirty(page))
1565  set_page_dirty(page);
1566  /*
1567  * pte_mkyoung() would be more correct here, but atomic care
1568  * is needed to avoid losing the dirty bit: it is easier to use
1569  * mark_page_accessed().
1570  */
1571  mark_page_accessed(page);
1572  }
1573  if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1574  /*
1575  * The preliminary mapping check is mainly to avoid the
1576  * pointless overhead of lock_page on the ZERO_PAGE
1577  * which might bounce very badly if there is contention.
1578  *
1579  * If the page is already locked, we don't need to
1580  * handle it now - vmscan will handle it later if and
1581  * when it attempts to reclaim the page.
1582  */
1583  if (page->mapping && trylock_page(page)) {
1584  lru_add_drain(); /* push cached pages to LRU */
1585  /*
1586  * Because we lock page here, and migration is
1587  * blocked by the pte's page reference, and we
1588  * know the page is still mapped, we don't even
1589  * need to check for file-cache page truncation.
1590  */
1591  mlock_vma_page(page);
1592  unlock_page(page);
1593  }
1594  }
1595 unlock:
1596  pte_unmap_unlock(ptep, ptl);
1597 out:
1598  return page;
1599 
1600 bad_page:
1601  pte_unmap_unlock(ptep, ptl);
1602  return ERR_PTR(-EFAULT);
1603 
1604 no_page:
1605  pte_unmap_unlock(ptep, ptl);
1606  if (!pte_none(pte))
1607  return page;
1608 
1609 no_page_table:
1610  /*
1611  * When core dumping an enormous anonymous area that nobody
1612  * has touched so far, we don't want to allocate unnecessary pages or
1613  * page tables. Return error instead of NULL to skip handle_mm_fault,
1614  * then get_dump_page() will return NULL to leave a hole in the dump.
1615  * But we can only make this optimization where a hole would surely
1616  * be zero-filled if handle_mm_fault() actually did handle it.
1617  */
1618  if ((flags & FOLL_DUMP) &&
1619  (!vma->vm_ops || !vma->vm_ops->fault))
1620  return ERR_PTR(-EFAULT);
1621  return page;
1622 }
1623 
1624 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1625 {
1626  return stack_guard_page_start(vma, addr) ||
1627  stack_guard_page_end(vma, addr+PAGE_SIZE);
1628 }
1629 
1679 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1680  unsigned long start, int nr_pages, unsigned int gup_flags,
1681  struct page **pages, struct vm_area_struct **vmas,
1682  int *nonblocking)
1683 {
1684  int i;
1685  unsigned long vm_flags;
1686 
1687  if (nr_pages <= 0)
1688  return 0;
1689 
1690  VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1691 
1692  /*
1693  * Require read or write permissions.
1694  * If FOLL_FORCE is set, we only require the "MAY" flags.
1695  */
1696  vm_flags = (gup_flags & FOLL_WRITE) ?
1697  (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1698  vm_flags &= (gup_flags & FOLL_FORCE) ?
1699  (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1700  i = 0;
1701 
1702  do {
1703  struct vm_area_struct *vma;
1704 
1705  vma = find_extend_vma(mm, start);
1706  if (!vma && in_gate_area(mm, start)) {
1707  unsigned long pg = start & PAGE_MASK;
1708  pgd_t *pgd;
1709  pud_t *pud;
1710  pmd_t *pmd;
1711  pte_t *pte;
1712 
1713  /* user gate pages are read-only */
1714  if (gup_flags & FOLL_WRITE)
1715  return i ? : -EFAULT;
1716  if (pg > TASK_SIZE)
1717  pgd = pgd_offset_k(pg);
1718  else
1719  pgd = pgd_offset_gate(mm, pg);
1720  BUG_ON(pgd_none(*pgd));
1721  pud = pud_offset(pgd, pg);
1722  BUG_ON(pud_none(*pud));
1723  pmd = pmd_offset(pud, pg);
1724  if (pmd_none(*pmd))
1725  return i ? : -EFAULT;
1726  VM_BUG_ON(pmd_trans_huge(*pmd));
1727  pte = pte_offset_map(pmd, pg);
1728  if (pte_none(*pte)) {
1729  pte_unmap(pte);
1730  return i ? : -EFAULT;
1731  }
1732  vma = get_gate_vma(mm);
1733  if (pages) {
1734  struct page *page;
1735 
1736  page = vm_normal_page(vma, start, *pte);
1737  if (!page) {
1738  if (!(gup_flags & FOLL_DUMP) &&
1739  is_zero_pfn(pte_pfn(*pte)))
1740  page = pte_page(*pte);
1741  else {
1742  pte_unmap(pte);
1743  return i ? : -EFAULT;
1744  }
1745  }
1746  pages[i] = page;
1747  get_page(page);
1748  }
1749  pte_unmap(pte);
1750  goto next_page;
1751  }
1752 
1753  if (!vma ||
1754  (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1755  !(vm_flags & vma->vm_flags))
1756  return i ? : -EFAULT;
1757 
1758  if (is_vm_hugetlb_page(vma)) {
1759  i = follow_hugetlb_page(mm, vma, pages, vmas,
1760  &start, &nr_pages, i, gup_flags);
1761  continue;
1762  }
1763 
1764  do {
1765  struct page *page;
1766  unsigned int foll_flags = gup_flags;
1767 
1768  /*
1769  * If we have a pending SIGKILL, don't keep faulting
1770  * pages and potentially allocating memory.
1771  */
1772  if (unlikely(fatal_signal_pending(current)))
1773  return i ? i : -ERESTARTSYS;
1774 
1775  cond_resched();
1776  while (!(page = follow_page(vma, start, foll_flags))) {
1777  int ret;
1778  unsigned int fault_flags = 0;
1779 
1780  /* For mlock, just skip the stack guard page. */
1781  if (foll_flags & FOLL_MLOCK) {
1782  if (stack_guard_page(vma, start))
1783  goto next_page;
1784  }
1785  if (foll_flags & FOLL_WRITE)
1786  fault_flags |= FAULT_FLAG_WRITE;
1787  if (nonblocking)
1788  fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1789  if (foll_flags & FOLL_NOWAIT)
1790  fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1791 
1792  ret = handle_mm_fault(mm, vma, start,
1793  fault_flags);
1794 
1795  if (ret & VM_FAULT_ERROR) {
1796  if (ret & VM_FAULT_OOM)
1797  return i ? i : -ENOMEM;
1798  if (ret & (VM_FAULT_HWPOISON |
1799  VM_FAULT_HWPOISON_LARGE)) {
1800  if (i)
1801  return i;
1802  else if (gup_flags & FOLL_HWPOISON)
1803  return -EHWPOISON;
1804  else
1805  return -EFAULT;
1806  }
1807  if (ret & VM_FAULT_SIGBUS)
1808  return i ? i : -EFAULT;
1809  BUG();
1810  }
1811 
1812  if (tsk) {
1813  if (ret & VM_FAULT_MAJOR)
1814  tsk->maj_flt++;
1815  else
1816  tsk->min_flt++;
1817  }
1818 
1819  if (ret & VM_FAULT_RETRY) {
1820  if (nonblocking)
1821  *nonblocking = 0;
1822  return i;
1823  }
1824 
1825  /*
1826  * The VM_FAULT_WRITE bit tells us that
1827  * do_wp_page has broken COW when necessary,
1828  * even if maybe_mkwrite decided not to set
1829  * pte_write. We can thus safely do subsequent
1830  * page lookups as if they were reads. But only
1831  * do so when looping for pte_write is futile:
1832  * in some cases userspace may also be wanting
1833  * to write to the gotten user page, which a
1834  * read fault here might prevent (a readonly
1835  * page might get reCOWed by userspace write).
1836  */
1837  if ((ret & VM_FAULT_WRITE) &&
1838  !(vma->vm_flags & VM_WRITE))
1839  foll_flags &= ~FOLL_WRITE;
1840 
1841  cond_resched();
1842  }
1843  if (IS_ERR(page))
1844  return i ? i : PTR_ERR(page);
1845  if (pages) {
1846  pages[i] = page;
1847 
1848  flush_anon_page(vma, page, start);
1849  flush_dcache_page(page);
1850  }
1851 next_page:
1852  if (vmas)
1853  vmas[i] = vma;
1854  i++;
1855  start += PAGE_SIZE;
1856  nr_pages--;
1857  } while (nr_pages && start < vma->vm_end);
1858  } while (nr_pages);
1859  return i;
1860 }
1862 
1863 /*
1864  * fixup_user_fault() - manually resolve a user page fault
1865  * @tsk: the task_struct to use for page fault accounting, or
1866  * NULL if faults are not to be recorded.
1867  * @mm: mm_struct of target mm
1868  * @address: user address
1869  * @fault_flags:flags to pass down to handle_mm_fault()
1870  *
1871  * This is meant to be called in the specific scenario where for locking reasons
1872  * we try to access user memory in atomic context (within a pagefault_disable()
1873  * section), this returns -EFAULT, and we want to resolve the user fault before
1874  * trying again.
1875  *
1876  * Typically this is meant to be used by the futex code.
1877  *
1878  * The main difference with get_user_pages() is that this function will
1879  * unconditionally call handle_mm_fault() which will in turn perform all the
1880  * necessary SW fixup of the dirty and young bits in the PTE, while
1881  * handle_mm_fault() only guarantees to update these in the struct page.
1882  *
1883  * This is important for some architectures where those bits also gate the
1884  * access permission to the page because they are maintained in software. On
1885  * such architectures, gup() will not be enough to make a subsequent access
1886  * succeed.
1887  *
1888  * This should be called with the mm_sem held for read.
1889  */
1890 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1891  unsigned long address, unsigned int fault_flags)
1892 {
1893  struct vm_area_struct *vma;
1894  int ret;
1895 
1896  vma = find_extend_vma(mm, address);
1897  if (!vma || address < vma->vm_start)
1898  return -EFAULT;
1899 
1900  ret = handle_mm_fault(mm, vma, address, fault_flags);
1901  if (ret & VM_FAULT_ERROR) {
1902  if (ret & VM_FAULT_OOM)
1903  return -ENOMEM;
1904  if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1905  return -EHWPOISON;
1906  if (ret & VM_FAULT_SIGBUS)
1907  return -EFAULT;
1908  BUG();
1909  }
1910  if (tsk) {
1911  if (ret & VM_FAULT_MAJOR)
1912  tsk->maj_flt++;
1913  else
1914  tsk->min_flt++;
1915  }
1916  return 0;
1917 }
1918 
1919 /*
1920  * get_user_pages() - pin user pages in memory
1921  * @tsk: the task_struct to use for page fault accounting, or
1922  * NULL if faults are not to be recorded.
1923  * @mm: mm_struct of target mm
1924  * @start: starting user address
1925  * @nr_pages: number of pages from start to pin
1926  * @write: whether pages will be written to by the caller
1927  * @force: whether to force write access even if user mapping is
1928  * readonly. This will result in the page being COWed even
1929  * in MAP_SHARED mappings. You do not want this.
1930  * @pages: array that receives pointers to the pages pinned.
1931  * Should be at least nr_pages long. Or NULL, if caller
1932  * only intends to ensure the pages are faulted in.
1933  * @vmas: array of pointers to vmas corresponding to each page.
1934  * Or NULL if the caller does not require them.
1935  *
1936  * Returns number of pages pinned. This may be fewer than the number
1937  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1938  * were pinned, returns -errno. Each page returned must be released
1939  * with a put_page() call when it is finished with. vmas will only
1940  * remain valid while mmap_sem is held.
1941  *
1942  * Must be called with mmap_sem held for read or write.
1943  *
1944  * get_user_pages walks a process's page tables and takes a reference to
1945  * each struct page that each user address corresponds to at a given
1946  * instant. That is, it takes the page that would be accessed if a user
1947  * thread accesses the given user virtual address at that instant.
1948  *
1949  * This does not guarantee that the page exists in the user mappings when
1950  * get_user_pages returns, and there may even be a completely different
1951  * page there in some cases (eg. if mmapped pagecache has been invalidated
1952  * and subsequently re faulted). However it does guarantee that the page
1953  * won't be freed completely. And mostly callers simply care that the page
1954  * contains data that was valid *at some point in time*. Typically, an IO
1955  * or similar operation cannot guarantee anything stronger anyway because
1956  * locks can't be held over the syscall boundary.
1957  *
1958  * If write=0, the page must not be written to. If the page is written to,
1959  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1960  * after the page is finished with, and before put_page is called.
1961  *
1962  * get_user_pages is typically used for fewer-copy IO operations, to get a
1963  * handle on the memory by some means other than accesses via the user virtual
1964  * addresses. The pages may be submitted for DMA to devices or accessed via
1965  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1966  * use the correct cache flushing APIs.
1967  *
1968  * See also get_user_pages_fast, for performance critical applications.
1969  */
1970 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1971  unsigned long start, int nr_pages, int write, int force,
1972  struct page **pages, struct vm_area_struct **vmas)
1973 {
1974  int flags = FOLL_TOUCH;
1975 
1976  if (pages)
1977  flags |= FOLL_GET;
1978  if (write)
1979  flags |= FOLL_WRITE;
1980  if (force)
1981  flags |= FOLL_FORCE;
1982 
1983  return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1984  NULL);
1985 }
1987 
2002 #ifdef CONFIG_ELF_CORE
2003 struct page *get_dump_page(unsigned long addr)
2004 {
2005  struct vm_area_struct *vma;
2006  struct page *page;
2007 
2008  if (__get_user_pages(current, current->mm, addr, 1,
2009  FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2010  NULL) < 1)
2011  return NULL;
2012  flush_cache_page(vma, addr, page_to_pfn(page));
2013  return page;
2014 }
2015 #endif /* CONFIG_ELF_CORE */
2016 
2017 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2018  spinlock_t **ptl)
2019 {
2020  pgd_t * pgd = pgd_offset(mm, addr);
2021  pud_t * pud = pud_alloc(mm, pgd, addr);
2022  if (pud) {
2023  pmd_t * pmd = pmd_alloc(mm, pud, addr);
2024  if (pmd) {
2025  VM_BUG_ON(pmd_trans_huge(*pmd));
2026  return pte_alloc_map_lock(mm, pmd, addr, ptl);
2027  }
2028  }
2029  return NULL;
2030 }
2031 
2032 /*
2033  * This is the old fallback for page remapping.
2034  *
2035  * For historical reasons, it only allows reserved pages. Only
2036  * old drivers should use this, and they needed to mark their
2037  * pages reserved for the old functions anyway.
2038  */
2039 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2040  struct page *page, pgprot_t prot)
2041 {
2042  struct mm_struct *mm = vma->vm_mm;
2043  int retval;
2044  pte_t *pte;
2045  spinlock_t *ptl;
2046 
2047  retval = -EINVAL;
2048  if (PageAnon(page))
2049  goto out;
2050  retval = -ENOMEM;
2051  flush_dcache_page(page);
2052  pte = get_locked_pte(mm, addr, &ptl);
2053  if (!pte)
2054  goto out;
2055  retval = -EBUSY;
2056  if (!pte_none(*pte))
2057  goto out_unlock;
2058 
2059  /* Ok, finally just insert the thing.. */
2060  get_page(page);
2062  page_add_file_rmap(page);
2063  set_pte_at(mm, addr, pte, mk_pte(page, prot));
2064 
2065  retval = 0;
2066  pte_unmap_unlock(pte, ptl);
2067  return retval;
2068 out_unlock:
2069  pte_unmap_unlock(pte, ptl);
2070 out:
2071  return retval;
2072 }
2073 
2101 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2102  struct page *page)
2103 {
2104  if (addr < vma->vm_start || addr >= vma->vm_end)
2105  return -EFAULT;
2106  if (!page_count(page))
2107  return -EINVAL;
2108  if (!(vma->vm_flags & VM_MIXEDMAP)) {
2109  BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2110  BUG_ON(vma->vm_flags & VM_PFNMAP);
2111  vma->vm_flags |= VM_MIXEDMAP;
2112  }
2113  return insert_page(vma, addr, page, vma->vm_page_prot);
2114 }
2116 
2117 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118  unsigned long pfn, pgprot_t prot)
2119 {
2120  struct mm_struct *mm = vma->vm_mm;
2121  int retval;
2122  pte_t *pte, entry;
2123  spinlock_t *ptl;
2124 
2125  retval = -ENOMEM;
2126  pte = get_locked_pte(mm, addr, &ptl);
2127  if (!pte)
2128  goto out;
2129  retval = -EBUSY;
2130  if (!pte_none(*pte))
2131  goto out_unlock;
2132 
2133  /* Ok, finally just insert the thing.. */
2134  entry = pte_mkspecial(pfn_pte(pfn, prot));
2135  set_pte_at(mm, addr, pte, entry);
2136  update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2137 
2138  retval = 0;
2139 out_unlock:
2140  pte_unmap_unlock(pte, ptl);
2141 out:
2142  return retval;
2143 }
2144 
2162 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163  unsigned long pfn)
2164 {
2165  int ret;
2166  pgprot_t pgprot = vma->vm_page_prot;
2167  /*
2168  * Technically, architectures with pte_special can avoid all these
2169  * restrictions (same for remap_pfn_range). However we would like
2170  * consistency in testing and feature parity among all, so we should
2171  * try to keep these invariants in place for everybody.
2172  */
2173  BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2174  BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2175  (VM_PFNMAP|VM_MIXEDMAP));
2176  BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2177  BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2178 
2179  if (addr < vma->vm_start || addr >= vma->vm_end)
2180  return -EFAULT;
2181  if (track_pfn_insert(vma, &pgprot, pfn))
2182  return -EINVAL;
2183 
2184  ret = insert_pfn(vma, addr, pfn, pgprot);
2185 
2186  return ret;
2187 }
2189 
2190 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2191  unsigned long pfn)
2192 {
2193  BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2194 
2195  if (addr < vma->vm_start || addr >= vma->vm_end)
2196  return -EFAULT;
2197 
2198  /*
2199  * If we don't have pte special, then we have to use the pfn_valid()
2200  * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2201  * refcount the page if pfn_valid is true (hence insert_page rather
2202  * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2203  * without pte special, it would there be refcounted as a normal page.
2204  */
2205  if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2206  struct page *page;
2207 
2208  page = pfn_to_page(pfn);
2209  return insert_page(vma, addr, page, vma->vm_page_prot);
2210  }
2211  return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2212 }
2214 
2215 /*
2216  * maps a range of physical memory into the requested pages. the old
2217  * mappings are removed. any references to nonexistent pages results
2218  * in null mappings (currently treated as "copy-on-access")
2219  */
2220 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2221  unsigned long addr, unsigned long end,
2222  unsigned long pfn, pgprot_t prot)
2223 {
2224  pte_t *pte;
2225  spinlock_t *ptl;
2226 
2227  pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2228  if (!pte)
2229  return -ENOMEM;
2231  do {
2232  BUG_ON(!pte_none(*pte));
2233  set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2234  pfn++;
2235  } while (pte++, addr += PAGE_SIZE, addr != end);
2237  pte_unmap_unlock(pte - 1, ptl);
2238  return 0;
2239 }
2240 
2241 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2242  unsigned long addr, unsigned long end,
2243  unsigned long pfn, pgprot_t prot)
2244 {
2245  pmd_t *pmd;
2246  unsigned long next;
2247 
2248  pfn -= addr >> PAGE_SHIFT;
2249  pmd = pmd_alloc(mm, pud, addr);
2250  if (!pmd)
2251  return -ENOMEM;
2252  VM_BUG_ON(pmd_trans_huge(*pmd));
2253  do {
2254  next = pmd_addr_end(addr, end);
2255  if (remap_pte_range(mm, pmd, addr, next,
2256  pfn + (addr >> PAGE_SHIFT), prot))
2257  return -ENOMEM;
2258  } while (pmd++, addr = next, addr != end);
2259  return 0;
2260 }
2261 
2262 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2263  unsigned long addr, unsigned long end,
2264  unsigned long pfn, pgprot_t prot)
2265 {
2266  pud_t *pud;
2267  unsigned long next;
2268 
2269  pfn -= addr >> PAGE_SHIFT;
2270  pud = pud_alloc(mm, pgd, addr);
2271  if (!pud)
2272  return -ENOMEM;
2273  do {
2274  next = pud_addr_end(addr, end);
2275  if (remap_pmd_range(mm, pud, addr, next,
2276  pfn + (addr >> PAGE_SHIFT), prot))
2277  return -ENOMEM;
2278  } while (pud++, addr = next, addr != end);
2279  return 0;
2280 }
2281 
2292 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2293  unsigned long pfn, unsigned long size, pgprot_t prot)
2294 {
2295  pgd_t *pgd;
2296  unsigned long next;
2297  unsigned long end = addr + PAGE_ALIGN(size);
2298  struct mm_struct *mm = vma->vm_mm;
2299  int err;
2300 
2301  /*
2302  * Physically remapped pages are special. Tell the
2303  * rest of the world about it:
2304  * VM_IO tells people not to look at these pages
2305  * (accesses can have side effects).
2306  * VM_PFNMAP tells the core MM that the base pages are just
2307  * raw PFN mappings, and do not have a "struct page" associated
2308  * with them.
2309  * VM_DONTEXPAND
2310  * Disable vma merging and expanding with mremap().
2311  * VM_DONTDUMP
2312  * Omit vma from core dump, even when VM_IO turned off.
2313  *
2314  * There's a horrible special case to handle copy-on-write
2315  * behaviour that some programs depend on. We mark the "original"
2316  * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2317  * See vm_normal_page() for details.
2318  */
2319  if (is_cow_mapping(vma->vm_flags)) {
2320  if (addr != vma->vm_start || end != vma->vm_end)
2321  return -EINVAL;
2322  vma->vm_pgoff = pfn;
2323  }
2324 
2325  err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2326  if (err)
2327  return -EINVAL;
2328 
2329  vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2330 
2331  BUG_ON(addr >= end);
2332  pfn -= addr >> PAGE_SHIFT;
2333  pgd = pgd_offset(mm, addr);
2334  flush_cache_range(vma, addr, end);
2335  do {
2336  next = pgd_addr_end(addr, end);
2337  err = remap_pud_range(mm, pgd, addr, next,
2338  pfn + (addr >> PAGE_SHIFT), prot);
2339  if (err)
2340  break;
2341  } while (pgd++, addr = next, addr != end);
2342 
2343  if (err)
2344  untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2345 
2346  return err;
2347 }
2349 
2350 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2351  unsigned long addr, unsigned long end,
2352  pte_fn_t fn, void *data)
2353 {
2354  pte_t *pte;
2355  int err;
2356  pgtable_t token;
2358 
2359  pte = (mm == &init_mm) ?
2360  pte_alloc_kernel(pmd, addr) :
2361  pte_alloc_map_lock(mm, pmd, addr, &ptl);
2362  if (!pte)
2363  return -ENOMEM;
2364 
2365  BUG_ON(pmd_huge(*pmd));
2366 
2368 
2369  token = pmd_pgtable(*pmd);
2370 
2371  do {
2372  err = fn(pte++, token, addr, data);
2373  if (err)
2374  break;
2375  } while (addr += PAGE_SIZE, addr != end);
2376 
2378 
2379  if (mm != &init_mm)
2380  pte_unmap_unlock(pte-1, ptl);
2381  return err;
2382 }
2383 
2384 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2385  unsigned long addr, unsigned long end,
2386  pte_fn_t fn, void *data)
2387 {
2388  pmd_t *pmd;
2389  unsigned long next;
2390  int err;
2391 
2392  BUG_ON(pud_huge(*pud));
2393 
2394  pmd = pmd_alloc(mm, pud, addr);
2395  if (!pmd)
2396  return -ENOMEM;
2397  do {
2398  next = pmd_addr_end(addr, end);
2399  err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2400  if (err)
2401  break;
2402  } while (pmd++, addr = next, addr != end);
2403  return err;
2404 }
2405 
2406 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2407  unsigned long addr, unsigned long end,
2408  pte_fn_t fn, void *data)
2409 {
2410  pud_t *pud;
2411  unsigned long next;
2412  int err;
2413 
2414  pud = pud_alloc(mm, pgd, addr);
2415  if (!pud)
2416  return -ENOMEM;
2417  do {
2418  next = pud_addr_end(addr, end);
2419  err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2420  if (err)
2421  break;
2422  } while (pud++, addr = next, addr != end);
2423  return err;
2424 }
2425 
2426 /*
2427  * Scan a region of virtual memory, filling in page tables as necessary
2428  * and calling a provided function on each leaf page table.
2429  */
2430 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2431  unsigned long size, pte_fn_t fn, void *data)
2432 {
2433  pgd_t *pgd;
2434  unsigned long next;
2435  unsigned long end = addr + size;
2436  int err;
2437 
2438  BUG_ON(addr >= end);
2439  pgd = pgd_offset(mm, addr);
2440  do {
2441  next = pgd_addr_end(addr, end);
2442  err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2443  if (err)
2444  break;
2445  } while (pgd++, addr = next, addr != end);
2446 
2447  return err;
2448 }
2450 
2451 /*
2452  * handle_pte_fault chooses page fault handler according to an entry
2453  * which was read non-atomically. Before making any commitment, on
2454  * those architectures or configurations (e.g. i386 with PAE) which
2455  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2456  * must check under lock before unmapping the pte and proceeding
2457  * (but do_wp_page is only called after already making such a check;
2458  * and do_anonymous_page can safely check later on).
2459  */
2460 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2461  pte_t *page_table, pte_t orig_pte)
2462 {
2463  int same = 1;
2464 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2465  if (sizeof(pte_t) > sizeof(unsigned long)) {
2466  spinlock_t *ptl = pte_lockptr(mm, pmd);
2467  spin_lock(ptl);
2468  same = pte_same(*page_table, orig_pte);
2469  spin_unlock(ptl);
2470  }
2471 #endif
2472  pte_unmap(page_table);
2473  return same;
2474 }
2475 
2476 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2477 {
2478  /*
2479  * If the source page was a PFN mapping, we don't have
2480  * a "struct page" for it. We do a best-effort copy by
2481  * just copying from the original user address. If that
2482  * fails, we just zero-fill it. Live with it.
2483  */
2484  if (unlikely(!src)) {
2485  void *kaddr = kmap_atomic(dst);
2486  void __user *uaddr = (void __user *)(va & PAGE_MASK);
2487 
2488  /*
2489  * This really shouldn't fail, because the page is there
2490  * in the page tables. But it might just be unreadable,
2491  * in which case we just give up and fill the result with
2492  * zeroes.
2493  */
2494  if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2495  clear_page(kaddr);
2496  kunmap_atomic(kaddr);
2497  flush_dcache_page(dst);
2498  } else
2499  copy_user_highpage(dst, src, va, vma);
2500 }
2501 
2502 /*
2503  * This routine handles present pages, when users try to write
2504  * to a shared page. It is done by copying the page to a new address
2505  * and decrementing the shared-page counter for the old page.
2506  *
2507  * Note that this routine assumes that the protection checks have been
2508  * done by the caller (the low-level page fault routine in most cases).
2509  * Thus we can safely just mark it writable once we've done any necessary
2510  * COW.
2511  *
2512  * We also mark the page dirty at this point even though the page will
2513  * change only once the write actually happens. This avoids a few races,
2514  * and potentially makes it more efficient.
2515  *
2516  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2517  * but allow concurrent faults), with pte both mapped and locked.
2518  * We return with mmap_sem still held, but pte unmapped and unlocked.
2519  */
2520 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2521  unsigned long address, pte_t *page_table, pmd_t *pmd,
2522  spinlock_t *ptl, pte_t orig_pte)
2523  __releases(ptl)
2524 {
2525  struct page *old_page, *new_page = NULL;
2526  pte_t entry;
2527  int ret = 0;
2528  int page_mkwrite = 0;
2529  struct page *dirty_page = NULL;
2530  unsigned long mmun_start = 0; /* For mmu_notifiers */
2531  unsigned long mmun_end = 0; /* For mmu_notifiers */
2532 
2533  old_page = vm_normal_page(vma, address, orig_pte);
2534  if (!old_page) {
2535  /*
2536  * VM_MIXEDMAP !pfn_valid() case
2537  *
2538  * We should not cow pages in a shared writeable mapping.
2539  * Just mark the pages writable as we can't do any dirty
2540  * accounting on raw pfn maps.
2541  */
2542  if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2543  (VM_WRITE|VM_SHARED))
2544  goto reuse;
2545  goto gotten;
2546  }
2547 
2548  /*
2549  * Take out anonymous pages first, anonymous shared vmas are
2550  * not dirty accountable.
2551  */
2552  if (PageAnon(old_page) && !PageKsm(old_page)) {
2553  if (!trylock_page(old_page)) {
2554  page_cache_get(old_page);
2555  pte_unmap_unlock(page_table, ptl);
2556  lock_page(old_page);
2557  page_table = pte_offset_map_lock(mm, pmd, address,
2558  &ptl);
2559  if (!pte_same(*page_table, orig_pte)) {
2560  unlock_page(old_page);
2561  goto unlock;
2562  }
2563  page_cache_release(old_page);
2564  }
2565  if (reuse_swap_page(old_page)) {
2566  /*
2567  * The page is all ours. Move it to our anon_vma so
2568  * the rmap code will not search our parent or siblings.
2569  * Protected against the rmap code by the page lock.
2570  */
2571  page_move_anon_rmap(old_page, vma, address);
2572  unlock_page(old_page);
2573  goto reuse;
2574  }
2575  unlock_page(old_page);
2576  } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2577  (VM_WRITE|VM_SHARED))) {
2578  /*
2579  * Only catch write-faults on shared writable pages,
2580  * read-only shared pages can get COWed by
2581  * get_user_pages(.write=1, .force=1).
2582  */
2583  if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2584  struct vm_fault vmf;
2585  int tmp;
2586 
2587  vmf.virtual_address = (void __user *)(address &
2588  PAGE_MASK);
2589  vmf.pgoff = old_page->index;
2590  vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2591  vmf.page = old_page;
2592 
2593  /*
2594  * Notify the address space that the page is about to
2595  * become writable so that it can prohibit this or wait
2596  * for the page to get into an appropriate state.
2597  *
2598  * We do this without the lock held, so that it can
2599  * sleep if it needs to.
2600  */
2601  page_cache_get(old_page);
2602  pte_unmap_unlock(page_table, ptl);
2603 
2604  tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2605  if (unlikely(tmp &
2606  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2607  ret = tmp;
2608  goto unwritable_page;
2609  }
2610  if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2611  lock_page(old_page);
2612  if (!old_page->mapping) {
2613  ret = 0; /* retry the fault */
2614  unlock_page(old_page);
2615  goto unwritable_page;
2616  }
2617  } else
2618  VM_BUG_ON(!PageLocked(old_page));
2619 
2620  /*
2621  * Since we dropped the lock we need to revalidate
2622  * the PTE as someone else may have changed it. If
2623  * they did, we just return, as we can count on the
2624  * MMU to tell us if they didn't also make it writable.
2625  */
2626  page_table = pte_offset_map_lock(mm, pmd, address,
2627  &ptl);
2628  if (!pte_same(*page_table, orig_pte)) {
2629  unlock_page(old_page);
2630  goto unlock;
2631  }
2632 
2633  page_mkwrite = 1;
2634  }
2635  dirty_page = old_page;
2636  get_page(dirty_page);
2637 
2638 reuse:
2639  flush_cache_page(vma, address, pte_pfn(orig_pte));
2640  entry = pte_mkyoung(orig_pte);
2641  entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2642  if (ptep_set_access_flags(vma, address, page_table, entry,1))
2643  update_mmu_cache(vma, address, page_table);
2644  pte_unmap_unlock(page_table, ptl);
2645  ret |= VM_FAULT_WRITE;
2646 
2647  if (!dirty_page)
2648  return ret;
2649 
2650  /*
2651  * Yes, Virginia, this is actually required to prevent a race
2652  * with clear_page_dirty_for_io() from clearing the page dirty
2653  * bit after it clear all dirty ptes, but before a racing
2654  * do_wp_page installs a dirty pte.
2655  *
2656  * __do_fault is protected similarly.
2657  */
2658  if (!page_mkwrite) {
2659  wait_on_page_locked(dirty_page);
2660  set_page_dirty_balance(dirty_page, page_mkwrite);
2661  /* file_update_time outside page_lock */
2662  if (vma->vm_file)
2663  file_update_time(vma->vm_file);
2664  }
2665  put_page(dirty_page);
2666  if (page_mkwrite) {
2667  struct address_space *mapping = dirty_page->mapping;
2668 
2669  set_page_dirty(dirty_page);
2670  unlock_page(dirty_page);
2671  page_cache_release(dirty_page);
2672  if (mapping) {
2673  /*
2674  * Some device drivers do not set page.mapping
2675  * but still dirty their pages
2676  */
2677  balance_dirty_pages_ratelimited(mapping);
2678  }
2679  }
2680 
2681  return ret;
2682  }
2683 
2684  /*
2685  * Ok, we need to copy. Oh, well..
2686  */
2687  page_cache_get(old_page);
2688 gotten:
2689  pte_unmap_unlock(page_table, ptl);
2690 
2691  if (unlikely(anon_vma_prepare(vma)))
2692  goto oom;
2693 
2694  if (is_zero_pfn(pte_pfn(orig_pte))) {
2695  new_page = alloc_zeroed_user_highpage_movable(vma, address);
2696  if (!new_page)
2697  goto oom;
2698  } else {
2699  new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2700  if (!new_page)
2701  goto oom;
2702  cow_user_page(new_page, old_page, address, vma);
2703  }
2704  __SetPageUptodate(new_page);
2705 
2706  if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2707  goto oom_free_new;
2708 
2709  mmun_start = address & PAGE_MASK;
2710  mmun_end = mmun_start + PAGE_SIZE;
2711  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2712 
2713  /*
2714  * Re-check the pte - we dropped the lock
2715  */
2716  page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2717  if (likely(pte_same(*page_table, orig_pte))) {
2718  if (old_page) {
2719  if (!PageAnon(old_page)) {
2722  }
2723  } else
2725  flush_cache_page(vma, address, pte_pfn(orig_pte));
2726  entry = mk_pte(new_page, vma->vm_page_prot);
2727  entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2728  /*
2729  * Clear the pte entry and flush it first, before updating the
2730  * pte with the new entry. This will avoid a race condition
2731  * seen in the presence of one thread doing SMC and another
2732  * thread doing COW.
2733  */
2734  ptep_clear_flush(vma, address, page_table);
2735  page_add_new_anon_rmap(new_page, vma, address);
2736  /*
2737  * We call the notify macro here because, when using secondary
2738  * mmu page tables (such as kvm shadow page tables), we want the
2739  * new page to be mapped directly into the secondary page table.
2740  */
2741  set_pte_at_notify(mm, address, page_table, entry);
2742  update_mmu_cache(vma, address, page_table);
2743  if (old_page) {
2744  /*
2745  * Only after switching the pte to the new page may
2746  * we remove the mapcount here. Otherwise another
2747  * process may come and find the rmap count decremented
2748  * before the pte is switched to the new page, and
2749  * "reuse" the old page writing into it while our pte
2750  * here still points into it and can be read by other
2751  * threads.
2752  *
2753  * The critical issue is to order this
2754  * page_remove_rmap with the ptp_clear_flush above.
2755  * Those stores are ordered by (if nothing else,)
2756  * the barrier present in the atomic_add_negative
2757  * in page_remove_rmap.
2758  *
2759  * Then the TLB flush in ptep_clear_flush ensures that
2760  * no process can access the old page before the
2761  * decremented mapcount is visible. And the old page
2762  * cannot be reused until after the decremented
2763  * mapcount is visible. So transitively, TLBs to
2764  * old page will be flushed before it can be reused.
2765  */
2766  page_remove_rmap(old_page);
2767  }
2768 
2769  /* Free the old page.. */
2770  new_page = old_page;
2771  ret |= VM_FAULT_WRITE;
2772  } else
2773  mem_cgroup_uncharge_page(new_page);
2774 
2775  if (new_page)
2776  page_cache_release(new_page);
2777 unlock:
2778  pte_unmap_unlock(page_table, ptl);
2779  if (mmun_end > mmun_start)
2780  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2781  if (old_page) {
2782  /*
2783  * Don't let another task, with possibly unlocked vma,
2784  * keep the mlocked page.
2785  */
2786  if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2787  lock_page(old_page); /* LRU manipulation */
2788  munlock_vma_page(old_page);
2789  unlock_page(old_page);
2790  }
2791  page_cache_release(old_page);
2792  }
2793  return ret;
2794 oom_free_new:
2795  page_cache_release(new_page);
2796 oom:
2797  if (old_page) {
2798  if (page_mkwrite) {
2799  unlock_page(old_page);
2800  page_cache_release(old_page);
2801  }
2802  page_cache_release(old_page);
2803  }
2804  return VM_FAULT_OOM;
2805 
2806 unwritable_page:
2807  page_cache_release(old_page);
2808  return ret;
2809 }
2810 
2811 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2812  unsigned long start_addr, unsigned long end_addr,
2813  struct zap_details *details)
2814 {
2815  zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2816 }
2817 
2818 static inline void unmap_mapping_range_tree(struct rb_root *root,
2819  struct zap_details *details)
2820 {
2821  struct vm_area_struct *vma;
2822  pgoff_t vba, vea, zba, zea;
2823 
2824  vma_interval_tree_foreach(vma, root,
2825  details->first_index, details->last_index) {
2826 
2827  vba = vma->vm_pgoff;
2828  vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2829  /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2830  zba = details->first_index;
2831  if (zba < vba)
2832  zba = vba;
2833  zea = details->last_index;
2834  if (zea > vea)
2835  zea = vea;
2836 
2837  unmap_mapping_range_vma(vma,
2838  ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2839  ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2840  details);
2841  }
2842 }
2843 
2844 static inline void unmap_mapping_range_list(struct list_head *head,
2845  struct zap_details *details)
2846 {
2847  struct vm_area_struct *vma;
2848 
2849  /*
2850  * In nonlinear VMAs there is no correspondence between virtual address
2851  * offset and file offset. So we must perform an exhaustive search
2852  * across *all* the pages in each nonlinear VMA, not just the pages
2853  * whose virtual address lies outside the file truncation point.
2854  */
2855  list_for_each_entry(vma, head, shared.nonlinear) {
2856  details->nonlinear_vma = vma;
2857  unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2858  }
2859 }
2860 
2875 void unmap_mapping_range(struct address_space *mapping,
2876  loff_t const holebegin, loff_t const holelen, int even_cows)
2877 {
2878  struct zap_details details;
2879  pgoff_t hba = holebegin >> PAGE_SHIFT;
2880  pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2881 
2882  /* Check for overflow. */
2883  if (sizeof(holelen) > sizeof(hlen)) {
2884  long long holeend =
2885  (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886  if (holeend & ~(long long)ULONG_MAX)
2887  hlen = ULONG_MAX - hba + 1;
2888  }
2889 
2890  details.check_mapping = even_cows? NULL: mapping;
2891  details.nonlinear_vma = NULL;
2892  details.first_index = hba;
2893  details.last_index = hba + hlen - 1;
2894  if (details.last_index < details.first_index)
2895  details.last_index = ULONG_MAX;
2896 
2897 
2898  mutex_lock(&mapping->i_mmap_mutex);
2899  if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2900  unmap_mapping_range_tree(&mapping->i_mmap, &details);
2901  if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2902  unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2903  mutex_unlock(&mapping->i_mmap_mutex);
2904 }
2906 
2907 /*
2908  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2909  * but allow concurrent faults), and pte mapped but not yet locked.
2910  * We return with mmap_sem still held, but pte unmapped and unlocked.
2911  */
2912 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2913  unsigned long address, pte_t *page_table, pmd_t *pmd,
2914  unsigned int flags, pte_t orig_pte)
2915 {
2916  spinlock_t *ptl;
2917  struct page *page, *swapcache = NULL;
2919  pte_t pte;
2920  int locked;
2921  struct mem_cgroup *ptr;
2922  int exclusive = 0;
2923  int ret = 0;
2924 
2925  if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2926  goto out;
2927 
2928  entry = pte_to_swp_entry(orig_pte);
2929  if (unlikely(non_swap_entry(entry))) {
2930  if (is_migration_entry(entry)) {
2931  migration_entry_wait(mm, pmd, address);
2932  } else if (is_hwpoison_entry(entry)) {
2933  ret = VM_FAULT_HWPOISON;
2934  } else {
2935  print_bad_pte(vma, address, orig_pte, NULL);
2936  ret = VM_FAULT_SIGBUS;
2937  }
2938  goto out;
2939  }
2940  delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2941  page = lookup_swap_cache(entry);
2942  if (!page) {
2943  page = swapin_readahead(entry,
2944  GFP_HIGHUSER_MOVABLE, vma, address);
2945  if (!page) {
2946  /*
2947  * Back out if somebody else faulted in this pte
2948  * while we released the pte lock.
2949  */
2950  page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2951  if (likely(pte_same(*page_table, orig_pte)))
2952  ret = VM_FAULT_OOM;
2953  delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2954  goto unlock;
2955  }
2956 
2957  /* Had to read the page from swap area: Major fault */
2958  ret = VM_FAULT_MAJOR;
2959  count_vm_event(PGMAJFAULT);
2961  } else if (PageHWPoison(page)) {
2962  /*
2963  * hwpoisoned dirty swapcache pages are kept for killing
2964  * owner processes (which may be unknown at hwpoison time)
2965  */
2966  ret = VM_FAULT_HWPOISON;
2967  delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968  goto out_release;
2969  }
2970 
2971  locked = lock_page_or_retry(page, mm, flags);
2972 
2973  delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2974  if (!locked) {
2975  ret |= VM_FAULT_RETRY;
2976  goto out_release;
2977  }
2978 
2979  /*
2980  * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2981  * release the swapcache from under us. The page pin, and pte_same
2982  * test below, are not enough to exclude that. Even if it is still
2983  * swapcache, we need to check that the page's swap has not changed.
2984  */
2985  if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2986  goto out_page;
2987 
2988  if (ksm_might_need_to_copy(page, vma, address)) {
2989  swapcache = page;
2990  page = ksm_does_need_to_copy(page, vma, address);
2991 
2992  if (unlikely(!page)) {
2993  ret = VM_FAULT_OOM;
2994  page = swapcache;
2995  swapcache = NULL;
2996  goto out_page;
2997  }
2998  }
2999 
3000  if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3001  ret = VM_FAULT_OOM;
3002  goto out_page;
3003  }
3004 
3005  /*
3006  * Back out if somebody else already faulted in this pte.
3007  */
3008  page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3009  if (unlikely(!pte_same(*page_table, orig_pte)))
3010  goto out_nomap;
3011 
3012  if (unlikely(!PageUptodate(page))) {
3013  ret = VM_FAULT_SIGBUS;
3014  goto out_nomap;
3015  }
3016 
3017  /*
3018  * The page isn't present yet, go ahead with the fault.
3019  *
3020  * Be careful about the sequence of operations here.
3021  * To get its accounting right, reuse_swap_page() must be called
3022  * while the page is counted on swap but not yet in mapcount i.e.
3023  * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3024  * must be called after the swap_free(), or it will never succeed.
3025  * Because delete_from_swap_page() may be called by reuse_swap_page(),
3026  * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3027  * in page->private. In this case, a record in swap_cgroup is silently
3028  * discarded at swap_free().
3029  */
3030 
3033  pte = mk_pte(page, vma->vm_page_prot);
3034  if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3035  pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3036  flags &= ~FAULT_FLAG_WRITE;
3037  ret |= VM_FAULT_WRITE;
3038  exclusive = 1;
3039  }
3040  flush_icache_page(vma, page);
3041  set_pte_at(mm, address, page_table, pte);
3042  do_page_add_anon_rmap(page, vma, address, exclusive);
3043  /* It's better to call commit-charge after rmap is established */
3045 
3046  swap_free(entry);
3047  if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3048  try_to_free_swap(page);
3049  unlock_page(page);
3050  if (swapcache) {
3051  /*
3052  * Hold the lock to avoid the swap entry to be reused
3053  * until we take the PT lock for the pte_same() check
3054  * (to avoid false positives from pte_same). For
3055  * further safety release the lock after the swap_free
3056  * so that the swap count won't change under a
3057  * parallel locked swapcache.
3058  */
3059  unlock_page(swapcache);
3060  page_cache_release(swapcache);
3061  }
3062 
3063  if (flags & FAULT_FLAG_WRITE) {
3064  ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3065  if (ret & VM_FAULT_ERROR)
3066  ret &= VM_FAULT_ERROR;
3067  goto out;
3068  }
3069 
3070  /* No need to invalidate - it was non-present before */
3071  update_mmu_cache(vma, address, page_table);
3072 unlock:
3073  pte_unmap_unlock(page_table, ptl);
3074 out:
3075  return ret;
3076 out_nomap:
3078  pte_unmap_unlock(page_table, ptl);
3079 out_page:
3080  unlock_page(page);
3081 out_release:
3082  page_cache_release(page);
3083  if (swapcache) {
3084  unlock_page(swapcache);
3085  page_cache_release(swapcache);
3086  }
3087  return ret;
3088 }
3089 
3090 /*
3091  * This is like a special single-page "expand_{down|up}wards()",
3092  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3093  * doesn't hit another vma.
3094  */
3095 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3096 {
3097  address &= PAGE_MASK;
3098  if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3099  struct vm_area_struct *prev = vma->vm_prev;
3100 
3101  /*
3102  * Is there a mapping abutting this one below?
3103  *
3104  * That's only ok if it's the same stack mapping
3105  * that has gotten split..
3106  */
3107  if (prev && prev->vm_end == address)
3108  return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3109 
3110  expand_downwards(vma, address - PAGE_SIZE);
3111  }
3112  if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3113  struct vm_area_struct *next = vma->vm_next;
3114 
3115  /* As VM_GROWSDOWN but s/below/above/ */
3116  if (next && next->vm_start == address + PAGE_SIZE)
3117  return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3118 
3119  expand_upwards(vma, address + PAGE_SIZE);
3120  }
3121  return 0;
3122 }
3123 
3124 /*
3125  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3126  * but allow concurrent faults), and pte mapped but not yet locked.
3127  * We return with mmap_sem still held, but pte unmapped and unlocked.
3128  */
3129 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3130  unsigned long address, pte_t *page_table, pmd_t *pmd,
3131  unsigned int flags)
3132 {
3133  struct page *page;
3134  spinlock_t *ptl;
3135  pte_t entry;
3136 
3137  pte_unmap(page_table);
3138 
3139  /* Check if we need to add a guard page to the stack */
3140  if (check_stack_guard_page(vma, address) < 0)
3141  return VM_FAULT_SIGBUS;
3142 
3143  /* Use the zero-page for reads */
3144  if (!(flags & FAULT_FLAG_WRITE)) {
3145  entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3146  vma->vm_page_prot));
3147  page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3148  if (!pte_none(*page_table))
3149  goto unlock;
3150  goto setpte;
3151  }
3152 
3153  /* Allocate our own private page. */
3154  if (unlikely(anon_vma_prepare(vma)))
3155  goto oom;
3156  page = alloc_zeroed_user_highpage_movable(vma, address);
3157  if (!page)
3158  goto oom;
3159  __SetPageUptodate(page);
3160 
3161  if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3162  goto oom_free_page;
3163 
3164  entry = mk_pte(page, vma->vm_page_prot);
3165  if (vma->vm_flags & VM_WRITE)
3166  entry = pte_mkwrite(pte_mkdirty(entry));
3167 
3168  page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3169  if (!pte_none(*page_table))
3170  goto release;
3171 
3173  page_add_new_anon_rmap(page, vma, address);
3174 setpte:
3175  set_pte_at(mm, address, page_table, entry);
3176 
3177  /* No need to invalidate - it was non-present before */
3178  update_mmu_cache(vma, address, page_table);
3179 unlock:
3180  pte_unmap_unlock(page_table, ptl);
3181  return 0;
3182 release:
3184  page_cache_release(page);
3185  goto unlock;
3186 oom_free_page:
3187  page_cache_release(page);
3188 oom:
3189  return VM_FAULT_OOM;
3190 }
3191 
3192 /*
3193  * __do_fault() tries to create a new page mapping. It aggressively
3194  * tries to share with existing pages, but makes a separate copy if
3195  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3196  * the next page fault.
3197  *
3198  * As this is called only for pages that do not currently exist, we
3199  * do not need to flush old virtual caches or the TLB.
3200  *
3201  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3202  * but allow concurrent faults), and pte neither mapped nor locked.
3203  * We return with mmap_sem still held, but pte unmapped and unlocked.
3204  */
3205 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3206  unsigned long address, pmd_t *pmd,
3207  pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3208 {
3209  pte_t *page_table;
3210  spinlock_t *ptl;
3211  struct page *page;
3212  struct page *cow_page;
3213  pte_t entry;
3214  int anon = 0;
3215  struct page *dirty_page = NULL;
3216  struct vm_fault vmf;
3217  int ret;
3218  int page_mkwrite = 0;
3219 
3220  /*
3221  * If we do COW later, allocate page befor taking lock_page()
3222  * on the file cache page. This will reduce lock holding time.
3223  */
3224  if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3225 
3226  if (unlikely(anon_vma_prepare(vma)))
3227  return VM_FAULT_OOM;
3228 
3229  cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3230  if (!cow_page)
3231  return VM_FAULT_OOM;
3232 
3233  if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3234  page_cache_release(cow_page);
3235  return VM_FAULT_OOM;
3236  }
3237  } else
3238  cow_page = NULL;
3239 
3240  vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3241  vmf.pgoff = pgoff;
3242  vmf.flags = flags;
3243  vmf.page = NULL;
3244 
3245  ret = vma->vm_ops->fault(vma, &vmf);
3246  if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3247  VM_FAULT_RETRY)))
3248  goto uncharge_out;
3249 
3250  if (unlikely(PageHWPoison(vmf.page))) {
3251  if (ret & VM_FAULT_LOCKED)
3252  unlock_page(vmf.page);
3253  ret = VM_FAULT_HWPOISON;
3254  goto uncharge_out;
3255  }
3256 
3257  /*
3258  * For consistency in subsequent calls, make the faulted page always
3259  * locked.
3260  */
3261  if (unlikely(!(ret & VM_FAULT_LOCKED)))
3262  lock_page(vmf.page);
3263  else
3264  VM_BUG_ON(!PageLocked(vmf.page));
3265 
3266  /*
3267  * Should we do an early C-O-W break?
3268  */
3269  page = vmf.page;
3270  if (flags & FAULT_FLAG_WRITE) {
3271  if (!(vma->vm_flags & VM_SHARED)) {
3272  page = cow_page;
3273  anon = 1;
3274  copy_user_highpage(page, vmf.page, address, vma);
3275  __SetPageUptodate(page);
3276  } else {
3277  /*
3278  * If the page will be shareable, see if the backing
3279  * address space wants to know that the page is about
3280  * to become writable
3281  */
3282  if (vma->vm_ops->page_mkwrite) {
3283  int tmp;
3284 
3285  unlock_page(page);
3286  vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3287  tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3288  if (unlikely(tmp &
3289  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3290  ret = tmp;
3291  goto unwritable_page;
3292  }
3293  if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3294  lock_page(page);
3295  if (!page->mapping) {
3296  ret = 0; /* retry the fault */
3297  unlock_page(page);
3298  goto unwritable_page;
3299  }
3300  } else
3301  VM_BUG_ON(!PageLocked(page));
3302  page_mkwrite = 1;
3303  }
3304  }
3305 
3306  }
3307 
3308  page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3309 
3310  /*
3311  * This silly early PAGE_DIRTY setting removes a race
3312  * due to the bad i386 page protection. But it's valid
3313  * for other architectures too.
3314  *
3315  * Note that if FAULT_FLAG_WRITE is set, we either now have
3316  * an exclusive copy of the page, or this is a shared mapping,
3317  * so we can make it writable and dirty to avoid having to
3318  * handle that later.
3319  */
3320  /* Only go through if we didn't race with anybody else... */
3321  if (likely(pte_same(*page_table, orig_pte))) {
3322  flush_icache_page(vma, page);
3323  entry = mk_pte(page, vma->vm_page_prot);
3324  if (flags & FAULT_FLAG_WRITE)
3325  entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3326  if (anon) {
3328  page_add_new_anon_rmap(page, vma, address);
3329  } else {
3331  page_add_file_rmap(page);
3332  if (flags & FAULT_FLAG_WRITE) {
3333  dirty_page = page;
3334  get_page(dirty_page);
3335  }
3336  }
3337  set_pte_at(mm, address, page_table, entry);
3338 
3339  /* no need to invalidate: a not-present page won't be cached */
3340  update_mmu_cache(vma, address, page_table);
3341  } else {
3342  if (cow_page)
3343  mem_cgroup_uncharge_page(cow_page);
3344  if (anon)
3345  page_cache_release(page);
3346  else
3347  anon = 1; /* no anon but release faulted_page */
3348  }
3349 
3350  pte_unmap_unlock(page_table, ptl);
3351 
3352  if (dirty_page) {
3353  struct address_space *mapping = page->mapping;
3354  int dirtied = 0;
3355 
3356  if (set_page_dirty(dirty_page))
3357  dirtied = 1;
3358  unlock_page(dirty_page);
3359  put_page(dirty_page);
3360  if ((dirtied || page_mkwrite) && mapping) {
3361  /*
3362  * Some device drivers do not set page.mapping but still
3363  * dirty their pages
3364  */
3365  balance_dirty_pages_ratelimited(mapping);
3366  }
3367 
3368  /* file_update_time outside page_lock */
3369  if (vma->vm_file && !page_mkwrite)
3370  file_update_time(vma->vm_file);
3371  } else {
3372  unlock_page(vmf.page);
3373  if (anon)
3374  page_cache_release(vmf.page);
3375  }
3376 
3377  return ret;
3378 
3379 unwritable_page:
3380  page_cache_release(page);
3381  return ret;
3382 uncharge_out:
3383  /* fs's fault handler get error */
3384  if (cow_page) {
3385  mem_cgroup_uncharge_page(cow_page);
3386  page_cache_release(cow_page);
3387  }
3388  return ret;
3389 }
3390 
3391 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3392  unsigned long address, pte_t *page_table, pmd_t *pmd,
3393  unsigned int flags, pte_t orig_pte)
3394 {
3395  pgoff_t pgoff = (((address & PAGE_MASK)
3396  - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3397 
3398  pte_unmap(page_table);
3399  return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3400 }
3401 
3402 /*
3403  * Fault of a previously existing named mapping. Repopulate the pte
3404  * from the encoded file_pte if possible. This enables swappable
3405  * nonlinear vmas.
3406  *
3407  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3408  * but allow concurrent faults), and pte mapped but not yet locked.
3409  * We return with mmap_sem still held, but pte unmapped and unlocked.
3410  */
3411 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3412  unsigned long address, pte_t *page_table, pmd_t *pmd,
3413  unsigned int flags, pte_t orig_pte)
3414 {
3415  pgoff_t pgoff;
3416 
3417  flags |= FAULT_FLAG_NONLINEAR;
3418 
3419  if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3420  return 0;
3421 
3422  if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3423  /*
3424  * Page table corrupted: show pte and kill process.
3425  */
3426  print_bad_pte(vma, address, orig_pte, NULL);
3427  return VM_FAULT_SIGBUS;
3428  }
3429 
3430  pgoff = pte_to_pgoff(orig_pte);
3431  return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3432 }
3433 
3434 /*
3435  * These routines also need to handle stuff like marking pages dirty
3436  * and/or accessed for architectures that don't do it in hardware (most
3437  * RISC architectures). The early dirtying is also good on the i386.
3438  *
3439  * There is also a hook called "update_mmu_cache()" that architectures
3440  * with external mmu caches can use to update those (ie the Sparc or
3441  * PowerPC hashed page tables that act as extended TLBs).
3442  *
3443  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3444  * but allow concurrent faults), and pte mapped but not yet locked.
3445  * We return with mmap_sem still held, but pte unmapped and unlocked.
3446  */
3448  struct vm_area_struct *vma, unsigned long address,
3449  pte_t *pte, pmd_t *pmd, unsigned int flags)
3450 {
3451  pte_t entry;
3452  spinlock_t *ptl;
3453 
3454  entry = *pte;
3455  if (!pte_present(entry)) {
3456  if (pte_none(entry)) {
3457  if (vma->vm_ops) {
3458  if (likely(vma->vm_ops->fault))
3459  return do_linear_fault(mm, vma, address,
3460  pte, pmd, flags, entry);
3461  }
3462  return do_anonymous_page(mm, vma, address,
3463  pte, pmd, flags);
3464  }
3465  if (pte_file(entry))
3466  return do_nonlinear_fault(mm, vma, address,
3467  pte, pmd, flags, entry);
3468  return do_swap_page(mm, vma, address,
3469  pte, pmd, flags, entry);
3470  }
3471 
3472  ptl = pte_lockptr(mm, pmd);
3473  spin_lock(ptl);
3474  if (unlikely(!pte_same(*pte, entry)))
3475  goto unlock;
3476  if (flags & FAULT_FLAG_WRITE) {
3477  if (!pte_write(entry))
3478  return do_wp_page(mm, vma, address,
3479  pte, pmd, ptl, entry);
3480  entry = pte_mkdirty(entry);
3481  }
3482  entry = pte_mkyoung(entry);
3483  if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3484  update_mmu_cache(vma, address, pte);
3485  } else {
3486  /*
3487  * This is needed only for protection faults but the arch code
3488  * is not yet telling us if this is a protection fault or not.
3489  * This still avoids useless tlb flushes for .text page faults
3490  * with threads.
3491  */
3492  if (flags & FAULT_FLAG_WRITE)
3493  flush_tlb_fix_spurious_fault(vma, address);
3494  }
3495 unlock:
3496  pte_unmap_unlock(pte, ptl);
3497  return 0;
3498 }
3499 
3500 /*
3501  * By the time we get here, we already hold the mm semaphore
3502  */
3503 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3504  unsigned long address, unsigned int flags)
3505 {
3506  pgd_t *pgd;
3507  pud_t *pud;
3508  pmd_t *pmd;
3509  pte_t *pte;
3510 
3512 
3513  count_vm_event(PGFAULT);
3515 
3516  /* do counter updates before entering really critical section. */
3517  check_sync_rss_stat(current);
3518 
3519  if (unlikely(is_vm_hugetlb_page(vma)))
3520  return hugetlb_fault(mm, vma, address, flags);
3521 
3522 retry:
3523  pgd = pgd_offset(mm, address);
3524  pud = pud_alloc(mm, pgd, address);
3525  if (!pud)
3526  return VM_FAULT_OOM;
3527  pmd = pmd_alloc(mm, pud, address);
3528  if (!pmd)
3529  return VM_FAULT_OOM;
3530  if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3531  if (!vma->vm_ops)
3532  return do_huge_pmd_anonymous_page(mm, vma, address,
3533  pmd, flags);
3534  } else {
3535  pmd_t orig_pmd = *pmd;
3536  int ret;
3537 
3538  barrier();
3539  if (pmd_trans_huge(orig_pmd)) {
3540  if (flags & FAULT_FLAG_WRITE &&
3541  !pmd_write(orig_pmd) &&
3542  !pmd_trans_splitting(orig_pmd)) {
3543  ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3544  orig_pmd);
3545  /*
3546  * If COW results in an oom, the huge pmd will
3547  * have been split, so retry the fault on the
3548  * pte for a smaller charge.
3549  */
3550  if (unlikely(ret & VM_FAULT_OOM))
3551  goto retry;
3552  return ret;
3553  }
3554  return 0;
3555  }
3556  }
3557 
3558  /*
3559  * Use __pte_alloc instead of pte_alloc_map, because we can't
3560  * run pte_offset_map on the pmd, if an huge pmd could
3561  * materialize from under us from a different thread.
3562  */
3563  if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3564  return VM_FAULT_OOM;
3565  /* if an huge pmd materialized from under us just retry later */
3566  if (unlikely(pmd_trans_huge(*pmd)))
3567  return 0;
3568  /*
3569  * A regular pmd is established and it can't morph into a huge pmd
3570  * from under us anymore at this point because we hold the mmap_sem
3571  * read mode and khugepaged takes it in write mode. So now it's
3572  * safe to run pte_offset_map().
3573  */
3574  pte = pte_offset_map(pmd, address);
3575 
3576  return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3577 }
3578 
3579 #ifndef __PAGETABLE_PUD_FOLDED
3580 /*
3581  * Allocate page upper directory.
3582  * We've already handled the fast-path in-line.
3583  */
3584 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3585 {
3586  pud_t *new = pud_alloc_one(mm, address);
3587  if (!new)
3588  return -ENOMEM;
3589 
3590  smp_wmb(); /* See comment in __pte_alloc */
3591 
3592  spin_lock(&mm->page_table_lock);
3593  if (pgd_present(*pgd)) /* Another has populated it */
3594  pud_free(mm, new);
3595  else
3596  pgd_populate(mm, pgd, new);
3597  spin_unlock(&mm->page_table_lock);
3598  return 0;
3599 }
3600 #endif /* __PAGETABLE_PUD_FOLDED */
3601 
3602 #ifndef __PAGETABLE_PMD_FOLDED
3603 /*
3604  * Allocate page middle directory.
3605  * We've already handled the fast-path in-line.
3606  */
3607 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3608 {
3609  pmd_t *new = pmd_alloc_one(mm, address);
3610  if (!new)
3611  return -ENOMEM;
3612 
3613  smp_wmb(); /* See comment in __pte_alloc */
3614 
3615  spin_lock(&mm->page_table_lock);
3616 #ifndef __ARCH_HAS_4LEVEL_HACK
3617  if (pud_present(*pud)) /* Another has populated it */
3618  pmd_free(mm, new);
3619  else
3620  pud_populate(mm, pud, new);
3621 #else
3622  if (pgd_present(*pud)) /* Another has populated it */
3623  pmd_free(mm, new);
3624  else
3625  pgd_populate(mm, pud, new);
3626 #endif /* __ARCH_HAS_4LEVEL_HACK */
3627  spin_unlock(&mm->page_table_lock);
3628  return 0;
3629 }
3630 #endif /* __PAGETABLE_PMD_FOLDED */
3631 
3632 int make_pages_present(unsigned long addr, unsigned long end)
3633 {
3634  int ret, len, write;
3635  struct vm_area_struct * vma;
3636 
3637  vma = find_vma(current->mm, addr);
3638  if (!vma)
3639  return -ENOMEM;
3640  /*
3641  * We want to touch writable mappings with a write fault in order
3642  * to break COW, except for shared mappings because these don't COW
3643  * and we would not want to dirty them for nothing.
3644  */
3645  write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3646  BUG_ON(addr >= end);
3647  BUG_ON(end > vma->vm_end);
3648  len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3649  ret = get_user_pages(current, current->mm, addr,
3650  len, write, 0, NULL, NULL);
3651  if (ret < 0)
3652  return ret;
3653  return ret == len ? 0 : -EFAULT;
3654 }
3655 
3656 #if !defined(__HAVE_ARCH_GATE_AREA)
3657 
3658 #if defined(AT_SYSINFO_EHDR)
3659 static struct vm_area_struct gate_vma;
3660 
3661 static int __init gate_vma_init(void)
3662 {
3663  gate_vma.vm_mm = NULL;
3664  gate_vma.vm_start = FIXADDR_USER_START;
3665  gate_vma.vm_end = FIXADDR_USER_END;
3666  gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3667  gate_vma.vm_page_prot = __P101;
3668 
3669  return 0;
3670 }
3671 __initcall(gate_vma_init);
3672 #endif
3673 
3675 {
3676 #ifdef AT_SYSINFO_EHDR
3677  return &gate_vma;
3678 #else
3679  return NULL;
3680 #endif
3681 }
3682 
3683 int in_gate_area_no_mm(unsigned long addr)
3684 {
3685 #ifdef AT_SYSINFO_EHDR
3686  if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3687  return 1;
3688 #endif
3689  return 0;
3690 }
3691 
3692 #endif /* __HAVE_ARCH_GATE_AREA */
3693 
3694 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3695  pte_t **ptepp, spinlock_t **ptlp)
3696 {
3697  pgd_t *pgd;
3698  pud_t *pud;
3699  pmd_t *pmd;
3700  pte_t *ptep;
3701 
3702  pgd = pgd_offset(mm, address);
3703  if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3704  goto out;
3705 
3706  pud = pud_offset(pgd, address);
3707  if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3708  goto out;
3709 
3710  pmd = pmd_offset(pud, address);
3711  VM_BUG_ON(pmd_trans_huge(*pmd));
3712  if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3713  goto out;
3714 
3715  /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3716  if (pmd_huge(*pmd))
3717  goto out;
3718 
3719  ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3720  if (!ptep)
3721  goto out;
3722  if (!pte_present(*ptep))
3723  goto unlock;
3724  *ptepp = ptep;
3725  return 0;
3726 unlock:
3727  pte_unmap_unlock(ptep, *ptlp);
3728 out:
3729  return -EINVAL;
3730 }
3731 
3732 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3733  pte_t **ptepp, spinlock_t **ptlp)
3734 {
3735  int res;
3736 
3737  /* (void) is needed to make gcc happy */
3738  (void) __cond_lock(*ptlp,
3739  !(res = __follow_pte(mm, address, ptepp, ptlp)));
3740  return res;
3741 }
3742 
3753 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3754  unsigned long *pfn)
3755 {
3756  int ret = -EINVAL;
3757  spinlock_t *ptl;
3758  pte_t *ptep;
3759 
3760  if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3761  return ret;
3762 
3763  ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3764  if (ret)
3765  return ret;
3766  *pfn = pte_pfn(*ptep);
3767  pte_unmap_unlock(ptep, ptl);
3768  return 0;
3769 }
3771 
3772 #ifdef CONFIG_HAVE_IOREMAP_PROT
3773 int follow_phys(struct vm_area_struct *vma,
3774  unsigned long address, unsigned int flags,
3775  unsigned long *prot, resource_size_t *phys)
3776 {
3777  int ret = -EINVAL;
3778  pte_t *ptep, pte;
3779  spinlock_t *ptl;
3780 
3781  if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3782  goto out;
3783 
3784  if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3785  goto out;
3786  pte = *ptep;
3787 
3788  if ((flags & FOLL_WRITE) && !pte_write(pte))
3789  goto unlock;
3790 
3791  *prot = pgprot_val(pte_pgprot(pte));
3792  *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3793 
3794  ret = 0;
3795 unlock:
3796  pte_unmap_unlock(ptep, ptl);
3797 out:
3798  return ret;
3799 }
3800 
3801 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3802  void *buf, int len, int write)
3803 {
3805  unsigned long prot = 0;
3806  void __iomem *maddr;
3807  int offset = addr & (PAGE_SIZE-1);
3808 
3809  if (follow_phys(vma, addr, write, &prot, &phys_addr))
3810  return -EINVAL;
3811 
3812  maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3813  if (write)
3814  memcpy_toio(maddr + offset, buf, len);
3815  else
3816  memcpy_fromio(buf, maddr + offset, len);
3817  iounmap(maddr);
3818 
3819  return len;
3820 }
3821 #endif
3822 
3823 /*
3824  * Access another process' address space as given in mm. If non-NULL, use the
3825  * given task for page fault accounting.
3826  */
3827 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3828  unsigned long addr, void *buf, int len, int write)
3829 {
3830  struct vm_area_struct *vma;
3831  void *old_buf = buf;
3832 
3833  down_read(&mm->mmap_sem);
3834  /* ignore errors, just check how much was successfully transferred */
3835  while (len) {
3836  int bytes, ret, offset;
3837  void *maddr;
3838  struct page *page = NULL;
3839 
3840  ret = get_user_pages(tsk, mm, addr, 1,
3841  write, 1, &page, &vma);
3842  if (ret <= 0) {
3843  /*
3844  * Check if this is a VM_IO | VM_PFNMAP VMA, which
3845  * we can access using slightly different code.
3846  */
3847 #ifdef CONFIG_HAVE_IOREMAP_PROT
3848  vma = find_vma(mm, addr);
3849  if (!vma || vma->vm_start > addr)
3850  break;
3851  if (vma->vm_ops && vma->vm_ops->access)
3852  ret = vma->vm_ops->access(vma, addr, buf,
3853  len, write);
3854  if (ret <= 0)
3855 #endif
3856  break;
3857  bytes = ret;
3858  } else {
3859  bytes = len;
3860  offset = addr & (PAGE_SIZE-1);
3861  if (bytes > PAGE_SIZE-offset)
3862  bytes = PAGE_SIZE-offset;
3863 
3864  maddr = kmap(page);
3865  if (write) {
3866  copy_to_user_page(vma, page, addr,
3867  maddr + offset, buf, bytes);
3868  set_page_dirty_lock(page);
3869  } else {
3870  copy_from_user_page(vma, page, addr,
3871  buf, maddr + offset, bytes);
3872  }
3873  kunmap(page);
3874  page_cache_release(page);
3875  }
3876  len -= bytes;
3877  buf += bytes;
3878  addr += bytes;
3879  }
3880  up_read(&mm->mmap_sem);
3881 
3882  return buf - old_buf;
3883 }
3884 
3895 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3896  void *buf, int len, int write)
3897 {
3898  return __access_remote_vm(NULL, mm, addr, buf, len, write);
3899 }
3900 
3901 /*
3902  * Access another process' address space.
3903  * Source/target buffer must be kernel space,
3904  * Do not walk the page table directly, use get_user_pages
3905  */
3906 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3907  void *buf, int len, int write)
3908 {
3909  struct mm_struct *mm;
3910  int ret;
3911 
3912  mm = get_task_mm(tsk);
3913  if (!mm)
3914  return 0;
3915 
3916  ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3917  mmput(mm);
3918 
3919  return ret;
3920 }
3921 
3922 /*
3923  * Print the name of a VMA.
3924  */
3925 void print_vma_addr(char *prefix, unsigned long ip)
3926 {
3927  struct mm_struct *mm = current->mm;
3928  struct vm_area_struct *vma;
3929 
3930  /*
3931  * Do not print if we are in atomic
3932  * contexts (in exception stacks, etc.):
3933  */
3934  if (preempt_count())
3935  return;
3936 
3937  down_read(&mm->mmap_sem);
3938  vma = find_vma(mm, ip);
3939  if (vma && vma->vm_file) {
3940  struct file *f = vma->vm_file;
3941  char *buf = (char *)__get_free_page(GFP_KERNEL);
3942  if (buf) {
3943  char *p, *s;
3944 
3945  p = d_path(&f->f_path, buf, PAGE_SIZE);
3946  if (IS_ERR(p))
3947  p = "?";
3948  s = strrchr(p, '/');
3949  if (s)
3950  p = s+1;
3951  printk("%s%s[%lx+%lx]", prefix, p,
3952  vma->vm_start,
3953  vma->vm_end - vma->vm_start);
3954  free_page((unsigned long)buf);
3955  }
3956  }
3957  up_read(&mm->mmap_sem);
3958 }
3959 
3960 #ifdef CONFIG_PROVE_LOCKING
3961 void might_fault(void)
3962 {
3963  /*
3964  * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3965  * holding the mmap_sem, this is safe because kernel memory doesn't
3966  * get paged out, therefore we'll never actually fault, and the
3967  * below annotations will generate false positives.
3968  */
3969  if (segment_eq(get_fs(), KERNEL_DS))
3970  return;
3971 
3972  might_sleep();
3973  /*
3974  * it would be nicer only to annotate paths which are not under
3975  * pagefault_disable, however that requires a larger audit and
3976  * providing helpers like get_user_atomic.
3977  */
3978  if (!in_atomic() && current->mm)
3979  might_lock_read(&current->mm->mmap_sem);
3980 }
3981 EXPORT_SYMBOL(might_fault);
3982 #endif
3983 
3984 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3985 static void clear_gigantic_page(struct page *page,
3986  unsigned long addr,
3987  unsigned int pages_per_huge_page)
3988 {
3989  int i;
3990  struct page *p = page;
3991 
3992  might_sleep();
3993  for (i = 0; i < pages_per_huge_page;
3994  i++, p = mem_map_next(p, page, i)) {
3995  cond_resched();
3996  clear_user_highpage(p, addr + i * PAGE_SIZE);
3997  }
3998 }
3999 void clear_huge_page(struct page *page,
4000  unsigned long addr, unsigned int pages_per_huge_page)
4001 {
4002  int i;
4003 
4004  if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4005  clear_gigantic_page(page, addr, pages_per_huge_page);
4006  return;
4007  }
4008 
4009  might_sleep();
4010  for (i = 0; i < pages_per_huge_page; i++) {
4011  cond_resched();
4012  clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4013  }
4014 }
4015 
4016 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4017  unsigned long addr,
4018  struct vm_area_struct *vma,
4019  unsigned int pages_per_huge_page)
4020 {
4021  int i;
4022  struct page *dst_base = dst;
4023  struct page *src_base = src;
4024 
4025  for (i = 0; i < pages_per_huge_page; ) {
4026  cond_resched();
4027  copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4028 
4029  i++;
4030  dst = mem_map_next(dst, dst_base, i);
4031  src = mem_map_next(src, src_base, i);
4032  }
4033 }
4034 
4035 void copy_user_huge_page(struct page *dst, struct page *src,
4036  unsigned long addr, struct vm_area_struct *vma,
4037  unsigned int pages_per_huge_page)
4038 {
4039  int i;
4040 
4041  if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4042  copy_user_gigantic_page(dst, src, addr, vma,
4043  pages_per_huge_page);
4044  return;
4045  }
4046 
4047  might_sleep();
4048  for (i = 0; i < pages_per_huge_page; i++) {
4049  cond_resched();
4050  copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4051  }
4052 }
4053 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */