Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mv_cesa.c
Go to the documentation of this file.
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/clk.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/of_irq.h>
25 
26 #include "mv_cesa.h"
27 
28 #define MV_CESA "MV-CESA:"
29 #define MAX_HW_HASH_SIZE 0xFFFF
30 #define MV_CESA_EXPIRE 500 /* msec */
31 
32 /*
33  * STM:
34  * /---------------------------------------\
35  * | | request complete
36  * \./ |
37  * IDLE -> new request -> BUSY -> done -> DEQUEUE
38  * /°\ |
39  * | | more scatter entries
40  * \________________/
41  */
46 };
47 
65 struct req_progress {
69  void (*process) (int is_first);
70 
71  /* src mostly */
73  int src_start;
74  int crypt_len;
75  int hw_nbytes;
76  /* dst mostly */
77  int copy_back;
79  int dst_start;
81 };
82 
83 struct crypto_priv {
84  void __iomem *reg;
85  void __iomem *sram;
86  int irq;
87  struct clk *clk;
89 
90  /* the lock protects queue and eng_st */
96  struct req_progress p;
98  int sram_size;
99  int has_sha1;
101 };
102 
103 static struct crypto_priv *cpg;
104 
105 struct mv_ctx {
108  int key_len;
110 };
111 
112 enum crypto_op {
115 };
116 
117 struct mv_req_ctx {
118  enum crypto_op op;
119  int decrypt;
120 };
121 
122 enum hash_op {
125 };
126 
132  enum hash_op op;
133 };
134 
139  int first_hash; /* marks that we don't have previous state */
140  int last_chunk; /* marks that this is the 'final' request */
141  int extra_bytes; /* unprocessed bytes in buffer */
142  enum hash_op op;
144 };
145 
146 static void mv_completion_timer_callback(unsigned long unused)
147 {
149 
151  "completion timer expired (CESA %sactive), cleaning up.\n",
152  active ? "" : "in");
153 
156  while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
157  printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
158  cpg->eng_st = ENGINE_W_DEQUEUE;
160 }
161 
162 static void mv_setup_timer(void)
163 {
164  setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
166  jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
167 }
168 
169 static void compute_aes_dec_key(struct mv_ctx *ctx)
170 {
171  struct crypto_aes_ctx gen_aes_key;
172  int key_pos;
173 
174  if (!ctx->need_calc_aes_dkey)
175  return;
176 
177  crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
178 
179  key_pos = ctx->key_len + 24;
180  memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
181  switch (ctx->key_len) {
182  case AES_KEYSIZE_256:
183  key_pos -= 2;
184  /* fall */
185  case AES_KEYSIZE_192:
186  key_pos -= 2;
187  memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
188  4 * 4);
189  break;
190  }
191  ctx->need_calc_aes_dkey = 0;
192 }
193 
194 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
195  unsigned int len)
196 {
197  struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
198  struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
199 
200  switch (len) {
201  case AES_KEYSIZE_128:
202  case AES_KEYSIZE_192:
203  case AES_KEYSIZE_256:
204  break;
205  default:
206  crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
207  return -EINVAL;
208  }
209  ctx->key_len = len;
210  ctx->need_calc_aes_dkey = 1;
211 
212  memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
213  return 0;
214 }
215 
216 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
217 {
218  int ret;
219  void *sbuf;
220  int copy_len;
221 
222  while (len) {
223  if (!p->sg_src_left) {
224  ret = sg_miter_next(&p->src_sg_it);
225  BUG_ON(!ret);
226  p->sg_src_left = p->src_sg_it.length;
227  p->src_start = 0;
228  }
229 
230  sbuf = p->src_sg_it.addr + p->src_start;
231 
232  copy_len = min(p->sg_src_left, len);
233  memcpy(dbuf, sbuf, copy_len);
234 
235  p->src_start += copy_len;
236  p->sg_src_left -= copy_len;
237 
238  len -= copy_len;
239  dbuf += copy_len;
240  }
241 }
242 
243 static void setup_data_in(void)
244 {
245  struct req_progress *p = &cpg->p;
246  int data_in_sram =
248  copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
249  data_in_sram - p->crypt_len);
250  p->crypt_len = data_in_sram;
251 }
252 
253 static void mv_process_current_q(int first_block)
254 {
255  struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
256  struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
257  struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
258  struct sec_accel_config op;
259 
260  switch (req_ctx->op) {
261  case COP_AES_ECB:
263  break;
264  case COP_AES_CBC:
265  default:
267  op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
269  if (first_block)
270  memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
271  break;
272  }
273  if (req_ctx->decrypt) {
274  op.config |= CFG_DIR_DEC;
275  memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
276  AES_KEY_LEN);
277  } else {
278  op.config |= CFG_DIR_ENC;
279  memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
280  AES_KEY_LEN);
281  }
282 
283  switch (ctx->key_len) {
284  case AES_KEYSIZE_128:
285  op.config |= CFG_AES_LEN_128;
286  break;
287  case AES_KEYSIZE_192:
288  op.config |= CFG_AES_LEN_192;
289  break;
290  case AES_KEYSIZE_256:
291  op.config |= CFG_AES_LEN_256;
292  break;
293  }
294  op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
296  op.enc_key_p = SRAM_DATA_KEY_P;
297 
298  setup_data_in();
299  op.enc_len = cpg->p.crypt_len;
300  memcpy(cpg->sram + SRAM_CONFIG, &op,
301  sizeof(struct sec_accel_config));
302 
303  /* GO */
304  mv_setup_timer();
306 }
307 
308 static void mv_crypto_algo_completion(void)
309 {
310  struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
311  struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
312 
313  sg_miter_stop(&cpg->p.src_sg_it);
314  sg_miter_stop(&cpg->p.dst_sg_it);
315 
316  if (req_ctx->op != COP_AES_CBC)
317  return ;
318 
319  memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
320 }
321 
322 static void mv_process_hash_current(int first_block)
323 {
324  struct ahash_request *req = ahash_request_cast(cpg->cur_req);
325  const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
326  struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
327  struct req_progress *p = &cpg->p;
328  struct sec_accel_config op = { 0 };
329  int is_last;
330 
331  switch (req_ctx->op) {
332  case COP_SHA1:
333  default:
335  break;
336  case COP_HMAC_SHA1:
338  memcpy(cpg->sram + SRAM_HMAC_IV_IN,
339  tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
340  break;
341  }
342 
343  op.mac_src_p =
345  req_ctx->
346  count);
347 
348  setup_data_in();
349 
350  op.mac_digest =
352  op.mac_iv =
355 
356  is_last = req_ctx->last_chunk
357  && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
358  && (req_ctx->count <= MAX_HW_HASH_SIZE);
359  if (req_ctx->first_hash) {
360  if (is_last)
361  op.config |= CFG_NOT_FRAG;
362  else
363  op.config |= CFG_FIRST_FRAG;
364 
365  req_ctx->first_hash = 0;
366  } else {
367  if (is_last)
368  op.config |= CFG_LAST_FRAG;
369  else
370  op.config |= CFG_MID_FRAG;
371 
372  if (first_block) {
373  writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
374  writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
375  writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
376  writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
377  writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
378  }
379  }
380 
381  memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
382 
383  /* GO */
384  mv_setup_timer();
386 }
387 
388 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
389  struct shash_desc *desc)
390 {
391  int i;
392  struct sha1_state shash_state;
393 
394  shash_state.count = ctx->count + ctx->count_add;
395  for (i = 0; i < 5; i++)
396  shash_state.state[i] = ctx->state[i];
397  memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
398  return crypto_shash_import(desc, &shash_state);
399 }
400 
401 static int mv_hash_final_fallback(struct ahash_request *req)
402 {
403  const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
404  struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
405  struct {
406  struct shash_desc shash;
407  char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
408  } desc;
409  int rc;
410 
411  desc.shash.tfm = tfm_ctx->fallback;
412  desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
413  if (unlikely(req_ctx->first_hash)) {
414  crypto_shash_init(&desc.shash);
415  crypto_shash_update(&desc.shash, req_ctx->buffer,
416  req_ctx->extra_bytes);
417  } else {
418  /* only SHA1 for now....
419  */
420  rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
421  if (rc)
422  goto out;
423  }
424  rc = crypto_shash_final(&desc.shash, req->result);
425 out:
426  return rc;
427 }
428 
429 static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
430 {
431  ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
432  ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
433  ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
434  ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
435  ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
436 }
437 
438 static void mv_hash_algo_completion(void)
439 {
440  struct ahash_request *req = ahash_request_cast(cpg->cur_req);
441  struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
442 
443  if (ctx->extra_bytes)
444  copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
445  sg_miter_stop(&cpg->p.src_sg_it);
446 
447  if (likely(ctx->last_chunk)) {
448  if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
449  memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
450  crypto_ahash_digestsize(crypto_ahash_reqtfm
451  (req)));
452  } else {
453  mv_save_digest_state(ctx);
454  mv_hash_final_fallback(req);
455  }
456  } else {
457  mv_save_digest_state(ctx);
458  }
459 }
460 
461 static void dequeue_complete_req(void)
462 {
463  struct crypto_async_request *req = cpg->cur_req;
464  void *buf;
465  int ret;
466  cpg->p.hw_processed_bytes += cpg->p.crypt_len;
467  if (cpg->p.copy_back) {
468  int need_copy_len = cpg->p.crypt_len;
469  int sram_offset = 0;
470  do {
471  int dst_copy;
472 
473  if (!cpg->p.sg_dst_left) {
474  ret = sg_miter_next(&cpg->p.dst_sg_it);
475  BUG_ON(!ret);
476  cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
477  cpg->p.dst_start = 0;
478  }
479 
480  buf = cpg->p.dst_sg_it.addr;
481  buf += cpg->p.dst_start;
482 
483  dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
484 
485  memcpy(buf,
486  cpg->sram + SRAM_DATA_OUT_START + sram_offset,
487  dst_copy);
488  sram_offset += dst_copy;
489  cpg->p.sg_dst_left -= dst_copy;
490  need_copy_len -= dst_copy;
491  cpg->p.dst_start += dst_copy;
492  } while (need_copy_len > 0);
493  }
494 
495  cpg->p.crypt_len = 0;
496 
497  BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
498  if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
499  /* process next scatter list entry */
500  cpg->eng_st = ENGINE_BUSY;
501  cpg->p.process(0);
502  } else {
503  cpg->p.complete();
504  cpg->eng_st = ENGINE_IDLE;
506  req->complete(req, 0);
507  local_bh_enable();
508  }
509 }
510 
511 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
512 {
513  int i = 0;
514  size_t cur_len;
515 
516  while (sl) {
517  cur_len = sl[i].length;
518  ++i;
519  if (total_bytes > cur_len)
520  total_bytes -= cur_len;
521  else
522  break;
523  }
524 
525  return i;
526 }
527 
528 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
529 {
530  struct req_progress *p = &cpg->p;
531  int num_sgs;
532 
533  cpg->cur_req = &req->base;
534  memset(p, 0, sizeof(struct req_progress));
535  p->hw_nbytes = req->nbytes;
536  p->complete = mv_crypto_algo_completion;
537  p->process = mv_process_current_q;
538  p->copy_back = 1;
539 
540  num_sgs = count_sgs(req->src, req->nbytes);
541  sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
542 
543  num_sgs = count_sgs(req->dst, req->nbytes);
544  sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
545 
546  mv_process_current_q(1);
547 }
548 
549 static void mv_start_new_hash_req(struct ahash_request *req)
550 {
551  struct req_progress *p = &cpg->p;
552  struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
553  int num_sgs, hw_bytes, old_extra_bytes, rc;
554  cpg->cur_req = &req->base;
555  memset(p, 0, sizeof(struct req_progress));
556  hw_bytes = req->nbytes + ctx->extra_bytes;
557  old_extra_bytes = ctx->extra_bytes;
558 
559  ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
560  if (ctx->extra_bytes != 0
561  && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
562  hw_bytes -= ctx->extra_bytes;
563  else
564  ctx->extra_bytes = 0;
565 
566  num_sgs = count_sgs(req->src, req->nbytes);
567  sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
568 
569  if (hw_bytes) {
570  p->hw_nbytes = hw_bytes;
571  p->complete = mv_hash_algo_completion;
572  p->process = mv_process_hash_current;
573 
574  if (unlikely(old_extra_bytes)) {
575  memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
576  old_extra_bytes);
577  p->crypt_len = old_extra_bytes;
578  }
579 
580  mv_process_hash_current(1);
581  } else {
582  copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
583  ctx->extra_bytes - old_extra_bytes);
585  if (ctx->last_chunk)
586  rc = mv_hash_final_fallback(req);
587  else
588  rc = 0;
589  cpg->eng_st = ENGINE_IDLE;
591  req->base.complete(&req->base, rc);
592  local_bh_enable();
593  }
594 }
595 
596 static int queue_manag(void *data)
597 {
598  cpg->eng_st = ENGINE_IDLE;
599  do {
600  struct crypto_async_request *async_req = NULL;
602 
604 
605  if (cpg->eng_st == ENGINE_W_DEQUEUE)
606  dequeue_complete_req();
607 
608  spin_lock_irq(&cpg->lock);
609  if (cpg->eng_st == ENGINE_IDLE) {
610  backlog = crypto_get_backlog(&cpg->queue);
611  async_req = crypto_dequeue_request(&cpg->queue);
612  if (async_req) {
613  BUG_ON(cpg->eng_st != ENGINE_IDLE);
614  cpg->eng_st = ENGINE_BUSY;
615  }
616  }
617  spin_unlock_irq(&cpg->lock);
618 
619  if (backlog) {
620  backlog->complete(backlog, -EINPROGRESS);
621  backlog = NULL;
622  }
623 
624  if (async_req) {
625  if (async_req->tfm->__crt_alg->cra_type !=
627  struct ablkcipher_request *req =
628  ablkcipher_request_cast(async_req);
629  mv_start_new_crypt_req(req);
630  } else {
631  struct ahash_request *req =
632  ahash_request_cast(async_req);
633  mv_start_new_hash_req(req);
634  }
635  async_req = NULL;
636  }
637 
638  schedule();
639 
640  } while (!kthread_should_stop());
641  return 0;
642 }
643 
644 static int mv_handle_req(struct crypto_async_request *req)
645 {
646  unsigned long flags;
647  int ret;
648 
649  spin_lock_irqsave(&cpg->lock, flags);
650  ret = crypto_enqueue_request(&cpg->queue, req);
651  spin_unlock_irqrestore(&cpg->lock, flags);
653  return ret;
654 }
655 
656 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
657 {
658  struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
659 
660  req_ctx->op = COP_AES_ECB;
661  req_ctx->decrypt = 0;
662 
663  return mv_handle_req(&req->base);
664 }
665 
666 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
667 {
668  struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
669  struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
670 
671  req_ctx->op = COP_AES_ECB;
672  req_ctx->decrypt = 1;
673 
674  compute_aes_dec_key(ctx);
675  return mv_handle_req(&req->base);
676 }
677 
678 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
679 {
680  struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
681 
682  req_ctx->op = COP_AES_CBC;
683  req_ctx->decrypt = 0;
684 
685  return mv_handle_req(&req->base);
686 }
687 
688 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
689 {
690  struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
691  struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
692 
693  req_ctx->op = COP_AES_CBC;
694  req_ctx->decrypt = 1;
695 
696  compute_aes_dec_key(ctx);
697  return mv_handle_req(&req->base);
698 }
699 
700 static int mv_cra_init(struct crypto_tfm *tfm)
701 {
702  tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
703  return 0;
704 }
705 
706 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
707  int is_last, unsigned int req_len,
708  int count_add)
709 {
710  memset(ctx, 0, sizeof(*ctx));
711  ctx->op = op;
712  ctx->count = req_len;
713  ctx->first_hash = 1;
714  ctx->last_chunk = is_last;
715  ctx->count_add = count_add;
716 }
717 
718 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
719  unsigned req_len)
720 {
721  ctx->last_chunk = is_last;
722  ctx->count += req_len;
723 }
724 
725 static int mv_hash_init(struct ahash_request *req)
726 {
727  const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
728  mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
729  tfm_ctx->count_add);
730  return 0;
731 }
732 
733 static int mv_hash_update(struct ahash_request *req)
734 {
735  if (!req->nbytes)
736  return 0;
737 
738  mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
739  return mv_handle_req(&req->base);
740 }
741 
742 static int mv_hash_final(struct ahash_request *req)
743 {
744  struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
745 
746  ahash_request_set_crypt(req, NULL, req->result, 0);
747  mv_update_hash_req_ctx(ctx, 1, 0);
748  return mv_handle_req(&req->base);
749 }
750 
751 static int mv_hash_finup(struct ahash_request *req)
752 {
753  mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
754  return mv_handle_req(&req->base);
755 }
756 
757 static int mv_hash_digest(struct ahash_request *req)
758 {
759  const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
760  mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
761  req->nbytes, tfm_ctx->count_add);
762  return mv_handle_req(&req->base);
763 }
764 
765 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
766  const void *ostate)
767 {
768  const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
769  int i;
770  for (i = 0; i < 5; i++) {
771  ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
772  ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
773  }
774 }
775 
776 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
777  unsigned int keylen)
778 {
779  int rc;
780  struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
781  int bs, ds, ss;
782 
783  if (!ctx->base_hash)
784  return 0;
785 
786  rc = crypto_shash_setkey(ctx->fallback, key, keylen);
787  if (rc)
788  return rc;
789 
790  /* Can't see a way to extract the ipad/opad from the fallback tfm
791  so I'm basically copying code from the hmac module */
792  bs = crypto_shash_blocksize(ctx->base_hash);
793  ds = crypto_shash_digestsize(ctx->base_hash);
794  ss = crypto_shash_statesize(ctx->base_hash);
795 
796  {
797  struct {
798  struct shash_desc shash;
799  char ctx[crypto_shash_descsize(ctx->base_hash)];
800  } desc;
801  unsigned int i;
802  char ipad[ss];
803  char opad[ss];
804 
805  desc.shash.tfm = ctx->base_hash;
806  desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
808 
809  if (keylen > bs) {
810  int err;
811 
812  err =
813  crypto_shash_digest(&desc.shash, key, keylen, ipad);
814  if (err)
815  return err;
816 
817  keylen = ds;
818  } else
819  memcpy(ipad, key, keylen);
820 
821  memset(ipad + keylen, 0, bs - keylen);
822  memcpy(opad, ipad, bs);
823 
824  for (i = 0; i < bs; i++) {
825  ipad[i] ^= 0x36;
826  opad[i] ^= 0x5c;
827  }
828 
829  rc = crypto_shash_init(&desc.shash) ? :
830  crypto_shash_update(&desc.shash, ipad, bs) ? :
831  crypto_shash_export(&desc.shash, ipad) ? :
832  crypto_shash_init(&desc.shash) ? :
833  crypto_shash_update(&desc.shash, opad, bs) ? :
834  crypto_shash_export(&desc.shash, opad);
835 
836  if (rc == 0)
837  mv_hash_init_ivs(ctx, ipad, opad);
838 
839  return rc;
840  }
841 }
842 
843 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
844  enum hash_op op, int count_add)
845 {
846  const char *fallback_driver_name = tfm->__crt_alg->cra_name;
847  struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
848  struct crypto_shash *fallback_tfm = NULL;
849  struct crypto_shash *base_hash = NULL;
850  int err = -ENOMEM;
851 
852  ctx->op = op;
853  ctx->count_add = count_add;
854 
855  /* Allocate a fallback and abort if it failed. */
856  fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
858  if (IS_ERR(fallback_tfm)) {
860  "Fallback driver '%s' could not be loaded!\n",
861  fallback_driver_name);
862  err = PTR_ERR(fallback_tfm);
863  goto out;
864  }
865  ctx->fallback = fallback_tfm;
866 
867  if (base_hash_name) {
868  /* Allocate a hash to compute the ipad/opad of hmac. */
869  base_hash = crypto_alloc_shash(base_hash_name, 0,
871  if (IS_ERR(base_hash)) {
873  "Base driver '%s' could not be loaded!\n",
874  base_hash_name);
875  err = PTR_ERR(base_hash);
876  goto err_bad_base;
877  }
878  }
879  ctx->base_hash = base_hash;
880 
881  crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
882  sizeof(struct mv_req_hash_ctx) +
883  crypto_shash_descsize(ctx->fallback));
884  return 0;
885 err_bad_base:
886  crypto_free_shash(fallback_tfm);
887 out:
888  return err;
889 }
890 
891 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
892 {
893  struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
894 
895  crypto_free_shash(ctx->fallback);
896  if (ctx->base_hash)
897  crypto_free_shash(ctx->base_hash);
898 }
899 
900 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
901 {
902  return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
903 }
904 
905 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
906 {
907  return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
908 }
909 
910 irqreturn_t crypto_int(int irq, void *priv)
911 {
912  u32 val;
913 
914  val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
915  if (!(val & SEC_INT_ACCEL0_DONE))
916  return IRQ_NONE;
917 
918  if (!del_timer(&cpg->completion_timer)) {
920  "got an interrupt but no pending timer?\n");
921  }
922  val &= ~SEC_INT_ACCEL0_DONE;
923  writel(val, cpg->reg + FPGA_INT_STATUS);
924  writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
925  BUG_ON(cpg->eng_st != ENGINE_BUSY);
926  cpg->eng_st = ENGINE_W_DEQUEUE;
928  return IRQ_HANDLED;
929 }
930 
932  .cra_name = "ecb(aes)",
933  .cra_driver_name = "mv-ecb-aes",
934  .cra_priority = 300,
935  .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
937  .cra_blocksize = 16,
938  .cra_ctxsize = sizeof(struct mv_ctx),
939  .cra_alignmask = 0,
940  .cra_type = &crypto_ablkcipher_type,
941  .cra_module = THIS_MODULE,
942  .cra_init = mv_cra_init,
943  .cra_u = {
944  .ablkcipher = {
945  .min_keysize = AES_MIN_KEY_SIZE,
946  .max_keysize = AES_MAX_KEY_SIZE,
947  .setkey = mv_setkey_aes,
948  .encrypt = mv_enc_aes_ecb,
949  .decrypt = mv_dec_aes_ecb,
950  },
951  },
952 };
953 
955  .cra_name = "cbc(aes)",
956  .cra_driver_name = "mv-cbc-aes",
957  .cra_priority = 300,
958  .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
960  .cra_blocksize = AES_BLOCK_SIZE,
961  .cra_ctxsize = sizeof(struct mv_ctx),
962  .cra_alignmask = 0,
963  .cra_type = &crypto_ablkcipher_type,
964  .cra_module = THIS_MODULE,
965  .cra_init = mv_cra_init,
966  .cra_u = {
967  .ablkcipher = {
968  .ivsize = AES_BLOCK_SIZE,
969  .min_keysize = AES_MIN_KEY_SIZE,
970  .max_keysize = AES_MAX_KEY_SIZE,
971  .setkey = mv_setkey_aes,
972  .encrypt = mv_enc_aes_cbc,
973  .decrypt = mv_dec_aes_cbc,
974  },
975  },
976 };
977 
979  .init = mv_hash_init,
980  .update = mv_hash_update,
981  .final = mv_hash_final,
982  .finup = mv_hash_finup,
983  .digest = mv_hash_digest,
984  .halg = {
985  .digestsize = SHA1_DIGEST_SIZE,
986  .base = {
987  .cra_name = "sha1",
988  .cra_driver_name = "mv-sha1",
989  .cra_priority = 300,
990  .cra_flags =
993  .cra_blocksize = SHA1_BLOCK_SIZE,
994  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
995  .cra_init = mv_cra_hash_sha1_init,
996  .cra_exit = mv_cra_hash_exit,
997  .cra_module = THIS_MODULE,
998  }
999  }
1000 };
1001 
1003  .init = mv_hash_init,
1004  .update = mv_hash_update,
1005  .final = mv_hash_final,
1006  .finup = mv_hash_finup,
1007  .digest = mv_hash_digest,
1008  .setkey = mv_hash_setkey,
1009  .halg = {
1010  .digestsize = SHA1_DIGEST_SIZE,
1011  .base = {
1012  .cra_name = "hmac(sha1)",
1013  .cra_driver_name = "mv-hmac-sha1",
1014  .cra_priority = 300,
1015  .cra_flags =
1018  .cra_blocksize = SHA1_BLOCK_SIZE,
1019  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1020  .cra_init = mv_cra_hash_hmac_sha1_init,
1021  .cra_exit = mv_cra_hash_exit,
1022  .cra_module = THIS_MODULE,
1023  }
1024  }
1025 };
1026 
1027 static int mv_probe(struct platform_device *pdev)
1028 {
1029  struct crypto_priv *cp;
1030  struct resource *res;
1031  int irq;
1032  int ret;
1033 
1034  if (cpg) {
1035  printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1036  return -EEXIST;
1037  }
1038 
1039  res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1040  if (!res)
1041  return -ENXIO;
1042 
1043  cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1044  if (!cp)
1045  return -ENOMEM;
1046 
1047  spin_lock_init(&cp->lock);
1048  crypto_init_queue(&cp->queue, 50);
1049  cp->reg = ioremap(res->start, resource_size(res));
1050  if (!cp->reg) {
1051  ret = -ENOMEM;
1052  goto err;
1053  }
1054 
1055  res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1056  if (!res) {
1057  ret = -ENXIO;
1058  goto err_unmap_reg;
1059  }
1060  cp->sram_size = resource_size(res);
1062  cp->sram = ioremap(res->start, cp->sram_size);
1063  if (!cp->sram) {
1064  ret = -ENOMEM;
1065  goto err_unmap_reg;
1066  }
1067 
1068  if (pdev->dev.of_node)
1069  irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1070  else
1071  irq = platform_get_irq(pdev, 0);
1072  if (irq < 0 || irq == NO_IRQ) {
1073  ret = irq;
1074  goto err_unmap_sram;
1075  }
1076  cp->irq = irq;
1077 
1078  platform_set_drvdata(pdev, cp);
1079  cpg = cp;
1080 
1081  cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1082  if (IS_ERR(cp->queue_th)) {
1083  ret = PTR_ERR(cp->queue_th);
1084  goto err_unmap_sram;
1085  }
1086 
1087  ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1088  cp);
1089  if (ret)
1090  goto err_thread;
1091 
1092  /* Not all platforms can gate the clock, so it is not
1093  an error if the clock does not exists. */
1094  cp->clk = clk_get(&pdev->dev, NULL);
1095  if (!IS_ERR(cp->clk))
1096  clk_prepare_enable(cp->clk);
1097 
1098  writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1102 
1103  ret = crypto_register_alg(&mv_aes_alg_ecb);
1104  if (ret) {
1106  "Could not register aes-ecb driver\n");
1107  goto err_irq;
1108  }
1109 
1110  ret = crypto_register_alg(&mv_aes_alg_cbc);
1111  if (ret) {
1113  "Could not register aes-cbc driver\n");
1114  goto err_unreg_ecb;
1115  }
1116 
1117  ret = crypto_register_ahash(&mv_sha1_alg);
1118  if (ret == 0)
1119  cpg->has_sha1 = 1;
1120  else
1121  printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1122 
1123  ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1124  if (ret == 0) {
1125  cpg->has_hmac_sha1 = 1;
1126  } else {
1128  "Could not register hmac-sha1 driver\n");
1129  }
1130 
1131  return 0;
1132 err_unreg_ecb:
1133  crypto_unregister_alg(&mv_aes_alg_ecb);
1134 err_irq:
1135  free_irq(irq, cp);
1136  if (!IS_ERR(cp->clk)) {
1137  clk_disable_unprepare(cp->clk);
1138  clk_put(cp->clk);
1139  }
1140 err_thread:
1141  kthread_stop(cp->queue_th);
1142 err_unmap_sram:
1143  iounmap(cp->sram);
1144 err_unmap_reg:
1145  iounmap(cp->reg);
1146 err:
1147  kfree(cp);
1148  cpg = NULL;
1149  platform_set_drvdata(pdev, NULL);
1150  return ret;
1151 }
1152 
1153 static int mv_remove(struct platform_device *pdev)
1154 {
1155  struct crypto_priv *cp = platform_get_drvdata(pdev);
1156 
1157  crypto_unregister_alg(&mv_aes_alg_ecb);
1158  crypto_unregister_alg(&mv_aes_alg_cbc);
1159  if (cp->has_sha1)
1160  crypto_unregister_ahash(&mv_sha1_alg);
1161  if (cp->has_hmac_sha1)
1162  crypto_unregister_ahash(&mv_hmac_sha1_alg);
1163  kthread_stop(cp->queue_th);
1164  free_irq(cp->irq, cp);
1165  memset(cp->sram, 0, cp->sram_size);
1166  iounmap(cp->sram);
1167  iounmap(cp->reg);
1168 
1169  if (!IS_ERR(cp->clk)) {
1170  clk_disable_unprepare(cp->clk);
1171  clk_put(cp->clk);
1172  }
1173 
1174  kfree(cp);
1175  cpg = NULL;
1176  return 0;
1177 }
1178 
1179 static const struct of_device_id mv_cesa_of_match_table[] = {
1180  { .compatible = "marvell,orion-crypto", },
1181  {}
1182 };
1183 MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1184 
1185 static struct platform_driver marvell_crypto = {
1186  .probe = mv_probe,
1187  .remove = __devexit_p(mv_remove),
1188  .driver = {
1189  .owner = THIS_MODULE,
1190  .name = "mv_crypto",
1191  .of_match_table = of_match_ptr(mv_cesa_of_match_table),
1192  },
1193 };
1194 MODULE_ALIAS("platform:mv_crypto");
1195 
1196 module_platform_driver(marvell_crypto);
1197 
1198 MODULE_AUTHOR("Sebastian Andrzej Siewior <[email protected]>");
1199 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1200 MODULE_LICENSE("GPL");