Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nfs4filelayoutdev.c
Go to the documentation of this file.
1 /*
2  * Device operations for the pnfs nfs4 file layout driver.
3  *
4  * Copyright (c) 2002
5  * The Regents of the University of Michigan
6  * All Rights Reserved
7  *
8  * Dean Hildebrand <[email protected]>
9  * Garth Goodson <[email protected]>
10  *
11  * Permission is granted to use, copy, create derivative works, and
12  * redistribute this software and such derivative works for any purpose,
13  * so long as the name of the University of Michigan is not used in
14  * any advertising or publicity pertaining to the use or distribution
15  * of this software without specific, written prior authorization. If
16  * the above copyright notice or any other identification of the
17  * University of Michigan is included in any copy of any portion of
18  * this software, then the disclaimer below must also be included.
19  *
20  * This software is provided as is, without representation or warranty
21  * of any kind either express or implied, including without limitation
22  * the implied warranties of merchantability, fitness for a particular
23  * purpose, or noninfringement. The Regents of the University of
24  * Michigan shall not be liable for any damages, including special,
25  * indirect, incidental, or consequential damages, with respect to any
26  * claim arising out of or in connection with the use of the software,
27  * even if it has been or is hereafter advised of the possibility of
28  * such damages.
29  */
30 
31 #include <linux/nfs_fs.h>
32 #include <linux/vmalloc.h>
33 #include <linux/module.h>
34 
35 #include "internal.h"
36 #include "nfs4filelayout.h"
37 
38 #define NFSDBG_FACILITY NFSDBG_PNFS_LD
39 
40 static unsigned int dataserver_timeo = NFS4_DEF_DS_TIMEO;
41 static unsigned int dataserver_retrans = NFS4_DEF_DS_RETRANS;
42 
43 /*
44  * Data server cache
45  *
46  * Data servers can be mapped to different device ids.
47  * nfs4_pnfs_ds reference counting
48  * - set to 1 on allocation
49  * - incremented when a device id maps a data server already in the cache.
50  * - decremented when deviceid is removed from the cache.
51  */
52 static DEFINE_SPINLOCK(nfs4_ds_cache_lock);
53 static LIST_HEAD(nfs4_data_server_cache);
54 
55 /* Debug routines */
56 void
58 {
59  if (ds == NULL) {
60  printk("%s NULL device\n", __func__);
61  return;
62  }
63  printk(" ds %s\n"
64  " ref count %d\n"
65  " client %p\n"
66  " cl_exchange_flags %x\n",
67  ds->ds_remotestr,
68  atomic_read(&ds->ds_count), ds->ds_clp,
69  ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0);
70 }
71 
72 static bool
73 same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2)
74 {
75  struct sockaddr_in *a, *b;
76  struct sockaddr_in6 *a6, *b6;
77 
78  if (addr1->sa_family != addr2->sa_family)
79  return false;
80 
81  switch (addr1->sa_family) {
82  case AF_INET:
83  a = (struct sockaddr_in *)addr1;
84  b = (struct sockaddr_in *)addr2;
85 
86  if (a->sin_addr.s_addr == b->sin_addr.s_addr &&
87  a->sin_port == b->sin_port)
88  return true;
89  break;
90 
91  case AF_INET6:
92  a6 = (struct sockaddr_in6 *)addr1;
93  b6 = (struct sockaddr_in6 *)addr2;
94 
95  /* LINKLOCAL addresses must have matching scope_id */
96  if (ipv6_addr_scope(&a6->sin6_addr) ==
98  a6->sin6_scope_id != b6->sin6_scope_id)
99  return false;
100 
101  if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) &&
102  a6->sin6_port == b6->sin6_port)
103  return true;
104  break;
105 
106  default:
107  dprintk("%s: unhandled address family: %u\n",
108  __func__, addr1->sa_family);
109  return false;
110  }
111 
112  return false;
113 }
114 
115 static bool
116 _same_data_server_addrs_locked(const struct list_head *dsaddrs1,
117  const struct list_head *dsaddrs2)
118 {
119  struct nfs4_pnfs_ds_addr *da1, *da2;
120 
121  /* step through both lists, comparing as we go */
122  for (da1 = list_first_entry(dsaddrs1, typeof(*da1), da_node),
123  da2 = list_first_entry(dsaddrs2, typeof(*da2), da_node);
124  da1 != NULL && da2 != NULL;
125  da1 = list_entry(da1->da_node.next, typeof(*da1), da_node),
126  da2 = list_entry(da2->da_node.next, typeof(*da2), da_node)) {
127  if (!same_sockaddr((struct sockaddr *)&da1->da_addr,
128  (struct sockaddr *)&da2->da_addr))
129  return false;
130  }
131  if (da1 == NULL && da2 == NULL)
132  return true;
133 
134  return false;
135 }
136 
137 /*
138  * Lookup DS by addresses. nfs4_ds_cache_lock is held
139  */
140 static struct nfs4_pnfs_ds *
141 _data_server_lookup_locked(const struct list_head *dsaddrs)
142 {
143  struct nfs4_pnfs_ds *ds;
144 
145  list_for_each_entry(ds, &nfs4_data_server_cache, ds_node)
146  if (_same_data_server_addrs_locked(&ds->ds_addrs, dsaddrs))
147  return ds;
148  return NULL;
149 }
150 
151 /*
152  * Create an rpc connection to the nfs4_pnfs_ds data server
153  * Currently only supports IPv4 and IPv6 addresses
154  */
155 static int
156 nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds)
157 {
158  struct nfs_client *clp = ERR_PTR(-EIO);
159  struct nfs4_pnfs_ds_addr *da;
160  int status = 0;
161 
162  dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr,
163  mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor);
164 
165  BUG_ON(list_empty(&ds->ds_addrs));
166 
167  list_for_each_entry(da, &ds->ds_addrs, da_node) {
168  dprintk("%s: DS %s: trying address %s\n",
169  __func__, ds->ds_remotestr, da->da_remotestr);
170 
171  clp = nfs4_set_ds_client(mds_srv->nfs_client,
172  (struct sockaddr *)&da->da_addr,
173  da->da_addrlen, IPPROTO_TCP,
174  dataserver_timeo, dataserver_retrans);
175  if (!IS_ERR(clp))
176  break;
177  }
178 
179  if (IS_ERR(clp)) {
180  status = PTR_ERR(clp);
181  goto out;
182  }
183 
184  status = nfs4_init_ds_session(clp, mds_srv->nfs_client->cl_lease_time);
185  if (status)
186  goto out_put;
187 
188  ds->ds_clp = clp;
189  dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr);
190 out:
191  return status;
192 out_put:
193  nfs_put_client(clp);
194  goto out;
195 }
196 
197 static void
198 destroy_ds(struct nfs4_pnfs_ds *ds)
199 {
200  struct nfs4_pnfs_ds_addr *da;
201 
202  dprintk("--> %s\n", __func__);
203  ifdebug(FACILITY)
204  print_ds(ds);
205 
206  if (ds->ds_clp)
207  nfs_put_client(ds->ds_clp);
208 
209  while (!list_empty(&ds->ds_addrs)) {
210  da = list_first_entry(&ds->ds_addrs,
211  struct nfs4_pnfs_ds_addr,
212  da_node);
213  list_del_init(&da->da_node);
214  kfree(da->da_remotestr);
215  kfree(da);
216  }
217 
218  kfree(ds->ds_remotestr);
219  kfree(ds);
220 }
221 
222 void
224 {
225  struct nfs4_pnfs_ds *ds;
226  int i;
227 
228  nfs4_print_deviceid(&dsaddr->id_node.deviceid);
229 
230  for (i = 0; i < dsaddr->ds_num; i++) {
231  ds = dsaddr->ds_list[i];
232  if (ds != NULL) {
233  if (atomic_dec_and_lock(&ds->ds_count,
234  &nfs4_ds_cache_lock)) {
235  list_del_init(&ds->ds_node);
236  spin_unlock(&nfs4_ds_cache_lock);
237  destroy_ds(ds);
238  }
239  }
240  }
241  kfree(dsaddr->stripe_indices);
242  kfree(dsaddr);
243 }
244 
245 /*
246  * Create a string with a human readable address and port to avoid
247  * complicated setup around many dprinks.
248  */
249 static char *
250 nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags)
251 {
252  struct nfs4_pnfs_ds_addr *da;
253  char *remotestr;
254  size_t len;
255  char *p;
256 
257  len = 3; /* '{', '}' and eol */
258  list_for_each_entry(da, dsaddrs, da_node) {
259  len += strlen(da->da_remotestr) + 1; /* string plus comma */
260  }
261 
262  remotestr = kzalloc(len, gfp_flags);
263  if (!remotestr)
264  return NULL;
265 
266  p = remotestr;
267  *(p++) = '{';
268  len--;
269  list_for_each_entry(da, dsaddrs, da_node) {
270  size_t ll = strlen(da->da_remotestr);
271 
272  if (ll > len)
273  goto out_err;
274 
275  memcpy(p, da->da_remotestr, ll);
276  p += ll;
277  len -= ll;
278 
279  if (len < 1)
280  goto out_err;
281  (*p++) = ',';
282  len--;
283  }
284  if (len < 2)
285  goto out_err;
286  *(p++) = '}';
287  *p = '\0';
288  return remotestr;
289 out_err:
290  kfree(remotestr);
291  return NULL;
292 }
293 
294 static struct nfs4_pnfs_ds *
295 nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags)
296 {
297  struct nfs4_pnfs_ds *tmp_ds, *ds = NULL;
298  char *remotestr;
299 
300  if (list_empty(dsaddrs)) {
301  dprintk("%s: no addresses defined\n", __func__);
302  goto out;
303  }
304 
305  ds = kzalloc(sizeof(*ds), gfp_flags);
306  if (!ds)
307  goto out;
308 
309  /* this is only used for debugging, so it's ok if its NULL */
310  remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags);
311 
312  spin_lock(&nfs4_ds_cache_lock);
313  tmp_ds = _data_server_lookup_locked(dsaddrs);
314  if (tmp_ds == NULL) {
315  INIT_LIST_HEAD(&ds->ds_addrs);
316  list_splice_init(dsaddrs, &ds->ds_addrs);
317  ds->ds_remotestr = remotestr;
318  atomic_set(&ds->ds_count, 1);
319  INIT_LIST_HEAD(&ds->ds_node);
320  ds->ds_clp = NULL;
321  list_add(&ds->ds_node, &nfs4_data_server_cache);
322  dprintk("%s add new data server %s\n", __func__,
323  ds->ds_remotestr);
324  } else {
325  kfree(remotestr);
326  kfree(ds);
327  atomic_inc(&tmp_ds->ds_count);
328  dprintk("%s data server %s found, inc'ed ds_count to %d\n",
329  __func__, tmp_ds->ds_remotestr,
330  atomic_read(&tmp_ds->ds_count));
331  ds = tmp_ds;
332  }
333  spin_unlock(&nfs4_ds_cache_lock);
334 out:
335  return ds;
336 }
337 
338 /*
339  * Currently only supports ipv4, ipv6 and one multi-path address.
340  */
341 static struct nfs4_pnfs_ds_addr *
342 decode_ds_addr(struct net *net, struct xdr_stream *streamp, gfp_t gfp_flags)
343 {
344  struct nfs4_pnfs_ds_addr *da = NULL;
345  char *buf, *portstr;
346  __be16 port;
347  int nlen, rlen;
348  int tmp[2];
349  __be32 *p;
350  char *netid, *match_netid;
351  size_t len, match_netid_len;
352  char *startsep = "";
353  char *endsep = "";
354 
355 
356  /* r_netid */
357  p = xdr_inline_decode(streamp, 4);
358  if (unlikely(!p))
359  goto out_err;
360  nlen = be32_to_cpup(p++);
361 
362  p = xdr_inline_decode(streamp, nlen);
363  if (unlikely(!p))
364  goto out_err;
365 
366  netid = kmalloc(nlen+1, gfp_flags);
367  if (unlikely(!netid))
368  goto out_err;
369 
370  netid[nlen] = '\0';
371  memcpy(netid, p, nlen);
372 
373  /* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */
374  p = xdr_inline_decode(streamp, 4);
375  if (unlikely(!p))
376  goto out_free_netid;
377  rlen = be32_to_cpup(p);
378 
379  p = xdr_inline_decode(streamp, rlen);
380  if (unlikely(!p))
381  goto out_free_netid;
382 
383  /* port is ".ABC.DEF", 8 chars max */
384  if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) {
385  dprintk("%s: Invalid address, length %d\n", __func__,
386  rlen);
387  goto out_free_netid;
388  }
389  buf = kmalloc(rlen + 1, gfp_flags);
390  if (!buf) {
391  dprintk("%s: Not enough memory\n", __func__);
392  goto out_free_netid;
393  }
394  buf[rlen] = '\0';
395  memcpy(buf, p, rlen);
396 
397  /* replace port '.' with '-' */
398  portstr = strrchr(buf, '.');
399  if (!portstr) {
400  dprintk("%s: Failed finding expected dot in port\n",
401  __func__);
402  goto out_free_buf;
403  }
404  *portstr = '-';
405 
406  /* find '.' between address and port */
407  portstr = strrchr(buf, '.');
408  if (!portstr) {
409  dprintk("%s: Failed finding expected dot between address and "
410  "port\n", __func__);
411  goto out_free_buf;
412  }
413  *portstr = '\0';
414 
415  da = kzalloc(sizeof(*da), gfp_flags);
416  if (unlikely(!da))
417  goto out_free_buf;
418 
419  INIT_LIST_HEAD(&da->da_node);
420 
421  if (!rpc_pton(net, buf, portstr-buf, (struct sockaddr *)&da->da_addr,
422  sizeof(da->da_addr))) {
423  dprintk("%s: error parsing address %s\n", __func__, buf);
424  goto out_free_da;
425  }
426 
427  portstr++;
428  sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]);
429  port = htons((tmp[0] << 8) | (tmp[1]));
430 
431  switch (da->da_addr.ss_family) {
432  case AF_INET:
433  ((struct sockaddr_in *)&da->da_addr)->sin_port = port;
434  da->da_addrlen = sizeof(struct sockaddr_in);
435  match_netid = "tcp";
436  match_netid_len = 3;
437  break;
438 
439  case AF_INET6:
440  ((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port;
441  da->da_addrlen = sizeof(struct sockaddr_in6);
442  match_netid = "tcp6";
443  match_netid_len = 4;
444  startsep = "[";
445  endsep = "]";
446  break;
447 
448  default:
449  dprintk("%s: unsupported address family: %u\n",
450  __func__, da->da_addr.ss_family);
451  goto out_free_da;
452  }
453 
454  if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) {
455  dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n",
456  __func__, netid, match_netid);
457  goto out_free_da;
458  }
459 
460  /* save human readable address */
461  len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7;
462  da->da_remotestr = kzalloc(len, gfp_flags);
463 
464  /* NULL is ok, only used for dprintk */
465  if (da->da_remotestr)
466  snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep,
467  buf, endsep, ntohs(port));
468 
469  dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr);
470  kfree(buf);
471  kfree(netid);
472  return da;
473 
474 out_free_da:
475  kfree(da);
476 out_free_buf:
477  dprintk("%s: Error parsing DS addr: %s\n", __func__, buf);
478  kfree(buf);
479 out_free_netid:
480  kfree(netid);
481 out_err:
482  return NULL;
483 }
484 
485 /* Decode opaque device data and return the result */
486 static struct nfs4_file_layout_dsaddr*
487 decode_device(struct inode *ino, struct pnfs_device *pdev, gfp_t gfp_flags)
488 {
489  int i;
490  u32 cnt, num;
491  u8 *indexp;
492  __be32 *p;
494  u8 max_stripe_index;
495  struct nfs4_file_layout_dsaddr *dsaddr = NULL;
496  struct xdr_stream stream;
497  struct xdr_buf buf;
498  struct page *scratch;
499  struct list_head dsaddrs;
500  struct nfs4_pnfs_ds_addr *da;
501 
502  /* set up xdr stream */
503  scratch = alloc_page(gfp_flags);
504  if (!scratch)
505  goto out_err;
506 
507  xdr_init_decode_pages(&stream, &buf, pdev->pages, pdev->pglen);
508  xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
509 
510  /* Get the stripe count (number of stripe index) */
511  p = xdr_inline_decode(&stream, 4);
512  if (unlikely(!p))
513  goto out_err_free_scratch;
514 
515  cnt = be32_to_cpup(p);
516  dprintk("%s stripe count %d\n", __func__, cnt);
517  if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) {
518  printk(KERN_WARNING "NFS: %s: stripe count %d greater than "
519  "supported maximum %d\n", __func__,
521  goto out_err_free_scratch;
522  }
523 
524  /* read stripe indices */
525  stripe_indices = kcalloc(cnt, sizeof(u8), gfp_flags);
526  if (!stripe_indices)
527  goto out_err_free_scratch;
528 
529  p = xdr_inline_decode(&stream, cnt << 2);
530  if (unlikely(!p))
531  goto out_err_free_stripe_indices;
532 
533  indexp = &stripe_indices[0];
534  max_stripe_index = 0;
535  for (i = 0; i < cnt; i++) {
536  *indexp = be32_to_cpup(p++);
537  max_stripe_index = max(max_stripe_index, *indexp);
538  indexp++;
539  }
540 
541  /* Check the multipath list count */
542  p = xdr_inline_decode(&stream, 4);
543  if (unlikely(!p))
544  goto out_err_free_stripe_indices;
545 
546  num = be32_to_cpup(p);
547  dprintk("%s ds_num %u\n", __func__, num);
548  if (num > NFS4_PNFS_MAX_MULTI_CNT) {
549  printk(KERN_WARNING "NFS: %s: multipath count %d greater than "
550  "supported maximum %d\n", __func__,
552  goto out_err_free_stripe_indices;
553  }
554 
555  /* validate stripe indices are all < num */
556  if (max_stripe_index >= num) {
557  printk(KERN_WARNING "NFS: %s: stripe index %u >= num ds %u\n",
558  __func__, max_stripe_index, num);
559  goto out_err_free_stripe_indices;
560  }
561 
562  dsaddr = kzalloc(sizeof(*dsaddr) +
563  (sizeof(struct nfs4_pnfs_ds *) * (num - 1)),
564  gfp_flags);
565  if (!dsaddr)
566  goto out_err_free_stripe_indices;
567 
568  dsaddr->stripe_count = cnt;
569  dsaddr->stripe_indices = stripe_indices;
570  stripe_indices = NULL;
571  dsaddr->ds_num = num;
573  NFS_SERVER(ino)->pnfs_curr_ld,
574  NFS_SERVER(ino)->nfs_client,
575  &pdev->dev_id);
576 
577  INIT_LIST_HEAD(&dsaddrs);
578 
579  for (i = 0; i < dsaddr->ds_num; i++) {
580  int j;
581  u32 mp_count;
582 
583  p = xdr_inline_decode(&stream, 4);
584  if (unlikely(!p))
585  goto out_err_free_deviceid;
586 
587  mp_count = be32_to_cpup(p); /* multipath count */
588  for (j = 0; j < mp_count; j++) {
589  da = decode_ds_addr(NFS_SERVER(ino)->nfs_client->cl_net,
590  &stream, gfp_flags);
591  if (da)
592  list_add_tail(&da->da_node, &dsaddrs);
593  }
594  if (list_empty(&dsaddrs)) {
595  dprintk("%s: no suitable DS addresses found\n",
596  __func__);
597  goto out_err_free_deviceid;
598  }
599 
600  dsaddr->ds_list[i] = nfs4_pnfs_ds_add(&dsaddrs, gfp_flags);
601  if (!dsaddr->ds_list[i])
602  goto out_err_drain_dsaddrs;
603 
604  /* If DS was already in cache, free ds addrs */
605  while (!list_empty(&dsaddrs)) {
606  da = list_first_entry(&dsaddrs,
607  struct nfs4_pnfs_ds_addr,
608  da_node);
609  list_del_init(&da->da_node);
610  kfree(da->da_remotestr);
611  kfree(da);
612  }
613  }
614 
615  __free_page(scratch);
616  return dsaddr;
617 
618 out_err_drain_dsaddrs:
619  while (!list_empty(&dsaddrs)) {
620  da = list_first_entry(&dsaddrs, struct nfs4_pnfs_ds_addr,
621  da_node);
622  list_del_init(&da->da_node);
623  kfree(da->da_remotestr);
624  kfree(da);
625  }
626 out_err_free_deviceid:
627  nfs4_fl_free_deviceid(dsaddr);
628  /* stripe_indicies was part of dsaddr */
629  goto out_err_free_scratch;
630 out_err_free_stripe_indices:
631  kfree(stripe_indices);
632 out_err_free_scratch:
633  __free_page(scratch);
634 out_err:
635  dprintk("%s ERROR: returning NULL\n", __func__);
636  return NULL;
637 }
638 
639 /*
640  * Decode the opaque device specified in 'dev' and add it to the cache of
641  * available devices.
642  */
643 static struct nfs4_file_layout_dsaddr *
644 decode_and_add_device(struct inode *inode, struct pnfs_device *dev, gfp_t gfp_flags)
645 {
646  struct nfs4_deviceid_node *d;
647  struct nfs4_file_layout_dsaddr *n, *new;
648 
649  new = decode_device(inode, dev, gfp_flags);
650  if (!new) {
651  printk(KERN_WARNING "NFS: %s: Could not decode or add device\n",
652  __func__);
653  return NULL;
654  }
655 
656  d = nfs4_insert_deviceid_node(&new->id_node);
658  if (n != new) {
660  return n;
661  }
662 
663  return new;
664 }
665 
666 /*
667  * Retrieve the information for dev_id, add it to the list
668  * of available devices, and return it.
669  */
671 filelayout_get_device_info(struct inode *inode, struct nfs4_deviceid *dev_id, gfp_t gfp_flags)
672 {
673  struct pnfs_device *pdev = NULL;
674  u32 max_resp_sz;
675  int max_pages;
676  struct page **pages = NULL;
677  struct nfs4_file_layout_dsaddr *dsaddr = NULL;
678  int rc, i;
679  struct nfs_server *server = NFS_SERVER(inode);
680 
681  /*
682  * Use the session max response size as the basis for setting
683  * GETDEVICEINFO's maxcount
684  */
685  max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
686  max_pages = nfs_page_array_len(0, max_resp_sz);
687  dprintk("%s inode %p max_resp_sz %u max_pages %d\n",
688  __func__, inode, max_resp_sz, max_pages);
689 
690  pdev = kzalloc(sizeof(struct pnfs_device), gfp_flags);
691  if (pdev == NULL)
692  return NULL;
693 
694  pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags);
695  if (pages == NULL) {
696  kfree(pdev);
697  return NULL;
698  }
699  for (i = 0; i < max_pages; i++) {
700  pages[i] = alloc_page(gfp_flags);
701  if (!pages[i])
702  goto out_free;
703  }
704 
705  memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id));
706  pdev->layout_type = LAYOUT_NFSV4_1_FILES;
707  pdev->pages = pages;
708  pdev->pgbase = 0;
709  pdev->pglen = max_resp_sz;
710  pdev->mincount = 0;
711 
712  rc = nfs4_proc_getdeviceinfo(server, pdev);
713  dprintk("%s getdevice info returns %d\n", __func__, rc);
714  if (rc)
715  goto out_free;
716 
717  /*
718  * Found new device, need to decode it and then add it to the
719  * list of known devices for this mountpoint.
720  */
721  dsaddr = decode_and_add_device(inode, pdev, gfp_flags);
722 out_free:
723  for (i = 0; i < max_pages; i++)
724  __free_page(pages[i]);
725  kfree(pages);
726  kfree(pdev);
727  dprintk("<-- %s dsaddr %p\n", __func__, dsaddr);
728  return dsaddr;
729 }
730 
731 void
733 {
735 }
736 
737 /*
738  * Want res = (offset - layout->pattern_offset)/ layout->stripe_unit
739  * Then: ((res + fsi) % dsaddr->stripe_count)
740  */
741 u32
743 {
744  struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
745  u64 tmp;
746 
747  tmp = offset - flseg->pattern_offset;
748  do_div(tmp, flseg->stripe_unit);
749  tmp += flseg->first_stripe_index;
750  return do_div(tmp, flseg->dsaddr->stripe_count);
751 }
752 
753 u32
755 {
756  return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j];
757 }
758 
759 struct nfs_fh *
761 {
762  struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
763  u32 i;
764 
765  if (flseg->stripe_type == STRIPE_SPARSE) {
766  if (flseg->num_fh == 1)
767  i = 0;
768  else if (flseg->num_fh == 0)
769  /* Use the MDS OPEN fh set in nfs_read_rpcsetup */
770  return NULL;
771  else
772  i = nfs4_fl_calc_ds_index(lseg, j);
773  } else
774  i = j;
775  return flseg->fh_array[i];
776 }
777 
778 struct nfs4_pnfs_ds *
780 {
781  struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr;
782  struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx];
783  struct nfs4_deviceid_node *devid = FILELAYOUT_DEVID_NODE(lseg);
784 
786  return NULL;
787 
788  if (ds == NULL) {
789  printk(KERN_ERR "NFS: %s: No data server for offset index %d\n",
790  __func__, ds_idx);
791  filelayout_mark_devid_invalid(devid);
792  return NULL;
793  }
794 
795  if (!ds->ds_clp) {
796  struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode);
797  int err;
798 
799  err = nfs4_ds_connect(s, ds);
800  if (err) {
802  return NULL;
803  }
804  }
805  return ds;
806 }
807 
808 module_param(dataserver_retrans, uint, 0644);
809 MODULE_PARM_DESC(dataserver_retrans, "The number of times the NFSv4.1 client "
810  "retries a request before it attempts further "
811  " recovery action.");
812 module_param(dataserver_timeo, uint, 0644);
813 MODULE_PARM_DESC(dataserver_timeo, "The time (in tenths of a second) the "
814  "NFSv4.1 client waits for a response from a "
815  " data server before it retries an NFS request.");