Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dir.c
Go to the documentation of this file.
1 /*
2  * linux/fs/nfs/dir.c
3  *
4  * Copyright (C) 1992 Rick Sladkey
5  *
6  * nfs directory handling functions
7  *
8  * 10 Apr 1996 Added silly rename for unlink --okir
9  * 28 Sep 1996 Improved directory cache --okir
10  * 23 Aug 1997 Claus Heine [email protected]
11  * Re-implemented silly rename for unlink, newly implemented
12  * silly rename for nfs_rename() following the suggestions
13  * of Olaf Kirch (okir) found in this file.
14  * Following Linus comments on my original hack, this version
15  * depends only on the dcache stuff and doesn't touch the inode
16  * layer (iput() and friends).
17  * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 #include <linux/kmemleak.h>
38 #include <linux/xattr.h>
39 
40 #include "delegation.h"
41 #include "iostat.h"
42 #include "internal.h"
43 #include "fscache.h"
44 
45 /* #define NFS_DEBUG_VERBOSE 1 */
46 
47 static int nfs_opendir(struct inode *, struct file *);
48 static int nfs_closedir(struct inode *, struct file *);
49 static int nfs_readdir(struct file *, void *, filldir_t);
50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52 static void nfs_readdir_clear_array(struct page*);
53 
55  .llseek = nfs_llseek_dir,
56  .read = generic_read_dir,
57  .readdir = nfs_readdir,
58  .open = nfs_opendir,
59  .release = nfs_closedir,
60  .fsync = nfs_fsync_dir,
61 };
62 
64  .freepage = nfs_readdir_clear_array,
65 };
66 
67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68 {
69  struct nfs_open_dir_context *ctx;
70  ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71  if (ctx != NULL) {
72  ctx->duped = 0;
73  ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74  ctx->dir_cookie = 0;
75  ctx->dup_cookie = 0;
76  ctx->cred = get_rpccred(cred);
77  return ctx;
78  }
79  return ERR_PTR(-ENOMEM);
80 }
81 
82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83 {
84  put_rpccred(ctx->cred);
85  kfree(ctx);
86 }
87 
88 /*
89  * Open file
90  */
91 static int
92 nfs_opendir(struct inode *inode, struct file *filp)
93 {
94  int res = 0;
95  struct nfs_open_dir_context *ctx;
96  struct rpc_cred *cred;
97 
98  dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99  filp->f_path.dentry->d_parent->d_name.name,
100  filp->f_path.dentry->d_name.name);
101 
102  nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103 
104  cred = rpc_lookup_cred();
105  if (IS_ERR(cred))
106  return PTR_ERR(cred);
107  ctx = alloc_nfs_open_dir_context(inode, cred);
108  if (IS_ERR(ctx)) {
109  res = PTR_ERR(ctx);
110  goto out;
111  }
112  filp->private_data = ctx;
113  if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114  /* This is a mountpoint, so d_revalidate will never
115  * have been called, so we need to refresh the
116  * inode (for close-open consistency) ourselves.
117  */
118  __nfs_revalidate_inode(NFS_SERVER(inode), inode);
119  }
120 out:
121  put_rpccred(cred);
122  return res;
123 }
124 
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128  put_nfs_open_dir_context(filp->private_data);
129  return 0;
130 }
131 
135  struct qstr string;
136  unsigned char d_type;
137 };
138 
140  int size;
144 };
145 
146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147 typedef struct {
148  struct file *file;
149  struct page *page;
150  unsigned long page_index;
155 
156  unsigned long timestamp;
157  unsigned long gencount;
158  unsigned int cache_entry_index;
159  unsigned int plus:1;
160  unsigned int eof:1;
162 
163 /*
164  * The caller is responsible for calling nfs_readdir_release_array(page)
165  */
166 static
167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168 {
169  void *ptr;
170  if (page == NULL)
171  return ERR_PTR(-EIO);
172  ptr = kmap(page);
173  if (ptr == NULL)
174  return ERR_PTR(-ENOMEM);
175  return ptr;
176 }
177 
178 static
179 void nfs_readdir_release_array(struct page *page)
180 {
181  kunmap(page);
182 }
183 
184 /*
185  * we are freeing strings created by nfs_add_to_readdir_array()
186  */
187 static
188 void nfs_readdir_clear_array(struct page *page)
189 {
190  struct nfs_cache_array *array;
191  int i;
192 
193  array = kmap_atomic(page);
194  for (i = 0; i < array->size; i++)
195  kfree(array->array[i].string.name);
196  kunmap_atomic(array);
197 }
198 
199 /*
200  * the caller is responsible for freeing qstr.name
201  * when called by nfs_readdir_add_to_array, the strings will be freed in
202  * nfs_clear_readdir_array()
203  */
204 static
205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206 {
207  string->len = len;
208  string->name = kmemdup(name, len, GFP_KERNEL);
209  if (string->name == NULL)
210  return -ENOMEM;
211  /*
212  * Avoid a kmemleak false positive. The pointer to the name is stored
213  * in a page cache page which kmemleak does not scan.
214  */
215  kmemleak_not_leak(string->name);
216  string->hash = full_name_hash(name, len);
217  return 0;
218 }
219 
220 static
221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222 {
223  struct nfs_cache_array *array = nfs_readdir_get_array(page);
224  struct nfs_cache_array_entry *cache_entry;
225  int ret;
226 
227  if (IS_ERR(array))
228  return PTR_ERR(array);
229 
230  cache_entry = &array->array[array->size];
231 
232  /* Check that this entry lies within the page bounds */
233  ret = -ENOSPC;
234  if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235  goto out;
236 
237  cache_entry->cookie = entry->prev_cookie;
238  cache_entry->ino = entry->ino;
239  cache_entry->d_type = entry->d_type;
240  ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241  if (ret)
242  goto out;
243  array->last_cookie = entry->cookie;
244  array->size++;
245  if (entry->eof != 0)
246  array->eof_index = array->size;
247 out:
248  nfs_readdir_release_array(page);
249  return ret;
250 }
251 
252 static
253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254 {
255  loff_t diff = desc->file->f_pos - desc->current_index;
256  unsigned int index;
257 
258  if (diff < 0)
259  goto out_eof;
260  if (diff >= array->size) {
261  if (array->eof_index >= 0)
262  goto out_eof;
263  return -EAGAIN;
264  }
265 
266  index = (unsigned int)diff;
267  *desc->dir_cookie = array->array[index].cookie;
268  desc->cache_entry_index = index;
269  return 0;
270 out_eof:
271  desc->eof = 1;
272  return -EBADCOOKIE;
273 }
274 
275 static
276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 {
278  int i;
279  loff_t new_pos;
280  int status = -EAGAIN;
281 
282  for (i = 0; i < array->size; i++) {
283  if (array->array[i].cookie == *desc->dir_cookie) {
284  struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
285  struct nfs_open_dir_context *ctx = desc->file->private_data;
286 
287  new_pos = desc->current_index + i;
288  if (ctx->attr_gencount != nfsi->attr_gencount
290  ctx->duped = 0;
291  ctx->attr_gencount = nfsi->attr_gencount;
292  } else if (new_pos < desc->file->f_pos) {
293  if (ctx->duped > 0
294  && ctx->dup_cookie == *desc->dir_cookie) {
295  if (printk_ratelimit()) {
296  pr_notice("NFS: directory %s/%s contains a readdir loop."
297  "Please contact your server vendor. "
298  "The file: %s has duplicate cookie %llu\n",
299  desc->file->f_dentry->d_parent->d_name.name,
300  desc->file->f_dentry->d_name.name,
301  array->array[i].string.name,
302  *desc->dir_cookie);
303  }
304  status = -ELOOP;
305  goto out;
306  }
307  ctx->dup_cookie = *desc->dir_cookie;
308  ctx->duped = -1;
309  }
310  desc->file->f_pos = new_pos;
311  desc->cache_entry_index = i;
312  return 0;
313  }
314  }
315  if (array->eof_index >= 0) {
316  status = -EBADCOOKIE;
317  if (*desc->dir_cookie == array->last_cookie)
318  desc->eof = 1;
319  }
320 out:
321  return status;
322 }
323 
324 static
325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326 {
327  struct nfs_cache_array *array;
328  int status;
329 
330  array = nfs_readdir_get_array(desc->page);
331  if (IS_ERR(array)) {
332  status = PTR_ERR(array);
333  goto out;
334  }
335 
336  if (*desc->dir_cookie == 0)
337  status = nfs_readdir_search_for_pos(array, desc);
338  else
339  status = nfs_readdir_search_for_cookie(array, desc);
340 
341  if (status == -EAGAIN) {
342  desc->last_cookie = array->last_cookie;
343  desc->current_index += array->size;
344  desc->page_index++;
345  }
346  nfs_readdir_release_array(desc->page);
347 out:
348  return status;
349 }
350 
351 /* Fill a page with xdr information before transferring to the cache page */
352 static
353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354  struct nfs_entry *entry, struct file *file, struct inode *inode)
355 {
356  struct nfs_open_dir_context *ctx = file->private_data;
357  struct rpc_cred *cred = ctx->cred;
358  unsigned long timestamp, gencount;
359  int error;
360 
361  again:
362  timestamp = jiffies;
363  gencount = nfs_inc_attr_generation_counter();
364  error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365  NFS_SERVER(inode)->dtsize, desc->plus);
366  if (error < 0) {
367  /* We requested READDIRPLUS, but the server doesn't grok it */
368  if (error == -ENOTSUPP && desc->plus) {
369  NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370  clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371  desc->plus = 0;
372  goto again;
373  }
374  goto error;
375  }
376  desc->timestamp = timestamp;
377  desc->gencount = gencount;
378 error:
379  return error;
380 }
381 
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383  struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385  int error;
386 
387  error = desc->decode(xdr, entry, desc->plus);
388  if (error)
389  return error;
390  entry->fattr->time_start = desc->timestamp;
391  entry->fattr->gencount = desc->gencount;
392  return 0;
393 }
394 
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398  if (dentry->d_inode == NULL)
399  goto different;
400  if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401  goto different;
402  return 1;
403 different:
404  return 0;
405 }
406 
407 static
408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409 {
410  if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411  return false;
413  return true;
414  if (filp->f_pos == 0)
415  return true;
416  return false;
417 }
418 
419 /*
420  * This function is called by the lookup code to request the use of
421  * readdirplus to accelerate any future lookups in the same
422  * directory.
423  */
424 static
425 void nfs_advise_use_readdirplus(struct inode *dir)
426 {
427  set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428 }
429 
430 static
431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432 {
433  struct qstr filename = QSTR_INIT(entry->name, entry->len);
434  struct dentry *dentry;
435  struct dentry *alias;
436  struct inode *dir = parent->d_inode;
437  struct inode *inode;
438 
439  if (filename.name[0] == '.') {
440  if (filename.len == 1)
441  return;
442  if (filename.len == 2 && filename.name[1] == '.')
443  return;
444  }
445  filename.hash = full_name_hash(filename.name, filename.len);
446 
447  dentry = d_lookup(parent, &filename);
448  if (dentry != NULL) {
449  if (nfs_same_file(dentry, entry)) {
450  nfs_refresh_inode(dentry->d_inode, entry->fattr);
451  goto out;
452  } else {
453  if (d_invalidate(dentry) != 0)
454  goto out;
455  dput(dentry);
456  }
457  }
458 
459  dentry = d_alloc(parent, &filename);
460  if (dentry == NULL)
461  return;
462 
463  inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
464  if (IS_ERR(inode))
465  goto out;
466 
467  alias = d_materialise_unique(dentry, inode);
468  if (IS_ERR(alias))
469  goto out;
470  else if (alias) {
471  nfs_set_verifier(alias, nfs_save_change_attribute(dir));
472  dput(alias);
473  } else
474  nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
475 
476 out:
477  dput(dentry);
478 }
479 
480 /* Perform conversion from xdr to cache array */
481 static
482 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
483  struct page **xdr_pages, struct page *page, unsigned int buflen)
484 {
485  struct xdr_stream stream;
486  struct xdr_buf buf;
487  struct page *scratch;
488  struct nfs_cache_array *array;
489  unsigned int count = 0;
490  int status;
491 
492  scratch = alloc_page(GFP_KERNEL);
493  if (scratch == NULL)
494  return -ENOMEM;
495 
496  xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
497  xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
498 
499  do {
500  status = xdr_decode(desc, entry, &stream);
501  if (status != 0) {
502  if (status == -EAGAIN)
503  status = 0;
504  break;
505  }
506 
507  count++;
508 
509  if (desc->plus != 0)
510  nfs_prime_dcache(desc->file->f_path.dentry, entry);
511 
512  status = nfs_readdir_add_to_array(entry, page);
513  if (status != 0)
514  break;
515  } while (!entry->eof);
516 
517  if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
518  array = nfs_readdir_get_array(page);
519  if (!IS_ERR(array)) {
520  array->eof_index = array->size;
521  status = 0;
522  nfs_readdir_release_array(page);
523  } else
524  status = PTR_ERR(array);
525  }
526 
527  put_page(scratch);
528  return status;
529 }
530 
531 static
532 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
533 {
534  unsigned int i;
535  for (i = 0; i < npages; i++)
536  put_page(pages[i]);
537 }
538 
539 static
540 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
541  unsigned int npages)
542 {
543  nfs_readdir_free_pagearray(pages, npages);
544 }
545 
546 /*
547  * nfs_readdir_large_page will allocate pages that must be freed with a call
548  * to nfs_readdir_free_large_page
549  */
550 static
551 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
552 {
553  unsigned int i;
554 
555  for (i = 0; i < npages; i++) {
556  struct page *page = alloc_page(GFP_KERNEL);
557  if (page == NULL)
558  goto out_freepages;
559  pages[i] = page;
560  }
561  return 0;
562 
563 out_freepages:
564  nfs_readdir_free_pagearray(pages, i);
565  return -ENOMEM;
566 }
567 
568 static
569 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
570 {
571  struct page *pages[NFS_MAX_READDIR_PAGES];
572  void *pages_ptr = NULL;
573  struct nfs_entry entry;
574  struct file *file = desc->file;
575  struct nfs_cache_array *array;
576  int status = -ENOMEM;
577  unsigned int array_size = ARRAY_SIZE(pages);
578 
579  entry.prev_cookie = 0;
580  entry.cookie = desc->last_cookie;
581  entry.eof = 0;
582  entry.fh = nfs_alloc_fhandle();
583  entry.fattr = nfs_alloc_fattr();
584  entry.server = NFS_SERVER(inode);
585  if (entry.fh == NULL || entry.fattr == NULL)
586  goto out;
587 
588  array = nfs_readdir_get_array(page);
589  if (IS_ERR(array)) {
590  status = PTR_ERR(array);
591  goto out;
592  }
593  memset(array, 0, sizeof(struct nfs_cache_array));
594  array->eof_index = -1;
595 
596  status = nfs_readdir_large_page(pages, array_size);
597  if (status < 0)
598  goto out_release_array;
599  do {
600  unsigned int pglen;
601  status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
602 
603  if (status < 0)
604  break;
605  pglen = status;
606  status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
607  if (status < 0) {
608  if (status == -ENOSPC)
609  status = 0;
610  break;
611  }
612  } while (array->eof_index < 0);
613 
614  nfs_readdir_free_large_page(pages_ptr, pages, array_size);
615 out_release_array:
616  nfs_readdir_release_array(page);
617 out:
618  nfs_free_fattr(entry.fattr);
619  nfs_free_fhandle(entry.fh);
620  return status;
621 }
622 
623 /*
624  * Now we cache directories properly, by converting xdr information
625  * to an array that can be used for lookups later. This results in
626  * fewer cache pages, since we can store more information on each page.
627  * We only need to convert from xdr once so future lookups are much simpler
628  */
629 static
630 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
631 {
632  struct inode *inode = desc->file->f_path.dentry->d_inode;
633  int ret;
634 
635  ret = nfs_readdir_xdr_to_array(desc, page, inode);
636  if (ret < 0)
637  goto error;
638  SetPageUptodate(page);
639 
640  if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
641  /* Should never happen */
642  nfs_zap_mapping(inode, inode->i_mapping);
643  }
644  unlock_page(page);
645  return 0;
646  error:
647  unlock_page(page);
648  return ret;
649 }
650 
651 static
652 void cache_page_release(nfs_readdir_descriptor_t *desc)
653 {
654  if (!desc->page->mapping)
655  nfs_readdir_clear_array(desc->page);
656  page_cache_release(desc->page);
657  desc->page = NULL;
658 }
659 
660 static
661 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
662 {
663  return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
664  desc->page_index, (filler_t *)nfs_readdir_filler, desc);
665 }
666 
667 /*
668  * Returns 0 if desc->dir_cookie was found on page desc->page_index
669  */
670 static
671 int find_cache_page(nfs_readdir_descriptor_t *desc)
672 {
673  int res;
674 
675  desc->page = get_cache_page(desc);
676  if (IS_ERR(desc->page))
677  return PTR_ERR(desc->page);
678 
679  res = nfs_readdir_search_array(desc);
680  if (res != 0)
681  cache_page_release(desc);
682  return res;
683 }
684 
685 /* Search for desc->dir_cookie from the beginning of the page cache */
686 static inline
687 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
688 {
689  int res;
690 
691  if (desc->page_index == 0) {
692  desc->current_index = 0;
693  desc->last_cookie = 0;
694  }
695  do {
696  res = find_cache_page(desc);
697  } while (res == -EAGAIN);
698  return res;
699 }
700 
701 /*
702  * Once we've found the start of the dirent within a page: fill 'er up...
703  */
704 static
705 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
706  filldir_t filldir)
707 {
708  struct file *file = desc->file;
709  int i = 0;
710  int res = 0;
711  struct nfs_cache_array *array = NULL;
712  struct nfs_open_dir_context *ctx = file->private_data;
713 
714  array = nfs_readdir_get_array(desc->page);
715  if (IS_ERR(array)) {
716  res = PTR_ERR(array);
717  goto out;
718  }
719 
720  for (i = desc->cache_entry_index; i < array->size; i++) {
721  struct nfs_cache_array_entry *ent;
722 
723  ent = &array->array[i];
724  if (filldir(dirent, ent->string.name, ent->string.len,
725  file->f_pos, nfs_compat_user_ino64(ent->ino),
726  ent->d_type) < 0) {
727  desc->eof = 1;
728  break;
729  }
730  file->f_pos++;
731  if (i < (array->size-1))
732  *desc->dir_cookie = array->array[i+1].cookie;
733  else
734  *desc->dir_cookie = array->last_cookie;
735  if (ctx->duped != 0)
736  ctx->duped = 1;
737  }
738  if (array->eof_index >= 0)
739  desc->eof = 1;
740 
741  nfs_readdir_release_array(desc->page);
742 out:
743  cache_page_release(desc);
744  dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
745  (unsigned long long)*desc->dir_cookie, res);
746  return res;
747 }
748 
749 /*
750  * If we cannot find a cookie in our cache, we suspect that this is
751  * because it points to a deleted file, so we ask the server to return
752  * whatever it thinks is the next entry. We then feed this to filldir.
753  * If all goes well, we should then be able to find our way round the
754  * cache on the next call to readdir_search_pagecache();
755  *
756  * NOTE: we cannot add the anonymous page to the pagecache because
757  * the data it contains might not be page aligned. Besides,
758  * we should already have a complete representation of the
759  * directory in the page cache by the time we get here.
760  */
761 static inline
762 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
763  filldir_t filldir)
764 {
765  struct page *page = NULL;
766  int status;
767  struct inode *inode = desc->file->f_path.dentry->d_inode;
768  struct nfs_open_dir_context *ctx = desc->file->private_data;
769 
770  dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
771  (unsigned long long)*desc->dir_cookie);
772 
773  page = alloc_page(GFP_HIGHUSER);
774  if (!page) {
775  status = -ENOMEM;
776  goto out;
777  }
778 
779  desc->page_index = 0;
780  desc->last_cookie = *desc->dir_cookie;
781  desc->page = page;
782  ctx->duped = 0;
783 
784  status = nfs_readdir_xdr_to_array(desc, page, inode);
785  if (status < 0)
786  goto out_release;
787 
788  status = nfs_do_filldir(desc, dirent, filldir);
789 
790  out:
791  dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
792  __func__, status);
793  return status;
794  out_release:
795  cache_page_release(desc);
796  goto out;
797 }
798 
799 /* The file offset position represents the dirent entry number. A
800  last cookie cache takes care of the common case of reading the
801  whole directory.
802  */
803 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
804 {
805  struct dentry *dentry = filp->f_path.dentry;
806  struct inode *inode = dentry->d_inode;
807  nfs_readdir_descriptor_t my_desc,
808  *desc = &my_desc;
809  struct nfs_open_dir_context *dir_ctx = filp->private_data;
810  int res;
811 
812  dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
813  dentry->d_parent->d_name.name, dentry->d_name.name,
814  (long long)filp->f_pos);
815  nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
816 
817  /*
818  * filp->f_pos points to the dirent entry number.
819  * *desc->dir_cookie has the cookie for the next entry. We have
820  * to either find the entry with the appropriate number or
821  * revalidate the cookie.
822  */
823  memset(desc, 0, sizeof(*desc));
824 
825  desc->file = filp;
826  desc->dir_cookie = &dir_ctx->dir_cookie;
827  desc->decode = NFS_PROTO(inode)->decode_dirent;
828  desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
829 
830  nfs_block_sillyrename(dentry);
831  res = nfs_revalidate_mapping(inode, filp->f_mapping);
832  if (res < 0)
833  goto out;
834 
835  do {
836  res = readdir_search_pagecache(desc);
837 
838  if (res == -EBADCOOKIE) {
839  res = 0;
840  /* This means either end of directory */
841  if (*desc->dir_cookie && desc->eof == 0) {
842  /* Or that the server has 'lost' a cookie */
843  res = uncached_readdir(desc, dirent, filldir);
844  if (res == 0)
845  continue;
846  }
847  break;
848  }
849  if (res == -ETOOSMALL && desc->plus) {
850  clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
851  nfs_zap_caches(inode);
852  desc->page_index = 0;
853  desc->plus = 0;
854  desc->eof = 0;
855  continue;
856  }
857  if (res < 0)
858  break;
859 
860  res = nfs_do_filldir(desc, dirent, filldir);
861  if (res < 0)
862  break;
863  } while (!desc->eof);
864 out:
865  nfs_unblock_sillyrename(dentry);
866  if (res > 0)
867  res = 0;
868  dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
869  dentry->d_parent->d_name.name, dentry->d_name.name,
870  res);
871  return res;
872 }
873 
874 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
875 {
876  struct dentry *dentry = filp->f_path.dentry;
877  struct inode *inode = dentry->d_inode;
878  struct nfs_open_dir_context *dir_ctx = filp->private_data;
879 
880  dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
881  dentry->d_parent->d_name.name,
882  dentry->d_name.name,
883  offset, origin);
884 
885  mutex_lock(&inode->i_mutex);
886  switch (origin) {
887  case 1:
888  offset += filp->f_pos;
889  case 0:
890  if (offset >= 0)
891  break;
892  default:
893  offset = -EINVAL;
894  goto out;
895  }
896  if (offset != filp->f_pos) {
897  filp->f_pos = offset;
898  dir_ctx->dir_cookie = 0;
899  dir_ctx->duped = 0;
900  }
901 out:
902  mutex_unlock(&inode->i_mutex);
903  return offset;
904 }
905 
906 /*
907  * All directory operations under NFS are synchronous, so fsync()
908  * is a dummy operation.
909  */
910 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
911  int datasync)
912 {
913  struct dentry *dentry = filp->f_path.dentry;
914  struct inode *inode = dentry->d_inode;
915 
916  dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
917  dentry->d_parent->d_name.name, dentry->d_name.name,
918  datasync);
919 
920  mutex_lock(&inode->i_mutex);
921  nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
922  mutex_unlock(&inode->i_mutex);
923  return 0;
924 }
925 
936 void nfs_force_lookup_revalidate(struct inode *dir)
937 {
938  NFS_I(dir)->cache_change_attribute++;
939 }
941 
942 /*
943  * A check for whether or not the parent directory has changed.
944  * In the case it has, we assume that the dentries are untrustworthy
945  * and may need to be looked up again.
946  */
947 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
948 {
949  if (IS_ROOT(dentry))
950  return 1;
951  if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
952  return 0;
953  if (!nfs_verify_change_attribute(dir, dentry->d_time))
954  return 0;
955  /* Revalidate nfsi->cache_change_attribute before we declare a match */
956  if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
957  return 0;
958  if (!nfs_verify_change_attribute(dir, dentry->d_time))
959  return 0;
960  return 1;
961 }
962 
963 /*
964  * Use intent information to check whether or not we're going to do
965  * an O_EXCL create using this path component.
966  */
967 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
968 {
969  if (NFS_PROTO(dir)->version == 2)
970  return 0;
971  return flags & LOOKUP_EXCL;
972 }
973 
974 /*
975  * Inode and filehandle revalidation for lookups.
976  *
977  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
978  * or if the intent information indicates that we're about to open this
979  * particular file and the "nocto" mount flag is not set.
980  *
981  */
982 static inline
983 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
984 {
985  struct nfs_server *server = NFS_SERVER(inode);
986 
987  if (IS_AUTOMOUNT(inode))
988  return 0;
989  /* VFS wants an on-the-wire revalidation */
990  if (flags & LOOKUP_REVAL)
991  goto out_force;
992  /* This is an open(2) */
993  if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
994  (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
995  goto out_force;
996  return 0;
997 out_force:
998  return __nfs_revalidate_inode(server, inode);
999 }
1000 
1001 /*
1002  * We judge how long we want to trust negative
1003  * dentries by looking at the parent inode mtime.
1004  *
1005  * If parent mtime has changed, we revalidate, else we wait for a
1006  * period corresponding to the parent's attribute cache timeout value.
1007  */
1008 static inline
1009 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1010  unsigned int flags)
1011 {
1012  /* Don't revalidate a negative dentry if we're creating a new file */
1013  if (flags & LOOKUP_CREATE)
1014  return 0;
1015  if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1016  return 1;
1017  return !nfs_check_verifier(dir, dentry);
1018 }
1019 
1020 /*
1021  * This is called every time the dcache has a lookup hit,
1022  * and we should check whether we can really trust that
1023  * lookup.
1024  *
1025  * NOTE! The hit can be a negative hit too, don't assume
1026  * we have an inode!
1027  *
1028  * If the parent directory is seen to have changed, we throw out the
1029  * cached dentry and do a new lookup.
1030  */
1031 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1032 {
1033  struct inode *dir;
1034  struct inode *inode;
1035  struct dentry *parent;
1036  struct nfs_fh *fhandle = NULL;
1037  struct nfs_fattr *fattr = NULL;
1038  int error;
1039 
1040  if (flags & LOOKUP_RCU)
1041  return -ECHILD;
1042 
1043  parent = dget_parent(dentry);
1044  dir = parent->d_inode;
1045  nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1046  inode = dentry->d_inode;
1047 
1048  if (!inode) {
1049  if (nfs_neg_need_reval(dir, dentry, flags))
1050  goto out_bad;
1051  goto out_valid_noent;
1052  }
1053 
1054  if (is_bad_inode(inode)) {
1055  dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1056  __func__, dentry->d_parent->d_name.name,
1057  dentry->d_name.name);
1058  goto out_bad;
1059  }
1060 
1061  if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1062  goto out_set_verifier;
1063 
1064  /* Force a full look up iff the parent directory has changed */
1065  if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1066  if (nfs_lookup_verify_inode(inode, flags))
1067  goto out_zap_parent;
1068  goto out_valid;
1069  }
1070 
1071  if (NFS_STALE(inode))
1072  goto out_bad;
1073 
1074  error = -ENOMEM;
1075  fhandle = nfs_alloc_fhandle();
1076  fattr = nfs_alloc_fattr();
1077  if (fhandle == NULL || fattr == NULL)
1078  goto out_error;
1079 
1080  error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1081  if (error)
1082  goto out_bad;
1083  if (nfs_compare_fh(NFS_FH(inode), fhandle))
1084  goto out_bad;
1085  if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1086  goto out_bad;
1087 
1088  nfs_free_fattr(fattr);
1089  nfs_free_fhandle(fhandle);
1090 out_set_verifier:
1091  nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1092  out_valid:
1093  /* Success: notify readdir to use READDIRPLUS */
1094  nfs_advise_use_readdirplus(dir);
1095  out_valid_noent:
1096  dput(parent);
1097  dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1098  __func__, dentry->d_parent->d_name.name,
1099  dentry->d_name.name);
1100  return 1;
1101 out_zap_parent:
1102  nfs_zap_caches(dir);
1103  out_bad:
1104  nfs_free_fattr(fattr);
1105  nfs_free_fhandle(fhandle);
1106  nfs_mark_for_revalidate(dir);
1107  if (inode && S_ISDIR(inode->i_mode)) {
1108  /* Purge readdir caches. */
1109  nfs_zap_caches(inode);
1110  /* If we have submounts, don't unhash ! */
1111  if (have_submounts(dentry))
1112  goto out_valid;
1113  if (dentry->d_flags & DCACHE_DISCONNECTED)
1114  goto out_valid;
1115  shrink_dcache_parent(dentry);
1116  }
1117  d_drop(dentry);
1118  dput(parent);
1119  dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1120  __func__, dentry->d_parent->d_name.name,
1121  dentry->d_name.name);
1122  return 0;
1123 out_error:
1124  nfs_free_fattr(fattr);
1125  nfs_free_fhandle(fhandle);
1126  dput(parent);
1127  dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1128  __func__, dentry->d_parent->d_name.name,
1129  dentry->d_name.name, error);
1130  return error;
1131 }
1132 
1133 /*
1134  * This is called from dput() when d_count is going to 0.
1135  */
1136 static int nfs_dentry_delete(const struct dentry *dentry)
1137 {
1138  dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1139  dentry->d_parent->d_name.name, dentry->d_name.name,
1140  dentry->d_flags);
1141 
1142  /* Unhash any dentry with a stale inode */
1143  if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1144  return 1;
1145 
1146  if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1147  /* Unhash it, so that ->d_iput() would be called */
1148  return 1;
1149  }
1150  if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1151  /* Unhash it, so that ancestors of killed async unlink
1152  * files will be cleaned up during umount */
1153  return 1;
1154  }
1155  return 0;
1156 
1157 }
1158 
1159 static void nfs_drop_nlink(struct inode *inode)
1160 {
1161  spin_lock(&inode->i_lock);
1162  if (inode->i_nlink > 0)
1163  drop_nlink(inode);
1164  spin_unlock(&inode->i_lock);
1165 }
1166 
1167 /*
1168  * Called when the dentry loses inode.
1169  * We use it to clean up silly-renamed files.
1170  */
1171 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1172 {
1173  if (S_ISDIR(inode->i_mode))
1174  /* drop any readdir cache as it could easily be old */
1175  NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1176 
1177  if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1178  drop_nlink(inode);
1179  nfs_complete_unlink(dentry, inode);
1180  }
1181  iput(inode);
1182 }
1183 
1184 static void nfs_d_release(struct dentry *dentry)
1185 {
1186  /* free cached devname value, if it survived that far */
1187  if (unlikely(dentry->d_fsdata)) {
1188  if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1189  WARN_ON(1);
1190  else
1191  kfree(dentry->d_fsdata);
1192  }
1193 }
1194 
1196  .d_revalidate = nfs_lookup_revalidate,
1197  .d_delete = nfs_dentry_delete,
1198  .d_iput = nfs_dentry_iput,
1199  .d_automount = nfs_d_automount,
1200  .d_release = nfs_d_release,
1201 };
1202 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1203 
1204 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1205 {
1206  struct dentry *res;
1207  struct dentry *parent;
1208  struct inode *inode = NULL;
1209  struct nfs_fh *fhandle = NULL;
1210  struct nfs_fattr *fattr = NULL;
1211  int error;
1212 
1213  dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1214  dentry->d_parent->d_name.name, dentry->d_name.name);
1215  nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1216 
1217  res = ERR_PTR(-ENAMETOOLONG);
1218  if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1219  goto out;
1220 
1221  /*
1222  * If we're doing an exclusive create, optimize away the lookup
1223  * but don't hash the dentry.
1224  */
1225  if (nfs_is_exclusive_create(dir, flags)) {
1226  d_instantiate(dentry, NULL);
1227  res = NULL;
1228  goto out;
1229  }
1230 
1231  res = ERR_PTR(-ENOMEM);
1232  fhandle = nfs_alloc_fhandle();
1233  fattr = nfs_alloc_fattr();
1234  if (fhandle == NULL || fattr == NULL)
1235  goto out;
1236 
1237  parent = dentry->d_parent;
1238  /* Protect against concurrent sillydeletes */
1239  nfs_block_sillyrename(parent);
1240  error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1241  if (error == -ENOENT)
1242  goto no_entry;
1243  if (error < 0) {
1244  res = ERR_PTR(error);
1245  goto out_unblock_sillyrename;
1246  }
1247  inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1248  res = ERR_CAST(inode);
1249  if (IS_ERR(res))
1250  goto out_unblock_sillyrename;
1251 
1252  /* Success: notify readdir to use READDIRPLUS */
1253  nfs_advise_use_readdirplus(dir);
1254 
1255 no_entry:
1256  res = d_materialise_unique(dentry, inode);
1257  if (res != NULL) {
1258  if (IS_ERR(res))
1259  goto out_unblock_sillyrename;
1260  dentry = res;
1261  }
1262  nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1263 out_unblock_sillyrename:
1264  nfs_unblock_sillyrename(parent);
1265 out:
1266  nfs_free_fattr(fattr);
1267  nfs_free_fhandle(fhandle);
1268  return res;
1269 }
1271 
1272 #if IS_ENABLED(CONFIG_NFS_V4)
1273 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1274 
1275 const struct dentry_operations nfs4_dentry_operations = {
1276  .d_revalidate = nfs4_lookup_revalidate,
1277  .d_delete = nfs_dentry_delete,
1278  .d_iput = nfs_dentry_iput,
1279  .d_automount = nfs_d_automount,
1280  .d_release = nfs_d_release,
1281 };
1282 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1283 
1284 static fmode_t flags_to_mode(int flags)
1285 {
1286  fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1287  if ((flags & O_ACCMODE) != O_WRONLY)
1288  res |= FMODE_READ;
1289  if ((flags & O_ACCMODE) != O_RDONLY)
1290  res |= FMODE_WRITE;
1291  return res;
1292 }
1293 
1294 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1295 {
1296  return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1297 }
1298 
1299 static int do_open(struct inode *inode, struct file *filp)
1300 {
1301  nfs_fscache_set_inode_cookie(inode, filp);
1302  return 0;
1303 }
1304 
1305 static int nfs_finish_open(struct nfs_open_context *ctx,
1306  struct dentry *dentry,
1307  struct file *file, unsigned open_flags,
1308  int *opened)
1309 {
1310  int err;
1311 
1312  if (ctx->dentry != dentry) {
1313  dput(ctx->dentry);
1314  ctx->dentry = dget(dentry);
1315  }
1316 
1317  /* If the open_intent is for execute, we have an extra check to make */
1318  if (ctx->mode & FMODE_EXEC) {
1319  err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1320  if (err < 0)
1321  goto out;
1322  }
1323 
1324  err = finish_open(file, dentry, do_open, opened);
1325  if (err)
1326  goto out;
1327  nfs_file_set_open_context(file, ctx);
1328 
1329 out:
1330  put_nfs_open_context(ctx);
1331  return err;
1332 }
1333 
1334 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1335  struct file *file, unsigned open_flags,
1336  umode_t mode, int *opened)
1337 {
1338  struct nfs_open_context *ctx;
1339  struct dentry *res;
1340  struct iattr attr = { .ia_valid = ATTR_OPEN };
1341  struct inode *inode;
1342  int err;
1343 
1344  /* Expect a negative dentry */
1345  BUG_ON(dentry->d_inode);
1346 
1347  dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1348  dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1349 
1350  /* NFS only supports OPEN on regular files */
1351  if ((open_flags & O_DIRECTORY)) {
1352  if (!d_unhashed(dentry)) {
1353  /*
1354  * Hashed negative dentry with O_DIRECTORY: dentry was
1355  * revalidated and is fine, no need to perform lookup
1356  * again
1357  */
1358  return -ENOENT;
1359  }
1360  goto no_open;
1361  }
1362 
1363  if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1364  return -ENAMETOOLONG;
1365 
1366  if (open_flags & O_CREAT) {
1367  attr.ia_valid |= ATTR_MODE;
1368  attr.ia_mode = mode & ~current_umask();
1369  }
1370  if (open_flags & O_TRUNC) {
1371  attr.ia_valid |= ATTR_SIZE;
1372  attr.ia_size = 0;
1373  }
1374 
1375  ctx = create_nfs_open_context(dentry, open_flags);
1376  err = PTR_ERR(ctx);
1377  if (IS_ERR(ctx))
1378  goto out;
1379 
1381  inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1382  d_drop(dentry);
1383  if (IS_ERR(inode)) {
1385  put_nfs_open_context(ctx);
1386  err = PTR_ERR(inode);
1387  switch (err) {
1388  case -ENOENT:
1389  d_add(dentry, NULL);
1390  break;
1391  case -EISDIR:
1392  case -ENOTDIR:
1393  goto no_open;
1394  case -ELOOP:
1395  if (!(open_flags & O_NOFOLLOW))
1396  goto no_open;
1397  break;
1398  /* case -EINVAL: */
1399  default:
1400  break;
1401  }
1402  goto out;
1403  }
1404  res = d_add_unique(dentry, inode);
1405  if (res != NULL)
1406  dentry = res;
1407 
1409  nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1410 
1411  err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1412 
1413  dput(res);
1414 out:
1415  return err;
1416 
1417 no_open:
1418  res = nfs_lookup(dir, dentry, 0);
1419  err = PTR_ERR(res);
1420  if (IS_ERR(res))
1421  goto out;
1422 
1423  return finish_no_open(file, res);
1424 }
1425 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1426 
1427 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1428 {
1429  struct dentry *parent = NULL;
1430  struct inode *inode;
1431  struct inode *dir;
1432  int ret = 0;
1433 
1434  if (flags & LOOKUP_RCU)
1435  return -ECHILD;
1436 
1437  if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1438  goto no_open;
1439  if (d_mountpoint(dentry))
1440  goto no_open;
1441 
1442  inode = dentry->d_inode;
1443  parent = dget_parent(dentry);
1444  dir = parent->d_inode;
1445 
1446  /* We can't create new files in nfs_open_revalidate(), so we
1447  * optimize away revalidation of negative dentries.
1448  */
1449  if (inode == NULL) {
1450  if (!nfs_neg_need_reval(dir, dentry, flags))
1451  ret = 1;
1452  goto out;
1453  }
1454 
1455  /* NFS only supports OPEN on regular files */
1456  if (!S_ISREG(inode->i_mode))
1457  goto no_open_dput;
1458  /* We cannot do exclusive creation on a positive dentry */
1459  if (flags & LOOKUP_EXCL)
1460  goto no_open_dput;
1461 
1462  /* Let f_op->open() actually open (and revalidate) the file */
1463  ret = 1;
1464 
1465 out:
1466  dput(parent);
1467  return ret;
1468 
1469 no_open_dput:
1470  dput(parent);
1471 no_open:
1472  return nfs_lookup_revalidate(dentry, flags);
1473 }
1474 
1475 #endif /* CONFIG_NFSV4 */
1476 
1477 /*
1478  * Code common to create, mkdir, and mknod.
1479  */
1480 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1481  struct nfs_fattr *fattr)
1482 {
1483  struct dentry *parent = dget_parent(dentry);
1484  struct inode *dir = parent->d_inode;
1485  struct inode *inode;
1486  int error = -EACCES;
1487 
1488  d_drop(dentry);
1489 
1490  /* We may have been initialized further down */
1491  if (dentry->d_inode)
1492  goto out;
1493  if (fhandle->size == 0) {
1494  error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1495  if (error)
1496  goto out_error;
1497  }
1498  nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1499  if (!(fattr->valid & NFS_ATTR_FATTR)) {
1500  struct nfs_server *server = NFS_SB(dentry->d_sb);
1501  error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1502  if (error < 0)
1503  goto out_error;
1504  }
1505  inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1506  error = PTR_ERR(inode);
1507  if (IS_ERR(inode))
1508  goto out_error;
1509  d_add(dentry, inode);
1510 out:
1511  dput(parent);
1512  return 0;
1513 out_error:
1514  nfs_mark_for_revalidate(dir);
1515  dput(parent);
1516  return error;
1517 }
1519 
1520 /*
1521  * Following a failed create operation, we drop the dentry rather
1522  * than retain a negative dentry. This avoids a problem in the event
1523  * that the operation succeeded on the server, but an error in the
1524  * reply path made it appear to have failed.
1525  */
1526 int nfs_create(struct inode *dir, struct dentry *dentry,
1527  umode_t mode, bool excl)
1528 {
1529  struct iattr attr;
1530  int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1531  int error;
1532 
1533  dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1534  dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1535 
1536  attr.ia_mode = mode;
1537  attr.ia_valid = ATTR_MODE;
1538 
1539  error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1540  if (error != 0)
1541  goto out_err;
1542  return 0;
1543 out_err:
1544  d_drop(dentry);
1545  return error;
1546 }
1548 
1549 /*
1550  * See comments for nfs_proc_create regarding failed operations.
1551  */
1552 int
1553 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1554 {
1555  struct iattr attr;
1556  int status;
1557 
1558  dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1559  dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1560 
1561  if (!new_valid_dev(rdev))
1562  return -EINVAL;
1563 
1564  attr.ia_mode = mode;
1565  attr.ia_valid = ATTR_MODE;
1566 
1567  status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1568  if (status != 0)
1569  goto out_err;
1570  return 0;
1571 out_err:
1572  d_drop(dentry);
1573  return status;
1574 }
1576 
1577 /*
1578  * See comments for nfs_proc_create regarding failed operations.
1579  */
1580 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1581 {
1582  struct iattr attr;
1583  int error;
1584 
1585  dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1586  dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1587 
1588  attr.ia_valid = ATTR_MODE;
1589  attr.ia_mode = mode | S_IFDIR;
1590 
1591  error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1592  if (error != 0)
1593  goto out_err;
1594  return 0;
1595 out_err:
1596  d_drop(dentry);
1597  return error;
1598 }
1600 
1601 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1602 {
1603  if (dentry->d_inode != NULL && !d_unhashed(dentry))
1604  d_delete(dentry);
1605 }
1606 
1607 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1608 {
1609  int error;
1610 
1611  dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1612  dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1613 
1614  error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1615  /* Ensure the VFS deletes this inode */
1616  if (error == 0 && dentry->d_inode != NULL)
1617  clear_nlink(dentry->d_inode);
1618  else if (error == -ENOENT)
1619  nfs_dentry_handle_enoent(dentry);
1620 
1621  return error;
1622 }
1624 
1625 /*
1626  * Remove a file after making sure there are no pending writes,
1627  * and after checking that the file has only one user.
1628  *
1629  * We invalidate the attribute cache and free the inode prior to the operation
1630  * to avoid possible races if the server reuses the inode.
1631  */
1632 static int nfs_safe_remove(struct dentry *dentry)
1633 {
1634  struct inode *dir = dentry->d_parent->d_inode;
1635  struct inode *inode = dentry->d_inode;
1636  int error = -EBUSY;
1637 
1638  dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1639  dentry->d_parent->d_name.name, dentry->d_name.name);
1640 
1641  /* If the dentry was sillyrenamed, we simply call d_delete() */
1642  if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1643  error = 0;
1644  goto out;
1645  }
1646 
1647  if (inode != NULL) {
1648  NFS_PROTO(inode)->return_delegation(inode);
1649  error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1650  /* The VFS may want to delete this inode */
1651  if (error == 0)
1652  nfs_drop_nlink(inode);
1653  nfs_mark_for_revalidate(inode);
1654  } else
1655  error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1656  if (error == -ENOENT)
1657  nfs_dentry_handle_enoent(dentry);
1658 out:
1659  return error;
1660 }
1661 
1662 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1663  * belongs to an active ".nfs..." file and we return -EBUSY.
1664  *
1665  * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1666  */
1667 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1668 {
1669  int error;
1670  int need_rehash = 0;
1671 
1672  dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1673  dir->i_ino, dentry->d_name.name);
1674 
1675  spin_lock(&dentry->d_lock);
1676  if (dentry->d_count > 1) {
1677  spin_unlock(&dentry->d_lock);
1678  /* Start asynchronous writeout of the inode */
1679  write_inode_now(dentry->d_inode, 0);
1680  error = nfs_sillyrename(dir, dentry);
1681  return error;
1682  }
1683  if (!d_unhashed(dentry)) {
1684  __d_drop(dentry);
1685  need_rehash = 1;
1686  }
1687  spin_unlock(&dentry->d_lock);
1688  error = nfs_safe_remove(dentry);
1689  if (!error || error == -ENOENT) {
1690  nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1691  } else if (need_rehash)
1692  d_rehash(dentry);
1693  return error;
1694 }
1696 
1697 /*
1698  * To create a symbolic link, most file systems instantiate a new inode,
1699  * add a page to it containing the path, then write it out to the disk
1700  * using prepare_write/commit_write.
1701  *
1702  * Unfortunately the NFS client can't create the in-core inode first
1703  * because it needs a file handle to create an in-core inode (see
1704  * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1705  * symlink request has completed on the server.
1706  *
1707  * So instead we allocate a raw page, copy the symname into it, then do
1708  * the SYMLINK request with the page as the buffer. If it succeeds, we
1709  * now have a new file handle and can instantiate an in-core NFS inode
1710  * and move the raw page into its mapping.
1711  */
1712 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1713 {
1714  struct pagevec lru_pvec;
1715  struct page *page;
1716  char *kaddr;
1717  struct iattr attr;
1718  unsigned int pathlen = strlen(symname);
1719  int error;
1720 
1721  dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1722  dir->i_ino, dentry->d_name.name, symname);
1723 
1724  if (pathlen > PAGE_SIZE)
1725  return -ENAMETOOLONG;
1726 
1727  attr.ia_mode = S_IFLNK | S_IRWXUGO;
1728  attr.ia_valid = ATTR_MODE;
1729 
1730  page = alloc_page(GFP_HIGHUSER);
1731  if (!page)
1732  return -ENOMEM;
1733 
1734  kaddr = kmap_atomic(page);
1735  memcpy(kaddr, symname, pathlen);
1736  if (pathlen < PAGE_SIZE)
1737  memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1738  kunmap_atomic(kaddr);
1739 
1740  error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1741  if (error != 0) {
1742  dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1743  dir->i_sb->s_id, dir->i_ino,
1744  dentry->d_name.name, symname, error);
1745  d_drop(dentry);
1746  __free_page(page);
1747  return error;
1748  }
1749 
1750  /*
1751  * No big deal if we can't add this page to the page cache here.
1752  * READLINK will get the missing page from the server if needed.
1753  */
1754  pagevec_init(&lru_pvec, 0);
1755  if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1756  GFP_KERNEL)) {
1757  pagevec_add(&lru_pvec, page);
1758  pagevec_lru_add_file(&lru_pvec);
1759  SetPageUptodate(page);
1760  unlock_page(page);
1761  } else
1762  __free_page(page);
1763 
1764  return 0;
1765 }
1767 
1768 int
1769 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1770 {
1771  struct inode *inode = old_dentry->d_inode;
1772  int error;
1773 
1774  dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1775  old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1776  dentry->d_parent->d_name.name, dentry->d_name.name);
1777 
1778  NFS_PROTO(inode)->return_delegation(inode);
1779 
1780  d_drop(dentry);
1781  error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1782  if (error == 0) {
1783  ihold(inode);
1784  d_add(dentry, inode);
1785  }
1786  return error;
1787 }
1789 
1790 /*
1791  * RENAME
1792  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1793  * different file handle for the same inode after a rename (e.g. when
1794  * moving to a different directory). A fail-safe method to do so would
1795  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1796  * rename the old file using the sillyrename stuff. This way, the original
1797  * file in old_dir will go away when the last process iput()s the inode.
1798  *
1799  * FIXED.
1800  *
1801  * It actually works quite well. One needs to have the possibility for
1802  * at least one ".nfs..." file in each directory the file ever gets
1803  * moved or linked to which happens automagically with the new
1804  * implementation that only depends on the dcache stuff instead of
1805  * using the inode layer
1806  *
1807  * Unfortunately, things are a little more complicated than indicated
1808  * above. For a cross-directory move, we want to make sure we can get
1809  * rid of the old inode after the operation. This means there must be
1810  * no pending writes (if it's a file), and the use count must be 1.
1811  * If these conditions are met, we can drop the dentries before doing
1812  * the rename.
1813  */
1814 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1815  struct inode *new_dir, struct dentry *new_dentry)
1816 {
1817  struct inode *old_inode = old_dentry->d_inode;
1818  struct inode *new_inode = new_dentry->d_inode;
1819  struct dentry *dentry = NULL, *rehash = NULL;
1820  int error = -EBUSY;
1821 
1822  dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1823  old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1824  new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1825  new_dentry->d_count);
1826 
1827  /*
1828  * For non-directories, check whether the target is busy and if so,
1829  * make a copy of the dentry and then do a silly-rename. If the
1830  * silly-rename succeeds, the copied dentry is hashed and becomes
1831  * the new target.
1832  */
1833  if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1834  /*
1835  * To prevent any new references to the target during the
1836  * rename, we unhash the dentry in advance.
1837  */
1838  if (!d_unhashed(new_dentry)) {
1839  d_drop(new_dentry);
1840  rehash = new_dentry;
1841  }
1842 
1843  if (new_dentry->d_count > 2) {
1844  int err;
1845 
1846  /* copy the target dentry's name */
1847  dentry = d_alloc(new_dentry->d_parent,
1848  &new_dentry->d_name);
1849  if (!dentry)
1850  goto out;
1851 
1852  /* silly-rename the existing target ... */
1853  err = nfs_sillyrename(new_dir, new_dentry);
1854  if (err)
1855  goto out;
1856 
1857  new_dentry = dentry;
1858  rehash = NULL;
1859  new_inode = NULL;
1860  }
1861  }
1862 
1863  NFS_PROTO(old_inode)->return_delegation(old_inode);
1864  if (new_inode != NULL)
1865  NFS_PROTO(new_inode)->return_delegation(new_inode);
1866 
1867  error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1868  new_dir, &new_dentry->d_name);
1869  nfs_mark_for_revalidate(old_inode);
1870 out:
1871  if (rehash)
1872  d_rehash(rehash);
1873  if (!error) {
1874  if (new_inode != NULL)
1875  nfs_drop_nlink(new_inode);
1876  d_move(old_dentry, new_dentry);
1877  nfs_set_verifier(new_dentry,
1878  nfs_save_change_attribute(new_dir));
1879  } else if (error == -ENOENT)
1880  nfs_dentry_handle_enoent(old_dentry);
1881 
1882  /* new dentry created? */
1883  if (dentry)
1884  dput(dentry);
1885  return error;
1886 }
1888 
1889 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1890 static LIST_HEAD(nfs_access_lru_list);
1891 static atomic_long_t nfs_access_nr_entries;
1892 
1893 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1894 {
1895  put_rpccred(entry->cred);
1896  kfree(entry);
1898  atomic_long_dec(&nfs_access_nr_entries);
1900 }
1901 
1902 static void nfs_access_free_list(struct list_head *head)
1903 {
1904  struct nfs_access_entry *cache;
1905 
1906  while (!list_empty(head)) {
1907  cache = list_entry(head->next, struct nfs_access_entry, lru);
1908  list_del(&cache->lru);
1909  nfs_access_free_entry(cache);
1910  }
1911 }
1912 
1914  struct shrink_control *sc)
1915 {
1916  LIST_HEAD(head);
1917  struct nfs_inode *nfsi, *next;
1918  struct nfs_access_entry *cache;
1919  int nr_to_scan = sc->nr_to_scan;
1920  gfp_t gfp_mask = sc->gfp_mask;
1921 
1922  if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1923  return (nr_to_scan == 0) ? 0 : -1;
1924 
1925  spin_lock(&nfs_access_lru_lock);
1926  list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1927  struct inode *inode;
1928 
1929  if (nr_to_scan-- == 0)
1930  break;
1931  inode = &nfsi->vfs_inode;
1932  spin_lock(&inode->i_lock);
1933  if (list_empty(&nfsi->access_cache_entry_lru))
1934  goto remove_lru_entry;
1935  cache = list_entry(nfsi->access_cache_entry_lru.next,
1936  struct nfs_access_entry, lru);
1937  list_move(&cache->lru, &head);
1938  rb_erase(&cache->rb_node, &nfsi->access_cache);
1939  if (!list_empty(&nfsi->access_cache_entry_lru))
1940  list_move_tail(&nfsi->access_cache_inode_lru,
1941  &nfs_access_lru_list);
1942  else {
1943 remove_lru_entry:
1944  list_del_init(&nfsi->access_cache_inode_lru);
1948  }
1949  spin_unlock(&inode->i_lock);
1950  }
1951  spin_unlock(&nfs_access_lru_lock);
1952  nfs_access_free_list(&head);
1953  return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1954 }
1955 
1956 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1957 {
1958  struct rb_root *root_node = &nfsi->access_cache;
1959  struct rb_node *n;
1960  struct nfs_access_entry *entry;
1961 
1962  /* Unhook entries from the cache */
1963  while ((n = rb_first(root_node)) != NULL) {
1964  entry = rb_entry(n, struct nfs_access_entry, rb_node);
1965  rb_erase(n, root_node);
1966  list_move(&entry->lru, head);
1967  }
1969 }
1970 
1971 void nfs_access_zap_cache(struct inode *inode)
1972 {
1973  LIST_HEAD(head);
1974 
1975  if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1976  return;
1977  /* Remove from global LRU init */
1978  spin_lock(&nfs_access_lru_lock);
1979  if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1980  list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1981 
1982  spin_lock(&inode->i_lock);
1983  __nfs_access_zap_cache(NFS_I(inode), &head);
1984  spin_unlock(&inode->i_lock);
1985  spin_unlock(&nfs_access_lru_lock);
1986  nfs_access_free_list(&head);
1987 }
1989 
1990 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1991 {
1992  struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1993  struct nfs_access_entry *entry;
1994 
1995  while (n != NULL) {
1996  entry = rb_entry(n, struct nfs_access_entry, rb_node);
1997 
1998  if (cred < entry->cred)
1999  n = n->rb_left;
2000  else if (cred > entry->cred)
2001  n = n->rb_right;
2002  else
2003  return entry;
2004  }
2005  return NULL;
2006 }
2007 
2008 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2009 {
2010  struct nfs_inode *nfsi = NFS_I(inode);
2011  struct nfs_access_entry *cache;
2012  int err = -ENOENT;
2013 
2014  spin_lock(&inode->i_lock);
2016  goto out_zap;
2017  cache = nfs_access_search_rbtree(inode, cred);
2018  if (cache == NULL)
2019  goto out;
2020  if (!nfs_have_delegated_attributes(inode) &&
2021  !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2022  goto out_stale;
2023  res->jiffies = cache->jiffies;
2024  res->cred = cache->cred;
2025  res->mask = cache->mask;
2026  list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2027  err = 0;
2028 out:
2029  spin_unlock(&inode->i_lock);
2030  return err;
2031 out_stale:
2032  rb_erase(&cache->rb_node, &nfsi->access_cache);
2033  list_del(&cache->lru);
2034  spin_unlock(&inode->i_lock);
2035  nfs_access_free_entry(cache);
2036  return -ENOENT;
2037 out_zap:
2038  spin_unlock(&inode->i_lock);
2039  nfs_access_zap_cache(inode);
2040  return -ENOENT;
2041 }
2042 
2043 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2044 {
2045  struct nfs_inode *nfsi = NFS_I(inode);
2046  struct rb_root *root_node = &nfsi->access_cache;
2047  struct rb_node **p = &root_node->rb_node;
2048  struct rb_node *parent = NULL;
2049  struct nfs_access_entry *entry;
2050 
2051  spin_lock(&inode->i_lock);
2052  while (*p != NULL) {
2053  parent = *p;
2054  entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2055 
2056  if (set->cred < entry->cred)
2057  p = &parent->rb_left;
2058  else if (set->cred > entry->cred)
2059  p = &parent->rb_right;
2060  else
2061  goto found;
2062  }
2063  rb_link_node(&set->rb_node, parent, p);
2064  rb_insert_color(&set->rb_node, root_node);
2065  list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2066  spin_unlock(&inode->i_lock);
2067  return;
2068 found:
2069  rb_replace_node(parent, &set->rb_node, root_node);
2070  list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2071  list_del(&entry->lru);
2072  spin_unlock(&inode->i_lock);
2073  nfs_access_free_entry(entry);
2074 }
2075 
2076 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2077 {
2078  struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2079  if (cache == NULL)
2080  return;
2081  RB_CLEAR_NODE(&cache->rb_node);
2082  cache->jiffies = set->jiffies;
2083  cache->cred = get_rpccred(set->cred);
2084  cache->mask = set->mask;
2085 
2086  nfs_access_add_rbtree(inode, cache);
2087 
2088  /* Update accounting */
2090  atomic_long_inc(&nfs_access_nr_entries);
2092 
2093  /* Add inode to global LRU list */
2094  if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2095  spin_lock(&nfs_access_lru_lock);
2096  if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2097  list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2098  &nfs_access_lru_list);
2099  spin_unlock(&nfs_access_lru_lock);
2100  }
2101 }
2103 
2104 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2105 {
2106  entry->mask = 0;
2107  if (access_result & NFS4_ACCESS_READ)
2108  entry->mask |= MAY_READ;
2109  if (access_result &
2111  entry->mask |= MAY_WRITE;
2112  if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2113  entry->mask |= MAY_EXEC;
2114 }
2116 
2117 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2118 {
2119  struct nfs_access_entry cache;
2120  int status;
2121 
2122  status = nfs_access_get_cached(inode, cred, &cache);
2123  if (status == 0)
2124  goto out;
2125 
2126  /* Be clever: ask server to check for all possible rights */
2127  cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2128  cache.cred = cred;
2129  cache.jiffies = jiffies;
2130  status = NFS_PROTO(inode)->access(inode, &cache);
2131  if (status != 0) {
2132  if (status == -ESTALE) {
2133  nfs_zap_caches(inode);
2134  if (!S_ISDIR(inode->i_mode))
2135  set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2136  }
2137  return status;
2138  }
2139  nfs_access_add_cache(inode, &cache);
2140 out:
2141  if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2142  return 0;
2143  return -EACCES;
2144 }
2145 
2146 static int nfs_open_permission_mask(int openflags)
2147 {
2148  int mask = 0;
2149 
2150  if ((openflags & O_ACCMODE) != O_WRONLY)
2151  mask |= MAY_READ;
2152  if ((openflags & O_ACCMODE) != O_RDONLY)
2153  mask |= MAY_WRITE;
2154  if (openflags & __FMODE_EXEC)
2155  mask |= MAY_EXEC;
2156  return mask;
2157 }
2158 
2159 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2160 {
2161  return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2162 }
2164 
2165 int nfs_permission(struct inode *inode, int mask)
2166 {
2167  struct rpc_cred *cred;
2168  int res = 0;
2169 
2170  if (mask & MAY_NOT_BLOCK)
2171  return -ECHILD;
2172 
2173  nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2174 
2175  if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2176  goto out;
2177  /* Is this sys_access() ? */
2178  if (mask & (MAY_ACCESS | MAY_CHDIR))
2179  goto force_lookup;
2180 
2181  switch (inode->i_mode & S_IFMT) {
2182  case S_IFLNK:
2183  goto out;
2184  case S_IFREG:
2185  /* NFSv4 has atomic_open... */
2186  if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2187  && (mask & MAY_OPEN)
2188  && !(mask & MAY_EXEC))
2189  goto out;
2190  break;
2191  case S_IFDIR:
2192  /*
2193  * Optimize away all write operations, since the server
2194  * will check permissions when we perform the op.
2195  */
2196  if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2197  goto out;
2198  }
2199 
2200 force_lookup:
2201  if (!NFS_PROTO(inode)->access)
2202  goto out_notsup;
2203 
2204  cred = rpc_lookup_cred();
2205  if (!IS_ERR(cred)) {
2206  res = nfs_do_access(inode, cred, mask);
2207  put_rpccred(cred);
2208  } else
2209  res = PTR_ERR(cred);
2210 out:
2211  if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2212  res = -EACCES;
2213 
2214  dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2215  inode->i_sb->s_id, inode->i_ino, mask, res);
2216  return res;
2217 out_notsup:
2218  res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2219  if (res == 0)
2220  res = generic_permission(inode, mask);
2221  goto out;
2222 }
2224 
2225 /*
2226  * Local variables:
2227  * version-control: t
2228  * kept-new-versions: 5
2229  * End:
2230  */