Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pch_can.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 1999 - 2010 Intel Corporation.
3  * Copyright (C) 2010 LAPIS SEMICONDUCTOR CO., LTD.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; version 2 of the License.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/io.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/netdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/can.h>
32 #include <linux/can/dev.h>
33 #include <linux/can/error.h>
34 
35 #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
36 #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
37 #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
38 #define PCH_CTRL_CCE BIT(6)
39 #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
40 #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
41 #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
42 
43 #define PCH_CMASK_RX_TX_SET 0x00f3
44 #define PCH_CMASK_RX_TX_GET 0x0073
45 #define PCH_CMASK_ALL 0xff
46 #define PCH_CMASK_NEWDAT BIT(2)
47 #define PCH_CMASK_CLRINTPND BIT(3)
48 #define PCH_CMASK_CTRL BIT(4)
49 #define PCH_CMASK_ARB BIT(5)
50 #define PCH_CMASK_MASK BIT(6)
51 #define PCH_CMASK_RDWR BIT(7)
52 #define PCH_IF_MCONT_NEWDAT BIT(15)
53 #define PCH_IF_MCONT_MSGLOST BIT(14)
54 #define PCH_IF_MCONT_INTPND BIT(13)
55 #define PCH_IF_MCONT_UMASK BIT(12)
56 #define PCH_IF_MCONT_TXIE BIT(11)
57 #define PCH_IF_MCONT_RXIE BIT(10)
58 #define PCH_IF_MCONT_RMTEN BIT(9)
59 #define PCH_IF_MCONT_TXRQXT BIT(8)
60 #define PCH_IF_MCONT_EOB BIT(7)
61 #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
62 #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
63 #define PCH_ID2_DIR BIT(13)
64 #define PCH_ID2_XTD BIT(14)
65 #define PCH_ID_MSGVAL BIT(15)
66 #define PCH_IF_CREQ_BUSY BIT(15)
67 
68 #define PCH_STATUS_INT 0x8000
69 #define PCH_RP 0x00008000
70 #define PCH_REC 0x00007f00
71 #define PCH_TEC 0x000000ff
72 
73 #define PCH_TX_OK BIT(3)
74 #define PCH_RX_OK BIT(4)
75 #define PCH_EPASSIV BIT(5)
76 #define PCH_EWARN BIT(6)
77 #define PCH_BUS_OFF BIT(7)
78 
79 /* bit position of certain controller bits. */
80 #define PCH_BIT_BRP_SHIFT 0
81 #define PCH_BIT_SJW_SHIFT 6
82 #define PCH_BIT_TSEG1_SHIFT 8
83 #define PCH_BIT_TSEG2_SHIFT 12
84 #define PCH_BIT_BRPE_BRPE_SHIFT 6
85 
86 #define PCH_MSK_BITT_BRP 0x3f
87 #define PCH_MSK_BRPE_BRPE 0x3c0
88 #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
89 #define PCH_COUNTER_LIMIT 10
90 
91 #define PCH_CAN_CLK 50000000 /* 50MHz */
92 
93 /*
94  * Define the number of message object.
95  * PCH CAN communications are done via Message RAM.
96  * The Message RAM consists of 32 message objects.
97  */
98 #define PCH_RX_OBJ_NUM 26
99 #define PCH_TX_OBJ_NUM 6
100 #define PCH_RX_OBJ_START 1
101 #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
102 #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
103 #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
104 
105 #define PCH_FIFO_THRESH 16
106 
107 /* TxRqst2 show status of MsgObjNo.17~32 */
108 #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
109  (PCH_RX_OBJ_END - 16))
110 
111 enum pch_ifreg {
114 };
115 
124 };
125 
133 };
134 
143  u32 data[4];
144  u32 rsv[13];
145 };
146 
147 struct pch_can_regs {
156  struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
171 };
172 
173 struct pch_can_priv {
174  struct can_priv can;
175  struct pci_dev *dev;
180  struct net_device *ndev;
183  int tx_obj; /* Point next Tx Obj index */
184  int use_msi;
185 };
186 
187 static const struct can_bittiming_const pch_can_bittiming_const = {
188  .name = KBUILD_MODNAME,
189  .tseg1_min = 2,
190  .tseg1_max = 16,
191  .tseg2_min = 1,
192  .tseg2_max = 8,
193  .sjw_max = 4,
194  .brp_min = 1,
195  .brp_max = 1024, /* 6bit + extended 4bit */
196  .brp_inc = 1,
197 };
198 
199 static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
201  {0,}
202 };
203 MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
204 
205 static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
206 {
207  iowrite32(ioread32(addr) | mask, addr);
208 }
209 
210 static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
211 {
212  iowrite32(ioread32(addr) & ~mask, addr);
213 }
214 
215 static void pch_can_set_run_mode(struct pch_can_priv *priv,
216  enum pch_can_mode mode)
217 {
218  switch (mode) {
219  case PCH_CAN_RUN:
220  pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
221  break;
222 
223  case PCH_CAN_STOP:
224  pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
225  break;
226 
227  default:
228  netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
229  break;
230  }
231 }
232 
233 static void pch_can_set_optmode(struct pch_can_priv *priv)
234 {
235  u32 reg_val = ioread32(&priv->regs->opt);
236 
237  if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
238  reg_val |= PCH_OPT_SILENT;
239 
240  if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
241  reg_val |= PCH_OPT_LBACK;
242 
243  pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
244  iowrite32(reg_val, &priv->regs->opt);
245 }
246 
247 static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
248 {
250  u32 ifx_creq;
251 
252  iowrite32(num, creq_addr);
253  while (counter) {
254  ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
255  if (!ifx_creq)
256  break;
257  counter--;
258  udelay(1);
259  }
260  if (!counter)
261  pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
262 }
263 
264 static void pch_can_set_int_enables(struct pch_can_priv *priv,
265  enum pch_can_mode interrupt_no)
266 {
267  switch (interrupt_no) {
268  case PCH_CAN_DISABLE:
269  pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
270  break;
271 
272  case PCH_CAN_ALL:
273  pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
274  break;
275 
276  case PCH_CAN_NONE:
277  pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
278  break;
279 
280  default:
281  netdev_err(priv->ndev, "Invalid interrupt number.\n");
282  break;
283  }
284 }
285 
286 static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
287  int set, enum pch_ifreg dir)
288 {
289  u32 ie;
290 
291  if (dir)
292  ie = PCH_IF_MCONT_TXIE;
293  else
294  ie = PCH_IF_MCONT_RXIE;
295 
296  /* Reading the Msg buffer from Message RAM to IF1/2 registers. */
297  iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
298  pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
299 
300  /* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
302  &priv->regs->ifregs[dir].cmask);
303 
304  if (set) {
305  /* Setting the MsgVal and RxIE/TxIE bits */
306  pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
307  pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
308  } else {
309  /* Clearing the MsgVal and RxIE/TxIE bits */
310  pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
311  pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
312  }
313 
314  pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
315 }
316 
317 static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
318 {
319  int i;
320 
321  /* Traversing to obtain the object configured as receivers. */
322  for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
323  pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
324 }
325 
326 static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
327 {
328  int i;
329 
330  /* Traversing to obtain the object configured as transmit object. */
331  for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
332  pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
333 }
334 
335 static u32 pch_can_int_pending(struct pch_can_priv *priv)
336 {
337  return ioread32(&priv->regs->intr) & 0xffff;
338 }
339 
340 static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
341 {
342  int i; /* Msg Obj ID (1~32) */
343 
344  for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
345  iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
346  iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
347  iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
348  iowrite32(0x0, &priv->regs->ifregs[0].id1);
349  iowrite32(0x0, &priv->regs->ifregs[0].id2);
350  iowrite32(0x0, &priv->regs->ifregs[0].mcont);
351  iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
352  iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
353  iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
354  iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
357  &priv->regs->ifregs[0].cmask);
358  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
359  }
360 }
361 
362 static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
363 {
364  int i;
365 
366  for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
367  iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
368  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
369 
370  iowrite32(0x0, &priv->regs->ifregs[0].id1);
371  iowrite32(0x0, &priv->regs->ifregs[0].id2);
372 
373  pch_can_bit_set(&priv->regs->ifregs[0].mcont,
375 
376  /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
377  if (i == PCH_RX_OBJ_END)
378  pch_can_bit_set(&priv->regs->ifregs[0].mcont,
380  else
381  pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
383 
384  iowrite32(0, &priv->regs->ifregs[0].mask1);
385  pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
386  0x1fff | PCH_MASK2_MDIR_MXTD);
387 
388  /* Setting CMASK for writing */
390  PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
391 
392  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
393  }
394 
395  for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
396  iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
397  pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
398 
399  /* Resetting DIR bit for reception */
400  iowrite32(0x0, &priv->regs->ifregs[1].id1);
401  iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
402 
403  /* Setting EOB bit for transmitter */
405  &priv->regs->ifregs[1].mcont);
406 
407  iowrite32(0, &priv->regs->ifregs[1].mask1);
408  pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
409 
410  /* Setting CMASK for writing */
412  PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
413 
414  pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
415  }
416 }
417 
418 static void pch_can_init(struct pch_can_priv *priv)
419 {
420  /* Stopping the Can device. */
421  pch_can_set_run_mode(priv, PCH_CAN_STOP);
422 
423  /* Clearing all the message object buffers. */
424  pch_can_clear_if_buffers(priv);
425 
426  /* Configuring the respective message object as either rx/tx object. */
427  pch_can_config_rx_tx_buffers(priv);
428 
429  /* Enabling the interrupts. */
430  pch_can_set_int_enables(priv, PCH_CAN_ALL);
431 }
432 
433 static void pch_can_release(struct pch_can_priv *priv)
434 {
435  /* Stooping the CAN device. */
436  pch_can_set_run_mode(priv, PCH_CAN_STOP);
437 
438  /* Disabling the interrupts. */
439  pch_can_set_int_enables(priv, PCH_CAN_NONE);
440 
441  /* Disabling all the receive object. */
442  pch_can_set_rx_all(priv, 0);
443 
444  /* Disabling all the transmit object. */
445  pch_can_set_tx_all(priv, 0);
446 }
447 
448 /* This function clears interrupt(s) from the CAN device. */
449 static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
450 {
451  /* Clear interrupt for transmit object */
452  if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
453  /* Setting CMASK for clearing the reception interrupts. */
455  &priv->regs->ifregs[0].cmask);
456 
457  /* Clearing the Dir bit. */
458  pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
459 
460  /* Clearing NewDat & IntPnd */
461  pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
463 
464  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
465  } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
466  /*
467  * Setting CMASK for clearing interrupts for frame transmission.
468  */
470  &priv->regs->ifregs[1].cmask);
471 
472  /* Resetting the ID registers. */
473  pch_can_bit_set(&priv->regs->ifregs[1].id2,
474  PCH_ID2_DIR | (0x7ff << 2));
475  iowrite32(0x0, &priv->regs->ifregs[1].id1);
476 
477  /* Claring NewDat, TxRqst & IntPnd */
478  pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
481  pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
482  }
483 }
484 
485 static void pch_can_reset(struct pch_can_priv *priv)
486 {
487  /* write to sw reset register */
488  iowrite32(1, &priv->regs->srst);
489  iowrite32(0, &priv->regs->srst);
490 }
491 
492 static void pch_can_error(struct net_device *ndev, u32 status)
493 {
494  struct sk_buff *skb;
495  struct pch_can_priv *priv = netdev_priv(ndev);
496  struct can_frame *cf;
497  u32 errc, lec;
498  struct net_device_stats *stats = &(priv->ndev->stats);
499  enum can_state state = priv->can.state;
500 
501  skb = alloc_can_err_skb(ndev, &cf);
502  if (!skb)
503  return;
504 
505  if (status & PCH_BUS_OFF) {
506  pch_can_set_tx_all(priv, 0);
507  pch_can_set_rx_all(priv, 0);
508  state = CAN_STATE_BUS_OFF;
509  cf->can_id |= CAN_ERR_BUSOFF;
510  can_bus_off(ndev);
511  }
512 
513  errc = ioread32(&priv->regs->errc);
514  /* Warning interrupt. */
515  if (status & PCH_EWARN) {
516  state = CAN_STATE_ERROR_WARNING;
517  priv->can.can_stats.error_warning++;
518  cf->can_id |= CAN_ERR_CRTL;
519  if (((errc & PCH_REC) >> 8) > 96)
520  cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
521  if ((errc & PCH_TEC) > 96)
522  cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
523  netdev_dbg(ndev,
524  "%s -> Error Counter is more than 96.\n", __func__);
525  }
526  /* Error passive interrupt. */
527  if (status & PCH_EPASSIV) {
528  priv->can.can_stats.error_passive++;
529  state = CAN_STATE_ERROR_PASSIVE;
530  cf->can_id |= CAN_ERR_CRTL;
531  if (errc & PCH_RP)
532  cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
533  if ((errc & PCH_TEC) > 127)
534  cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
535  netdev_dbg(ndev,
536  "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
537  }
538 
539  lec = status & PCH_LEC_ALL;
540  switch (lec) {
541  case PCH_STUF_ERR:
542  cf->data[2] |= CAN_ERR_PROT_STUFF;
543  priv->can.can_stats.bus_error++;
544  stats->rx_errors++;
545  break;
546  case PCH_FORM_ERR:
547  cf->data[2] |= CAN_ERR_PROT_FORM;
548  priv->can.can_stats.bus_error++;
549  stats->rx_errors++;
550  break;
551  case PCH_ACK_ERR:
552  cf->can_id |= CAN_ERR_ACK;
553  priv->can.can_stats.bus_error++;
554  stats->rx_errors++;
555  break;
556  case PCH_BIT1_ERR:
557  case PCH_BIT0_ERR:
558  cf->data[2] |= CAN_ERR_PROT_BIT;
559  priv->can.can_stats.bus_error++;
560  stats->rx_errors++;
561  break;
562  case PCH_CRC_ERR:
563  cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
565  priv->can.can_stats.bus_error++;
566  stats->rx_errors++;
567  break;
568  case PCH_LEC_ALL: /* Written by CPU. No error status */
569  break;
570  }
571 
572  cf->data[6] = errc & PCH_TEC;
573  cf->data[7] = (errc & PCH_REC) >> 8;
574 
575  priv->can.state = state;
576  netif_receive_skb(skb);
577 
578  stats->rx_packets++;
579  stats->rx_bytes += cf->can_dlc;
580 }
581 
582 static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
583 {
584  struct net_device *ndev = (struct net_device *)dev_id;
585  struct pch_can_priv *priv = netdev_priv(ndev);
586 
587  if (!pch_can_int_pending(priv))
588  return IRQ_NONE;
589 
590  pch_can_set_int_enables(priv, PCH_CAN_NONE);
591  napi_schedule(&priv->napi);
592  return IRQ_HANDLED;
593 }
594 
595 static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
596 {
597  if (obj_id < PCH_FIFO_THRESH) {
599  PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
600 
601  /* Clearing the Dir bit. */
602  pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
603 
604  /* Clearing NewDat & IntPnd */
605  pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
607  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
608  } else if (obj_id > PCH_FIFO_THRESH) {
609  pch_can_int_clr(priv, obj_id);
610  } else if (obj_id == PCH_FIFO_THRESH) {
611  int cnt;
612  for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
613  pch_can_int_clr(priv, cnt + 1);
614  }
615 }
616 
617 static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
618 {
619  struct pch_can_priv *priv = netdev_priv(ndev);
620  struct net_device_stats *stats = &(priv->ndev->stats);
621  struct sk_buff *skb;
622  struct can_frame *cf;
623 
624  netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
625  pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
628  &priv->regs->ifregs[0].cmask);
629  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
630 
631  skb = alloc_can_err_skb(ndev, &cf);
632  if (!skb)
633  return;
634 
635  cf->can_id |= CAN_ERR_CRTL;
636  cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
637  stats->rx_over_errors++;
638  stats->rx_errors++;
639 
640  netif_receive_skb(skb);
641 }
642 
643 static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
644 {
645  u32 reg;
646  canid_t id;
647  int rcv_pkts = 0;
648  struct sk_buff *skb;
649  struct can_frame *cf;
650  struct pch_can_priv *priv = netdev_priv(ndev);
651  struct net_device_stats *stats = &(priv->ndev->stats);
652  int i;
653  u32 id2;
654  u16 data_reg;
655 
656  do {
657  /* Reading the message object from the Message RAM */
658  iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
659  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
660 
661  /* Reading the MCONT register. */
662  reg = ioread32(&priv->regs->ifregs[0].mcont);
663 
664  if (reg & PCH_IF_MCONT_EOB)
665  break;
666 
667  /* If MsgLost bit set. */
668  if (reg & PCH_IF_MCONT_MSGLOST) {
669  pch_can_rx_msg_lost(ndev, obj_num);
670  rcv_pkts++;
671  quota--;
672  obj_num++;
673  continue;
674  } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
675  obj_num++;
676  continue;
677  }
678 
679  skb = alloc_can_skb(priv->ndev, &cf);
680  if (!skb) {
681  netdev_err(ndev, "alloc_can_skb Failed\n");
682  return rcv_pkts;
683  }
684 
685  /* Get Received data */
686  id2 = ioread32(&priv->regs->ifregs[0].id2);
687  if (id2 & PCH_ID2_XTD) {
688  id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
689  id |= (((id2) & 0x1fff) << 16);
690  cf->can_id = id | CAN_EFF_FLAG;
691  } else {
692  id = (id2 >> 2) & CAN_SFF_MASK;
693  cf->can_id = id;
694  }
695 
696  if (id2 & PCH_ID2_DIR)
697  cf->can_id |= CAN_RTR_FLAG;
698 
699  cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
700  ifregs[0].mcont)) & 0xF);
701 
702  for (i = 0; i < cf->can_dlc; i += 2) {
703  data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
704  cf->data[i] = data_reg;
705  cf->data[i + 1] = data_reg >> 8;
706  }
707 
708  netif_receive_skb(skb);
709  rcv_pkts++;
710  stats->rx_packets++;
711  quota--;
712  stats->rx_bytes += cf->can_dlc;
713 
714  pch_fifo_thresh(priv, obj_num);
715  obj_num++;
716  } while (quota > 0);
717 
718  return rcv_pkts;
719 }
720 
721 static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
722 {
723  struct pch_can_priv *priv = netdev_priv(ndev);
724  struct net_device_stats *stats = &(priv->ndev->stats);
725  u32 dlc;
726 
727  can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
729  &priv->regs->ifregs[1].cmask);
730  pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
731  dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
733  stats->tx_bytes += dlc;
734  stats->tx_packets++;
735  if (int_stat == PCH_TX_OBJ_END)
736  netif_wake_queue(ndev);
737 }
738 
739 static int pch_can_poll(struct napi_struct *napi, int quota)
740 {
741  struct net_device *ndev = napi->dev;
742  struct pch_can_priv *priv = netdev_priv(ndev);
743  u32 int_stat;
744  u32 reg_stat;
745  int quota_save = quota;
746 
747  int_stat = pch_can_int_pending(priv);
748  if (!int_stat)
749  goto end;
750 
751  if (int_stat == PCH_STATUS_INT) {
752  reg_stat = ioread32(&priv->regs->stat);
753 
754  if ((reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) &&
755  ((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)) {
756  pch_can_error(ndev, reg_stat);
757  quota--;
758  }
759 
760  if (reg_stat & (PCH_TX_OK | PCH_RX_OK))
761  pch_can_bit_clear(&priv->regs->stat,
762  reg_stat & (PCH_TX_OK | PCH_RX_OK));
763 
764  int_stat = pch_can_int_pending(priv);
765  }
766 
767  if (quota == 0)
768  goto end;
769 
770  if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
771  quota -= pch_can_rx_normal(ndev, int_stat, quota);
772  } else if ((int_stat >= PCH_TX_OBJ_START) &&
773  (int_stat <= PCH_TX_OBJ_END)) {
774  /* Handle transmission interrupt */
775  pch_can_tx_complete(ndev, int_stat);
776  }
777 
778 end:
779  napi_complete(napi);
780  pch_can_set_int_enables(priv, PCH_CAN_ALL);
781 
782  return quota_save - quota;
783 }
784 
785 static int pch_set_bittiming(struct net_device *ndev)
786 {
787  struct pch_can_priv *priv = netdev_priv(ndev);
788  const struct can_bittiming *bt = &priv->can.bittiming;
789  u32 canbit;
790  u32 bepe;
791 
792  /* Setting the CCE bit for accessing the Can Timing register. */
793  pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
794 
795  canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
796  canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
797  canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
798  canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
799  bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
800  iowrite32(canbit, &priv->regs->bitt);
801  iowrite32(bepe, &priv->regs->brpe);
802  pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
803 
804  return 0;
805 }
806 
807 static void pch_can_start(struct net_device *ndev)
808 {
809  struct pch_can_priv *priv = netdev_priv(ndev);
810 
811  if (priv->can.state != CAN_STATE_STOPPED)
812  pch_can_reset(priv);
813 
814  pch_set_bittiming(ndev);
815  pch_can_set_optmode(priv);
816 
817  pch_can_set_tx_all(priv, 1);
818  pch_can_set_rx_all(priv, 1);
819 
820  /* Setting the CAN to run mode. */
821  pch_can_set_run_mode(priv, PCH_CAN_RUN);
822 
823  priv->can.state = CAN_STATE_ERROR_ACTIVE;
824 
825  return;
826 }
827 
828 static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
829 {
830  int ret = 0;
831 
832  switch (mode) {
833  case CAN_MODE_START:
834  pch_can_start(ndev);
835  netif_wake_queue(ndev);
836  break;
837  default:
838  ret = -EOPNOTSUPP;
839  break;
840  }
841 
842  return ret;
843 }
844 
845 static int pch_can_open(struct net_device *ndev)
846 {
847  struct pch_can_priv *priv = netdev_priv(ndev);
848  int retval;
849 
850  /* Regstering the interrupt. */
851  retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
852  ndev->name, ndev);
853  if (retval) {
854  netdev_err(ndev, "request_irq failed.\n");
855  goto req_irq_err;
856  }
857 
858  /* Open common can device */
859  retval = open_candev(ndev);
860  if (retval) {
861  netdev_err(ndev, "open_candev() failed %d\n", retval);
862  goto err_open_candev;
863  }
864 
865  pch_can_init(priv);
866  pch_can_start(ndev);
867  napi_enable(&priv->napi);
868  netif_start_queue(ndev);
869 
870  return 0;
871 
872 err_open_candev:
873  free_irq(priv->dev->irq, ndev);
874 req_irq_err:
875  pch_can_release(priv);
876 
877  return retval;
878 }
879 
880 static int pch_close(struct net_device *ndev)
881 {
882  struct pch_can_priv *priv = netdev_priv(ndev);
883 
884  netif_stop_queue(ndev);
885  napi_disable(&priv->napi);
886  pch_can_release(priv);
887  free_irq(priv->dev->irq, ndev);
888  close_candev(ndev);
889  priv->can.state = CAN_STATE_STOPPED;
890  return 0;
891 }
892 
893 static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
894 {
895  struct pch_can_priv *priv = netdev_priv(ndev);
896  struct can_frame *cf = (struct can_frame *)skb->data;
897  int tx_obj_no;
898  int i;
899  u32 id2;
900 
901  if (can_dropped_invalid_skb(ndev, skb))
902  return NETDEV_TX_OK;
903 
904  tx_obj_no = priv->tx_obj;
905  if (priv->tx_obj == PCH_TX_OBJ_END) {
906  if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
907  netif_stop_queue(ndev);
908 
909  priv->tx_obj = PCH_TX_OBJ_START;
910  } else {
911  priv->tx_obj++;
912  }
913 
914  /* Setting the CMASK register. */
915  pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
916 
917  /* If ID extended is set. */
918  if (cf->can_id & CAN_EFF_FLAG) {
919  iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
920  id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
921  } else {
922  iowrite32(0, &priv->regs->ifregs[1].id1);
923  id2 = (cf->can_id & CAN_SFF_MASK) << 2;
924  }
925 
926  id2 |= PCH_ID_MSGVAL;
927 
928  /* If remote frame has to be transmitted.. */
929  if (!(cf->can_id & CAN_RTR_FLAG))
930  id2 |= PCH_ID2_DIR;
931 
932  iowrite32(id2, &priv->regs->ifregs[1].id2);
933 
934  /* Copy data to register */
935  for (i = 0; i < cf->can_dlc; i += 2) {
936  iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
937  &priv->regs->ifregs[1].data[i / 2]);
938  }
939 
940  can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
941 
942  /* Set the size of the data. Update if2_mcont */
943  iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
944  PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
945 
946  pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
947 
948  return NETDEV_TX_OK;
949 }
950 
951 static const struct net_device_ops pch_can_netdev_ops = {
952  .ndo_open = pch_can_open,
953  .ndo_stop = pch_close,
954  .ndo_start_xmit = pch_xmit,
955 };
956 
957 static void __devexit pch_can_remove(struct pci_dev *pdev)
958 {
959  struct net_device *ndev = pci_get_drvdata(pdev);
960  struct pch_can_priv *priv = netdev_priv(ndev);
961 
962  unregister_candev(priv->ndev);
963  if (priv->use_msi)
964  pci_disable_msi(priv->dev);
965  pci_release_regions(pdev);
966  pci_disable_device(pdev);
967  pci_set_drvdata(pdev, NULL);
968  pch_can_reset(priv);
969  pci_iounmap(pdev, priv->regs);
970  free_candev(priv->ndev);
971 }
972 
973 #ifdef CONFIG_PM
974 static void pch_can_set_int_custom(struct pch_can_priv *priv)
975 {
976  /* Clearing the IE, SIE and EIE bits of Can control register. */
977  pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
978 
979  /* Appropriately setting them. */
980  pch_can_bit_set(&priv->regs->cont,
981  ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
982 }
983 
984 /* This function retrieves interrupt enabled for the CAN device. */
985 static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
986 {
987  /* Obtaining the status of IE, SIE and EIE interrupt bits. */
988  return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
989 }
990 
991 static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
992  enum pch_ifreg dir)
993 {
994  u32 ie, enable;
995 
996  if (dir)
997  ie = PCH_IF_MCONT_RXIE;
998  else
999  ie = PCH_IF_MCONT_TXIE;
1000 
1001  iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
1002  pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
1003 
1004  if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
1005  ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
1006  enable = 1;
1007  else
1008  enable = 0;
1009 
1010  return enable;
1011 }
1012 
1013 static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
1014  u32 buffer_num, int set)
1015 {
1016  iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
1017  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1019  &priv->regs->ifregs[0].cmask);
1020  if (set)
1021  pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
1022  PCH_IF_MCONT_EOB);
1023  else
1024  pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
1025 
1026  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1027 }
1028 
1029 static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
1030 {
1031  u32 link;
1032 
1033  iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
1034  pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1035 
1036  if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
1037  link = 0;
1038  else
1039  link = 1;
1040  return link;
1041 }
1042 
1043 static int pch_can_get_buffer_status(struct pch_can_priv *priv)
1044 {
1045  return (ioread32(&priv->regs->treq1) & 0xffff) |
1046  (ioread32(&priv->regs->treq2) << 16);
1047 }
1048 
1049 static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
1050 {
1051  int i;
1052  int retval;
1053  u32 buf_stat; /* Variable for reading the transmit buffer status. */
1054  int counter = PCH_COUNTER_LIMIT;
1055 
1056  struct net_device *dev = pci_get_drvdata(pdev);
1057  struct pch_can_priv *priv = netdev_priv(dev);
1058 
1059  /* Stop the CAN controller */
1060  pch_can_set_run_mode(priv, PCH_CAN_STOP);
1061 
1062  /* Indicate that we are aboutto/in suspend */
1063  priv->can.state = CAN_STATE_STOPPED;
1064 
1065  /* Waiting for all transmission to complete. */
1066  while (counter) {
1067  buf_stat = pch_can_get_buffer_status(priv);
1068  if (!buf_stat)
1069  break;
1070  counter--;
1071  udelay(1);
1072  }
1073  if (!counter)
1074  dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
1075 
1076  /* Save interrupt configuration and then disable them */
1077  priv->int_enables = pch_can_get_int_enables(priv);
1078  pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
1079 
1080  /* Save Tx buffer enable state */
1081  for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
1082  priv->tx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
1083  PCH_TX_IFREG);
1084 
1085  /* Disable all Transmit buffers */
1086  pch_can_set_tx_all(priv, 0);
1087 
1088  /* Save Rx buffer enable state */
1089  for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
1090  priv->rx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
1091  PCH_RX_IFREG);
1092  priv->rx_link[i - 1] = pch_can_get_rx_buffer_link(priv, i);
1093  }
1094 
1095  /* Disable all Receive buffers */
1096  pch_can_set_rx_all(priv, 0);
1097  retval = pci_save_state(pdev);
1098  if (retval) {
1099  dev_err(&pdev->dev, "pci_save_state failed.\n");
1100  } else {
1101  pci_enable_wake(pdev, PCI_D3hot, 0);
1102  pci_disable_device(pdev);
1103  pci_set_power_state(pdev, pci_choose_state(pdev, state));
1104  }
1105 
1106  return retval;
1107 }
1108 
1109 static int pch_can_resume(struct pci_dev *pdev)
1110 {
1111  int i;
1112  int retval;
1113  struct net_device *dev = pci_get_drvdata(pdev);
1114  struct pch_can_priv *priv = netdev_priv(dev);
1115 
1116  pci_set_power_state(pdev, PCI_D0);
1117  pci_restore_state(pdev);
1118  retval = pci_enable_device(pdev);
1119  if (retval) {
1120  dev_err(&pdev->dev, "pci_enable_device failed.\n");
1121  return retval;
1122  }
1123 
1124  pci_enable_wake(pdev, PCI_D3hot, 0);
1125 
1126  priv->can.state = CAN_STATE_ERROR_ACTIVE;
1127 
1128  /* Disabling all interrupts. */
1129  pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
1130 
1131  /* Setting the CAN device in Stop Mode. */
1132  pch_can_set_run_mode(priv, PCH_CAN_STOP);
1133 
1134  /* Configuring the transmit and receive buffers. */
1135  pch_can_config_rx_tx_buffers(priv);
1136 
1137  /* Restore the CAN state */
1138  pch_set_bittiming(dev);
1139 
1140  /* Listen/Active */
1141  pch_can_set_optmode(priv);
1142 
1143  /* Enabling the transmit buffer. */
1144  for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
1145  pch_can_set_rxtx(priv, i, priv->tx_enable[i - 1], PCH_TX_IFREG);
1146 
1147  /* Configuring the receive buffer and enabling them. */
1148  for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
1149  /* Restore buffer link */
1150  pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i - 1]);
1151 
1152  /* Restore buffer enables */
1153  pch_can_set_rxtx(priv, i, priv->rx_enable[i - 1], PCH_RX_IFREG);
1154  }
1155 
1156  /* Enable CAN Interrupts */
1157  pch_can_set_int_custom(priv);
1158 
1159  /* Restore Run Mode */
1160  pch_can_set_run_mode(priv, PCH_CAN_RUN);
1161 
1162  return retval;
1163 }
1164 #else
1165 #define pch_can_suspend NULL
1166 #define pch_can_resume NULL
1167 #endif
1168 
1169 static int pch_can_get_berr_counter(const struct net_device *dev,
1170  struct can_berr_counter *bec)
1171 {
1172  struct pch_can_priv *priv = netdev_priv(dev);
1173  u32 errc = ioread32(&priv->regs->errc);
1174 
1175  bec->txerr = errc & PCH_TEC;
1176  bec->rxerr = (errc & PCH_REC) >> 8;
1177 
1178  return 0;
1179 }
1180 
1181 static int __devinit pch_can_probe(struct pci_dev *pdev,
1182  const struct pci_device_id *id)
1183 {
1184  struct net_device *ndev;
1185  struct pch_can_priv *priv;
1186  int rc;
1187  void __iomem *addr;
1188 
1189  rc = pci_enable_device(pdev);
1190  if (rc) {
1191  dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
1192  goto probe_exit_endev;
1193  }
1194 
1195  rc = pci_request_regions(pdev, KBUILD_MODNAME);
1196  if (rc) {
1197  dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
1198  goto probe_exit_pcireq;
1199  }
1200 
1201  addr = pci_iomap(pdev, 1, 0);
1202  if (!addr) {
1203  rc = -EIO;
1204  dev_err(&pdev->dev, "Failed pci_iomap\n");
1205  goto probe_exit_ipmap;
1206  }
1207 
1208  ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
1209  if (!ndev) {
1210  rc = -ENOMEM;
1211  dev_err(&pdev->dev, "Failed alloc_candev\n");
1212  goto probe_exit_alloc_candev;
1213  }
1214 
1215  priv = netdev_priv(ndev);
1216  priv->ndev = ndev;
1217  priv->regs = addr;
1218  priv->dev = pdev;
1219  priv->can.bittiming_const = &pch_can_bittiming_const;
1220  priv->can.do_set_mode = pch_can_do_set_mode;
1221  priv->can.do_get_berr_counter = pch_can_get_berr_counter;
1222  priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
1224  priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
1225 
1226  ndev->irq = pdev->irq;
1227  ndev->flags |= IFF_ECHO;
1228 
1229  pci_set_drvdata(pdev, ndev);
1230  SET_NETDEV_DEV(ndev, &pdev->dev);
1231  ndev->netdev_ops = &pch_can_netdev_ops;
1232  priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
1233 
1234  netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
1235 
1236  rc = pci_enable_msi(priv->dev);
1237  if (rc) {
1238  netdev_err(ndev, "PCH CAN opened without MSI\n");
1239  priv->use_msi = 0;
1240  } else {
1241  netdev_err(ndev, "PCH CAN opened with MSI\n");
1242  pci_set_master(pdev);
1243  priv->use_msi = 1;
1244  }
1245 
1246  rc = register_candev(ndev);
1247  if (rc) {
1248  dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
1249  goto probe_exit_reg_candev;
1250  }
1251 
1252  return 0;
1253 
1254 probe_exit_reg_candev:
1255  if (priv->use_msi)
1256  pci_disable_msi(priv->dev);
1257  free_candev(ndev);
1258 probe_exit_alloc_candev:
1259  pci_iounmap(pdev, addr);
1260 probe_exit_ipmap:
1261  pci_release_regions(pdev);
1262 probe_exit_pcireq:
1263  pci_disable_device(pdev);
1264 probe_exit_endev:
1265  return rc;
1266 }
1267 
1268 static struct pci_driver pch_can_pci_driver = {
1269  .name = "pch_can",
1270  .id_table = pch_pci_tbl,
1271  .probe = pch_can_probe,
1272  .remove = __devexit_p(pch_can_remove),
1273  .suspend = pch_can_suspend,
1274  .resume = pch_can_resume,
1275 };
1276 
1277 module_pci_driver(pch_can_pci_driver);
1278 
1279 MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
1280 MODULE_LICENSE("GPL v2");
1281 MODULE_VERSION("0.94");