Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perf_event_intel.c
Go to the documentation of this file.
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 
16 #include <asm/hardirq.h>
17 #include <asm/apic.h>
18 
19 #include "perf_event.h"
20 
21 /*
22  * Intel PerfMon, used on Core and later.
23  */
24 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
25 {
26  [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
27  [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
29  [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
31  [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
32  [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
33  [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
34 };
35 
36 static struct event_constraint intel_core_event_constraints[] __read_mostly =
37 {
38  INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
39  INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
40  INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
41  INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
42  INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
43  INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45 };
46 
47 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
48 {
49  FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
50  FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51  FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52  INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
53  INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
54  INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
55  INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
56  INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
57  INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
58  INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
59  INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60  INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61  INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63 };
64 
65 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
66 {
67  FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
68  FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69  FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70  INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
71  INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
72  INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
73  INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
74  INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
75  INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
76  INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
77  INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79 };
80 
81 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
82 {
83  INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
85 };
86 
87 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
88 {
89  FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
90  FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91  FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92  INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
93  INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
94  INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95  INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
97 };
98 
99 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
100 {
101  FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
102  FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103  FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104  INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
105  INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
106  INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
108 };
109 
110 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
111 {
112  INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
113  INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
115 };
116 
117 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
118 {
120 };
121 
122 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
123 {
124  FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
125  FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
126  FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
128 };
129 
130 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
131  INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
132  INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
134 };
135 
136 static u64 intel_pmu_event_map(int hw_event)
137 {
138  return intel_perfmon_event_map[hw_event];
139 }
140 
141 #define SNB_DMND_DATA_RD (1ULL << 0)
142 #define SNB_DMND_RFO (1ULL << 1)
143 #define SNB_DMND_IFETCH (1ULL << 2)
144 #define SNB_DMND_WB (1ULL << 3)
145 #define SNB_PF_DATA_RD (1ULL << 4)
146 #define SNB_PF_RFO (1ULL << 5)
147 #define SNB_PF_IFETCH (1ULL << 6)
148 #define SNB_LLC_DATA_RD (1ULL << 7)
149 #define SNB_LLC_RFO (1ULL << 8)
150 #define SNB_LLC_IFETCH (1ULL << 9)
151 #define SNB_BUS_LOCKS (1ULL << 10)
152 #define SNB_STRM_ST (1ULL << 11)
153 #define SNB_OTHER (1ULL << 15)
154 #define SNB_RESP_ANY (1ULL << 16)
155 #define SNB_NO_SUPP (1ULL << 17)
156 #define SNB_LLC_HITM (1ULL << 18)
157 #define SNB_LLC_HITE (1ULL << 19)
158 #define SNB_LLC_HITS (1ULL << 20)
159 #define SNB_LLC_HITF (1ULL << 21)
160 #define SNB_LOCAL (1ULL << 22)
161 #define SNB_REMOTE (0xffULL << 23)
162 #define SNB_SNP_NONE (1ULL << 31)
163 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
164 #define SNB_SNP_MISS (1ULL << 33)
165 #define SNB_NO_FWD (1ULL << 34)
166 #define SNB_SNP_FWD (1ULL << 35)
167 #define SNB_HITM (1ULL << 36)
168 #define SNB_NON_DRAM (1ULL << 37)
169 
170 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
171 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
172 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
173 
174 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
175  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
176  SNB_HITM)
177 
178 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
179 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
180 
181 #define SNB_L3_ACCESS SNB_RESP_ANY
182 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
183 
184 static __initconst const u64 snb_hw_cache_extra_regs
188 {
189  [ C(LL ) ] = {
190  [ C(OP_READ) ] = {
191  [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
192  [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
193  },
194  [ C(OP_WRITE) ] = {
195  [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
196  [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
197  },
198  [ C(OP_PREFETCH) ] = {
199  [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
200  [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
201  },
202  },
203  [ C(NODE) ] = {
204  [ C(OP_READ) ] = {
205  [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
206  [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
207  },
208  [ C(OP_WRITE) ] = {
209  [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
210  [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
211  },
212  [ C(OP_PREFETCH) ] = {
213  [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
214  [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
215  },
216  },
217 };
218 
219 static __initconst const u64 snb_hw_cache_event_ids
223 {
224  [ C(L1D) ] = {
225  [ C(OP_READ) ] = {
226  [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
227  [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
228  },
229  [ C(OP_WRITE) ] = {
230  [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
231  [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
232  },
233  [ C(OP_PREFETCH) ] = {
234  [ C(RESULT_ACCESS) ] = 0x0,
235  [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
236  },
237  },
238  [ C(L1I ) ] = {
239  [ C(OP_READ) ] = {
240  [ C(RESULT_ACCESS) ] = 0x0,
241  [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
242  },
243  [ C(OP_WRITE) ] = {
244  [ C(RESULT_ACCESS) ] = -1,
245  [ C(RESULT_MISS) ] = -1,
246  },
247  [ C(OP_PREFETCH) ] = {
248  [ C(RESULT_ACCESS) ] = 0x0,
249  [ C(RESULT_MISS) ] = 0x0,
250  },
251  },
252  [ C(LL ) ] = {
253  [ C(OP_READ) ] = {
254  /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
255  [ C(RESULT_ACCESS) ] = 0x01b7,
256  /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
257  [ C(RESULT_MISS) ] = 0x01b7,
258  },
259  [ C(OP_WRITE) ] = {
260  /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
261  [ C(RESULT_ACCESS) ] = 0x01b7,
262  /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
263  [ C(RESULT_MISS) ] = 0x01b7,
264  },
265  [ C(OP_PREFETCH) ] = {
266  /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
267  [ C(RESULT_ACCESS) ] = 0x01b7,
268  /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
269  [ C(RESULT_MISS) ] = 0x01b7,
270  },
271  },
272  [ C(DTLB) ] = {
273  [ C(OP_READ) ] = {
274  [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
275  [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
276  },
277  [ C(OP_WRITE) ] = {
278  [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
279  [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
280  },
281  [ C(OP_PREFETCH) ] = {
282  [ C(RESULT_ACCESS) ] = 0x0,
283  [ C(RESULT_MISS) ] = 0x0,
284  },
285  },
286  [ C(ITLB) ] = {
287  [ C(OP_READ) ] = {
288  [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
289  [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
290  },
291  [ C(OP_WRITE) ] = {
292  [ C(RESULT_ACCESS) ] = -1,
293  [ C(RESULT_MISS) ] = -1,
294  },
295  [ C(OP_PREFETCH) ] = {
296  [ C(RESULT_ACCESS) ] = -1,
297  [ C(RESULT_MISS) ] = -1,
298  },
299  },
300  [ C(BPU ) ] = {
301  [ C(OP_READ) ] = {
302  [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
303  [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
304  },
305  [ C(OP_WRITE) ] = {
306  [ C(RESULT_ACCESS) ] = -1,
307  [ C(RESULT_MISS) ] = -1,
308  },
309  [ C(OP_PREFETCH) ] = {
310  [ C(RESULT_ACCESS) ] = -1,
311  [ C(RESULT_MISS) ] = -1,
312  },
313  },
314  [ C(NODE) ] = {
315  [ C(OP_READ) ] = {
316  [ C(RESULT_ACCESS) ] = 0x01b7,
317  [ C(RESULT_MISS) ] = 0x01b7,
318  },
319  [ C(OP_WRITE) ] = {
320  [ C(RESULT_ACCESS) ] = 0x01b7,
321  [ C(RESULT_MISS) ] = 0x01b7,
322  },
323  [ C(OP_PREFETCH) ] = {
324  [ C(RESULT_ACCESS) ] = 0x01b7,
325  [ C(RESULT_MISS) ] = 0x01b7,
326  },
327  },
328 
329 };
330 
331 static __initconst const u64 westmere_hw_cache_event_ids
335 {
336  [ C(L1D) ] = {
337  [ C(OP_READ) ] = {
338  [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
339  [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
340  },
341  [ C(OP_WRITE) ] = {
342  [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
343  [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
344  },
345  [ C(OP_PREFETCH) ] = {
346  [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
347  [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
348  },
349  },
350  [ C(L1I ) ] = {
351  [ C(OP_READ) ] = {
352  [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
353  [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
354  },
355  [ C(OP_WRITE) ] = {
356  [ C(RESULT_ACCESS) ] = -1,
357  [ C(RESULT_MISS) ] = -1,
358  },
359  [ C(OP_PREFETCH) ] = {
360  [ C(RESULT_ACCESS) ] = 0x0,
361  [ C(RESULT_MISS) ] = 0x0,
362  },
363  },
364  [ C(LL ) ] = {
365  [ C(OP_READ) ] = {
366  /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
367  [ C(RESULT_ACCESS) ] = 0x01b7,
368  /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
369  [ C(RESULT_MISS) ] = 0x01b7,
370  },
371  /*
372  * Use RFO, not WRITEBACK, because a write miss would typically occur
373  * on RFO.
374  */
375  [ C(OP_WRITE) ] = {
376  /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
377  [ C(RESULT_ACCESS) ] = 0x01b7,
378  /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
379  [ C(RESULT_MISS) ] = 0x01b7,
380  },
381  [ C(OP_PREFETCH) ] = {
382  /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
383  [ C(RESULT_ACCESS) ] = 0x01b7,
384  /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
385  [ C(RESULT_MISS) ] = 0x01b7,
386  },
387  },
388  [ C(DTLB) ] = {
389  [ C(OP_READ) ] = {
390  [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
391  [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
392  },
393  [ C(OP_WRITE) ] = {
394  [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
395  [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
396  },
397  [ C(OP_PREFETCH) ] = {
398  [ C(RESULT_ACCESS) ] = 0x0,
399  [ C(RESULT_MISS) ] = 0x0,
400  },
401  },
402  [ C(ITLB) ] = {
403  [ C(OP_READ) ] = {
404  [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
405  [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
406  },
407  [ C(OP_WRITE) ] = {
408  [ C(RESULT_ACCESS) ] = -1,
409  [ C(RESULT_MISS) ] = -1,
410  },
411  [ C(OP_PREFETCH) ] = {
412  [ C(RESULT_ACCESS) ] = -1,
413  [ C(RESULT_MISS) ] = -1,
414  },
415  },
416  [ C(BPU ) ] = {
417  [ C(OP_READ) ] = {
418  [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
419  [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
420  },
421  [ C(OP_WRITE) ] = {
422  [ C(RESULT_ACCESS) ] = -1,
423  [ C(RESULT_MISS) ] = -1,
424  },
425  [ C(OP_PREFETCH) ] = {
426  [ C(RESULT_ACCESS) ] = -1,
427  [ C(RESULT_MISS) ] = -1,
428  },
429  },
430  [ C(NODE) ] = {
431  [ C(OP_READ) ] = {
432  [ C(RESULT_ACCESS) ] = 0x01b7,
433  [ C(RESULT_MISS) ] = 0x01b7,
434  },
435  [ C(OP_WRITE) ] = {
436  [ C(RESULT_ACCESS) ] = 0x01b7,
437  [ C(RESULT_MISS) ] = 0x01b7,
438  },
439  [ C(OP_PREFETCH) ] = {
440  [ C(RESULT_ACCESS) ] = 0x01b7,
441  [ C(RESULT_MISS) ] = 0x01b7,
442  },
443  },
444 };
445 
446 /*
447  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
448  * See IA32 SDM Vol 3B 30.6.1.3
449  */
450 
451 #define NHM_DMND_DATA_RD (1 << 0)
452 #define NHM_DMND_RFO (1 << 1)
453 #define NHM_DMND_IFETCH (1 << 2)
454 #define NHM_DMND_WB (1 << 3)
455 #define NHM_PF_DATA_RD (1 << 4)
456 #define NHM_PF_DATA_RFO (1 << 5)
457 #define NHM_PF_IFETCH (1 << 6)
458 #define NHM_OFFCORE_OTHER (1 << 7)
459 #define NHM_UNCORE_HIT (1 << 8)
460 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
461 #define NHM_OTHER_CORE_HITM (1 << 10)
462  /* reserved */
463 #define NHM_REMOTE_CACHE_FWD (1 << 12)
464 #define NHM_REMOTE_DRAM (1 << 13)
465 #define NHM_LOCAL_DRAM (1 << 14)
466 #define NHM_NON_DRAM (1 << 15)
467 
468 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
469 #define NHM_REMOTE (NHM_REMOTE_DRAM)
470 
471 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
472 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
473 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
474 
475 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
476 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
477 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
478 
479 static __initconst const u64 nehalem_hw_cache_extra_regs
483 {
484  [ C(LL ) ] = {
485  [ C(OP_READ) ] = {
486  [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
487  [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
488  },
489  [ C(OP_WRITE) ] = {
490  [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
491  [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
492  },
493  [ C(OP_PREFETCH) ] = {
494  [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
495  [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
496  },
497  },
498  [ C(NODE) ] = {
499  [ C(OP_READ) ] = {
500  [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
501  [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
502  },
503  [ C(OP_WRITE) ] = {
504  [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
505  [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
506  },
507  [ C(OP_PREFETCH) ] = {
508  [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
509  [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
510  },
511  },
512 };
513 
514 static __initconst const u64 nehalem_hw_cache_event_ids
518 {
519  [ C(L1D) ] = {
520  [ C(OP_READ) ] = {
521  [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
522  [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
523  },
524  [ C(OP_WRITE) ] = {
525  [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
526  [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
527  },
528  [ C(OP_PREFETCH) ] = {
529  [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
530  [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
531  },
532  },
533  [ C(L1I ) ] = {
534  [ C(OP_READ) ] = {
535  [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
536  [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
537  },
538  [ C(OP_WRITE) ] = {
539  [ C(RESULT_ACCESS) ] = -1,
540  [ C(RESULT_MISS) ] = -1,
541  },
542  [ C(OP_PREFETCH) ] = {
543  [ C(RESULT_ACCESS) ] = 0x0,
544  [ C(RESULT_MISS) ] = 0x0,
545  },
546  },
547  [ C(LL ) ] = {
548  [ C(OP_READ) ] = {
549  /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
550  [ C(RESULT_ACCESS) ] = 0x01b7,
551  /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
552  [ C(RESULT_MISS) ] = 0x01b7,
553  },
554  /*
555  * Use RFO, not WRITEBACK, because a write miss would typically occur
556  * on RFO.
557  */
558  [ C(OP_WRITE) ] = {
559  /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
560  [ C(RESULT_ACCESS) ] = 0x01b7,
561  /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
562  [ C(RESULT_MISS) ] = 0x01b7,
563  },
564  [ C(OP_PREFETCH) ] = {
565  /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
566  [ C(RESULT_ACCESS) ] = 0x01b7,
567  /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
568  [ C(RESULT_MISS) ] = 0x01b7,
569  },
570  },
571  [ C(DTLB) ] = {
572  [ C(OP_READ) ] = {
573  [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
574  [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
575  },
576  [ C(OP_WRITE) ] = {
577  [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
578  [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
579  },
580  [ C(OP_PREFETCH) ] = {
581  [ C(RESULT_ACCESS) ] = 0x0,
582  [ C(RESULT_MISS) ] = 0x0,
583  },
584  },
585  [ C(ITLB) ] = {
586  [ C(OP_READ) ] = {
587  [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
588  [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
589  },
590  [ C(OP_WRITE) ] = {
591  [ C(RESULT_ACCESS) ] = -1,
592  [ C(RESULT_MISS) ] = -1,
593  },
594  [ C(OP_PREFETCH) ] = {
595  [ C(RESULT_ACCESS) ] = -1,
596  [ C(RESULT_MISS) ] = -1,
597  },
598  },
599  [ C(BPU ) ] = {
600  [ C(OP_READ) ] = {
601  [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
602  [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
603  },
604  [ C(OP_WRITE) ] = {
605  [ C(RESULT_ACCESS) ] = -1,
606  [ C(RESULT_MISS) ] = -1,
607  },
608  [ C(OP_PREFETCH) ] = {
609  [ C(RESULT_ACCESS) ] = -1,
610  [ C(RESULT_MISS) ] = -1,
611  },
612  },
613  [ C(NODE) ] = {
614  [ C(OP_READ) ] = {
615  [ C(RESULT_ACCESS) ] = 0x01b7,
616  [ C(RESULT_MISS) ] = 0x01b7,
617  },
618  [ C(OP_WRITE) ] = {
619  [ C(RESULT_ACCESS) ] = 0x01b7,
620  [ C(RESULT_MISS) ] = 0x01b7,
621  },
622  [ C(OP_PREFETCH) ] = {
623  [ C(RESULT_ACCESS) ] = 0x01b7,
624  [ C(RESULT_MISS) ] = 0x01b7,
625  },
626  },
627 };
628 
629 static __initconst const u64 core2_hw_cache_event_ids
633 {
634  [ C(L1D) ] = {
635  [ C(OP_READ) ] = {
636  [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
637  [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
638  },
639  [ C(OP_WRITE) ] = {
640  [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
641  [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
642  },
643  [ C(OP_PREFETCH) ] = {
644  [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
645  [ C(RESULT_MISS) ] = 0,
646  },
647  },
648  [ C(L1I ) ] = {
649  [ C(OP_READ) ] = {
650  [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
651  [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
652  },
653  [ C(OP_WRITE) ] = {
654  [ C(RESULT_ACCESS) ] = -1,
655  [ C(RESULT_MISS) ] = -1,
656  },
657  [ C(OP_PREFETCH) ] = {
658  [ C(RESULT_ACCESS) ] = 0,
659  [ C(RESULT_MISS) ] = 0,
660  },
661  },
662  [ C(LL ) ] = {
663  [ C(OP_READ) ] = {
664  [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
665  [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
666  },
667  [ C(OP_WRITE) ] = {
668  [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
669  [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
670  },
671  [ C(OP_PREFETCH) ] = {
672  [ C(RESULT_ACCESS) ] = 0,
673  [ C(RESULT_MISS) ] = 0,
674  },
675  },
676  [ C(DTLB) ] = {
677  [ C(OP_READ) ] = {
678  [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
679  [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
680  },
681  [ C(OP_WRITE) ] = {
682  [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
683  [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
684  },
685  [ C(OP_PREFETCH) ] = {
686  [ C(RESULT_ACCESS) ] = 0,
687  [ C(RESULT_MISS) ] = 0,
688  },
689  },
690  [ C(ITLB) ] = {
691  [ C(OP_READ) ] = {
692  [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
693  [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
694  },
695  [ C(OP_WRITE) ] = {
696  [ C(RESULT_ACCESS) ] = -1,
697  [ C(RESULT_MISS) ] = -1,
698  },
699  [ C(OP_PREFETCH) ] = {
700  [ C(RESULT_ACCESS) ] = -1,
701  [ C(RESULT_MISS) ] = -1,
702  },
703  },
704  [ C(BPU ) ] = {
705  [ C(OP_READ) ] = {
706  [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
707  [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
708  },
709  [ C(OP_WRITE) ] = {
710  [ C(RESULT_ACCESS) ] = -1,
711  [ C(RESULT_MISS) ] = -1,
712  },
713  [ C(OP_PREFETCH) ] = {
714  [ C(RESULT_ACCESS) ] = -1,
715  [ C(RESULT_MISS) ] = -1,
716  },
717  },
718 };
719 
720 static __initconst const u64 atom_hw_cache_event_ids
724 {
725  [ C(L1D) ] = {
726  [ C(OP_READ) ] = {
727  [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
728  [ C(RESULT_MISS) ] = 0,
729  },
730  [ C(OP_WRITE) ] = {
731  [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
732  [ C(RESULT_MISS) ] = 0,
733  },
734  [ C(OP_PREFETCH) ] = {
735  [ C(RESULT_ACCESS) ] = 0x0,
736  [ C(RESULT_MISS) ] = 0,
737  },
738  },
739  [ C(L1I ) ] = {
740  [ C(OP_READ) ] = {
741  [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
742  [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
743  },
744  [ C(OP_WRITE) ] = {
745  [ C(RESULT_ACCESS) ] = -1,
746  [ C(RESULT_MISS) ] = -1,
747  },
748  [ C(OP_PREFETCH) ] = {
749  [ C(RESULT_ACCESS) ] = 0,
750  [ C(RESULT_MISS) ] = 0,
751  },
752  },
753  [ C(LL ) ] = {
754  [ C(OP_READ) ] = {
755  [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
756  [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
757  },
758  [ C(OP_WRITE) ] = {
759  [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
760  [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
761  },
762  [ C(OP_PREFETCH) ] = {
763  [ C(RESULT_ACCESS) ] = 0,
764  [ C(RESULT_MISS) ] = 0,
765  },
766  },
767  [ C(DTLB) ] = {
768  [ C(OP_READ) ] = {
769  [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
770  [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
771  },
772  [ C(OP_WRITE) ] = {
773  [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
774  [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
775  },
776  [ C(OP_PREFETCH) ] = {
777  [ C(RESULT_ACCESS) ] = 0,
778  [ C(RESULT_MISS) ] = 0,
779  },
780  },
781  [ C(ITLB) ] = {
782  [ C(OP_READ) ] = {
783  [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
784  [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
785  },
786  [ C(OP_WRITE) ] = {
787  [ C(RESULT_ACCESS) ] = -1,
788  [ C(RESULT_MISS) ] = -1,
789  },
790  [ C(OP_PREFETCH) ] = {
791  [ C(RESULT_ACCESS) ] = -1,
792  [ C(RESULT_MISS) ] = -1,
793  },
794  },
795  [ C(BPU ) ] = {
796  [ C(OP_READ) ] = {
797  [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
798  [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
799  },
800  [ C(OP_WRITE) ] = {
801  [ C(RESULT_ACCESS) ] = -1,
802  [ C(RESULT_MISS) ] = -1,
803  },
804  [ C(OP_PREFETCH) ] = {
805  [ C(RESULT_ACCESS) ] = -1,
806  [ C(RESULT_MISS) ] = -1,
807  },
808  },
809 };
810 
811 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
812 {
813  /* user explicitly requested branch sampling */
814  if (has_branch_stack(event))
815  return true;
816 
817  /* implicit branch sampling to correct PEBS skid */
818  if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
819  return true;
820 
821  return false;
822 }
823 
824 static void intel_pmu_disable_all(void)
825 {
826  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
827 
828  wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
829 
832 
835 }
836 
837 static void intel_pmu_enable_all(int added)
838 {
839  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
840 
845 
847  struct perf_event *event =
849 
850  if (WARN_ON_ONCE(!event))
851  return;
852 
853  intel_pmu_enable_bts(event->hw.config);
854  }
855 }
856 
857 /*
858  * Workaround for:
859  * Intel Errata AAK100 (model 26)
860  * Intel Errata AAP53 (model 30)
861  * Intel Errata BD53 (model 44)
862  *
863  * The official story:
864  * These chips need to be 'reset' when adding counters by programming the
865  * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
866  * in sequence on the same PMC or on different PMCs.
867  *
868  * In practise it appears some of these events do in fact count, and
869  * we need to programm all 4 events.
870  */
871 static void intel_pmu_nhm_workaround(void)
872 {
873  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
874  static const unsigned long nhm_magic[4] = {
875  0x4300B5,
876  0x4300D2,
877  0x4300B1,
878  0x4300B1
879  };
880  struct perf_event *event;
881  int i;
882 
883  /*
884  * The Errata requires below steps:
885  * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
886  * 2) Configure 4 PERFEVTSELx with the magic events and clear
887  * the corresponding PMCx;
888  * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
889  * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
890  * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
891  */
892 
893  /*
894  * The real steps we choose are a little different from above.
895  * A) To reduce MSR operations, we don't run step 1) as they
896  * are already cleared before this function is called;
897  * B) Call x86_perf_event_update to save PMCx before configuring
898  * PERFEVTSELx with magic number;
899  * C) With step 5), we do clear only when the PERFEVTSELx is
900  * not used currently.
901  * D) Call x86_perf_event_set_period to restore PMCx;
902  */
903 
904  /* We always operate 4 pairs of PERF Counters */
905  for (i = 0; i < 4; i++) {
906  event = cpuc->events[i];
907  if (event)
908  x86_perf_event_update(event);
909  }
910 
911  for (i = 0; i < 4; i++) {
912  wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
913  wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
914  }
915 
916  wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
917  wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
918 
919  for (i = 0; i < 4; i++) {
920  event = cpuc->events[i];
921 
922  if (event) {
924  __x86_pmu_enable_event(&event->hw,
926  } else
927  wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
928  }
929 }
930 
931 static void intel_pmu_nhm_enable_all(int added)
932 {
933  if (added)
934  intel_pmu_nhm_workaround();
935  intel_pmu_enable_all(added);
936 }
937 
938 static inline u64 intel_pmu_get_status(void)
939 {
940  u64 status;
941 
942  rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
943 
944  return status;
945 }
946 
947 static inline void intel_pmu_ack_status(u64 ack)
948 {
949  wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
950 }
951 
952 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
953 {
954  int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
955  u64 ctrl_val, mask;
956 
957  mask = 0xfULL << (idx * 4);
958 
959  rdmsrl(hwc->config_base, ctrl_val);
960  ctrl_val &= ~mask;
961  wrmsrl(hwc->config_base, ctrl_val);
962 }
963 
964 static void intel_pmu_disable_event(struct perf_event *event)
965 {
966  struct hw_perf_event *hwc = &event->hw;
967  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
968 
969  if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
972  return;
973  }
974 
975  cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
976  cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
977 
978  /*
979  * must disable before any actual event
980  * because any event may be combined with LBR
981  */
982  if (intel_pmu_needs_lbr_smpl(event))
983  intel_pmu_lbr_disable(event);
984 
985  if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
986  intel_pmu_disable_fixed(hwc);
987  return;
988  }
989 
990  x86_pmu_disable_event(event);
991 
992  if (unlikely(event->attr.precise_ip))
993  intel_pmu_pebs_disable(event);
994 }
995 
996 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
997 {
998  int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
999  u64 ctrl_val, bits, mask;
1000 
1001  /*
1002  * Enable IRQ generation (0x8),
1003  * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1004  * if requested:
1005  */
1006  bits = 0x8ULL;
1007  if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1008  bits |= 0x2;
1009  if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1010  bits |= 0x1;
1011 
1012  /*
1013  * ANY bit is supported in v3 and up
1014  */
1015  if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1016  bits |= 0x4;
1017 
1018  bits <<= (idx * 4);
1019  mask = 0xfULL << (idx * 4);
1020 
1021  rdmsrl(hwc->config_base, ctrl_val);
1022  ctrl_val &= ~mask;
1023  ctrl_val |= bits;
1024  wrmsrl(hwc->config_base, ctrl_val);
1025 }
1026 
1027 static void intel_pmu_enable_event(struct perf_event *event)
1028 {
1029  struct hw_perf_event *hwc = &event->hw;
1030  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1031 
1032  if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1034  return;
1035 
1036  intel_pmu_enable_bts(hwc->config);
1037  return;
1038  }
1039  /*
1040  * must enabled before any actual event
1041  * because any event may be combined with LBR
1042  */
1043  if (intel_pmu_needs_lbr_smpl(event))
1044  intel_pmu_lbr_enable(event);
1045 
1046  if (event->attr.exclude_host)
1047  cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1048  if (event->attr.exclude_guest)
1049  cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1050 
1051  if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1052  intel_pmu_enable_fixed(hwc);
1053  return;
1054  }
1055 
1056  if (unlikely(event->attr.precise_ip))
1057  intel_pmu_pebs_enable(event);
1058 
1059  __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1060 }
1061 
1062 /*
1063  * Save and restart an expired event. Called by NMI contexts,
1064  * so it has to be careful about preempting normal event ops:
1065  */
1067 {
1068  x86_perf_event_update(event);
1069  return x86_perf_event_set_period(event);
1070 }
1071 
1072 static void intel_pmu_reset(void)
1073 {
1075  unsigned long flags;
1076  int idx;
1077 
1078  if (!x86_pmu.num_counters)
1079  return;
1080 
1081  local_irq_save(flags);
1082 
1083  pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1084 
1085  for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1086  wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1087  wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1088  }
1089  for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1090  wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1091 
1092  if (ds)
1093  ds->bts_index = ds->bts_buffer_base;
1094 
1095  local_irq_restore(flags);
1096 }
1097 
1098 /*
1099  * This handler is triggered by the local APIC, so the APIC IRQ handling
1100  * rules apply:
1101  */
1102 static int intel_pmu_handle_irq(struct pt_regs *regs)
1103 {
1104  struct perf_sample_data data;
1105  struct cpu_hw_events *cpuc;
1106  int bit, loops;
1107  u64 status;
1108  int handled;
1109 
1110  cpuc = &__get_cpu_var(cpu_hw_events);
1111 
1112  /*
1113  * Some chipsets need to unmask the LVTPC in a particular spot
1114  * inside the nmi handler. As a result, the unmasking was pushed
1115  * into all the nmi handlers.
1116  *
1117  * This handler doesn't seem to have any issues with the unmasking
1118  * so it was left at the top.
1119  */
1120  apic_write(APIC_LVTPC, APIC_DM_NMI);
1121 
1122  intel_pmu_disable_all();
1123  handled = intel_pmu_drain_bts_buffer();
1124  status = intel_pmu_get_status();
1125  if (!status) {
1126  intel_pmu_enable_all(0);
1127  return handled;
1128  }
1129 
1130  loops = 0;
1131 again:
1132  intel_pmu_ack_status(status);
1133  if (++loops > 100) {
1134  WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1136  intel_pmu_reset();
1137  goto done;
1138  }
1139 
1140  inc_irq_stat(apic_perf_irqs);
1141 
1143 
1144  /*
1145  * PEBS overflow sets bit 62 in the global status register
1146  */
1147  if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1148  handled++;
1149  x86_pmu.drain_pebs(regs);
1150  }
1151 
1152  for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1153  struct perf_event *event = cpuc->events[bit];
1154 
1155  handled++;
1156 
1157  if (!test_bit(bit, cpuc->active_mask))
1158  continue;
1159 
1160  if (!intel_pmu_save_and_restart(event))
1161  continue;
1162 
1163  perf_sample_data_init(&data, 0, event->hw.last_period);
1164 
1165  if (has_branch_stack(event))
1166  data.br_stack = &cpuc->lbr_stack;
1167 
1168  if (perf_event_overflow(event, &data, regs))
1169  x86_pmu_stop(event, 0);
1170  }
1171 
1172  /*
1173  * Repeat if there is more work to be done:
1174  */
1175  status = intel_pmu_get_status();
1176  if (status)
1177  goto again;
1178 
1179 done:
1180  intel_pmu_enable_all(0);
1181  return handled;
1182 }
1183 
1184 static struct event_constraint *
1185 intel_bts_constraints(struct perf_event *event)
1186 {
1187  struct hw_perf_event *hwc = &event->hw;
1188  unsigned int hw_event, bts_event;
1189 
1190  if (event->attr.freq)
1191  return NULL;
1192 
1193  hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1195 
1196  if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1197  return &bts_constraint;
1198 
1199  return NULL;
1200 }
1201 
1202 static int intel_alt_er(int idx)
1203 {
1204  if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1205  return idx;
1206 
1207  if (idx == EXTRA_REG_RSP_0)
1208  return EXTRA_REG_RSP_1;
1209 
1210  if (idx == EXTRA_REG_RSP_1)
1211  return EXTRA_REG_RSP_0;
1212 
1213  return idx;
1214 }
1215 
1216 static void intel_fixup_er(struct perf_event *event, int idx)
1217 {
1218  event->hw.extra_reg.idx = idx;
1219 
1220  if (idx == EXTRA_REG_RSP_0) {
1221  event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1222  event->hw.config |= 0x01b7;
1223  event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1224  } else if (idx == EXTRA_REG_RSP_1) {
1225  event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1226  event->hw.config |= 0x01bb;
1227  event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1228  }
1229 }
1230 
1231 /*
1232  * manage allocation of shared extra msr for certain events
1233  *
1234  * sharing can be:
1235  * per-cpu: to be shared between the various events on a single PMU
1236  * per-core: per-cpu + shared by HT threads
1237  */
1238 static struct event_constraint *
1239 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1240  struct perf_event *event,
1241  struct hw_perf_event_extra *reg)
1242 {
1243  struct event_constraint *c = &emptyconstraint;
1244  struct er_account *era;
1245  unsigned long flags;
1246  int idx = reg->idx;
1247 
1248  /*
1249  * reg->alloc can be set due to existing state, so for fake cpuc we
1250  * need to ignore this, otherwise we might fail to allocate proper fake
1251  * state for this extra reg constraint. Also see the comment below.
1252  */
1253  if (reg->alloc && !cpuc->is_fake)
1254  return NULL; /* call x86_get_event_constraint() */
1255 
1256 again:
1257  era = &cpuc->shared_regs->regs[idx];
1258  /*
1259  * we use spin_lock_irqsave() to avoid lockdep issues when
1260  * passing a fake cpuc
1261  */
1262  raw_spin_lock_irqsave(&era->lock, flags);
1263 
1264  if (!atomic_read(&era->ref) || era->config == reg->config) {
1265 
1266  /*
1267  * If its a fake cpuc -- as per validate_{group,event}() we
1268  * shouldn't touch event state and we can avoid doing so
1269  * since both will only call get_event_constraints() once
1270  * on each event, this avoids the need for reg->alloc.
1271  *
1272  * Not doing the ER fixup will only result in era->reg being
1273  * wrong, but since we won't actually try and program hardware
1274  * this isn't a problem either.
1275  */
1276  if (!cpuc->is_fake) {
1277  if (idx != reg->idx)
1278  intel_fixup_er(event, idx);
1279 
1280  /*
1281  * x86_schedule_events() can call get_event_constraints()
1282  * multiple times on events in the case of incremental
1283  * scheduling(). reg->alloc ensures we only do the ER
1284  * allocation once.
1285  */
1286  reg->alloc = 1;
1287  }
1288 
1289  /* lock in msr value */
1290  era->config = reg->config;
1291  era->reg = reg->reg;
1292 
1293  /* one more user */
1294  atomic_inc(&era->ref);
1295 
1296  /*
1297  * need to call x86_get_event_constraint()
1298  * to check if associated event has constraints
1299  */
1300  c = NULL;
1301  } else {
1302  idx = intel_alt_er(idx);
1303  if (idx != reg->idx) {
1304  raw_spin_unlock_irqrestore(&era->lock, flags);
1305  goto again;
1306  }
1307  }
1308  raw_spin_unlock_irqrestore(&era->lock, flags);
1309 
1310  return c;
1311 }
1312 
1313 static void
1314 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1315  struct hw_perf_event_extra *reg)
1316 {
1317  struct er_account *era;
1318 
1319  /*
1320  * Only put constraint if extra reg was actually allocated. Also takes
1321  * care of event which do not use an extra shared reg.
1322  *
1323  * Also, if this is a fake cpuc we shouldn't touch any event state
1324  * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1325  * either since it'll be thrown out.
1326  */
1327  if (!reg->alloc || cpuc->is_fake)
1328  return;
1329 
1330  era = &cpuc->shared_regs->regs[reg->idx];
1331 
1332  /* one fewer user */
1333  atomic_dec(&era->ref);
1334 
1335  /* allocate again next time */
1336  reg->alloc = 0;
1337 }
1338 
1339 static struct event_constraint *
1340 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1341  struct perf_event *event)
1342 {
1343  struct event_constraint *c = NULL, *d;
1344  struct hw_perf_event_extra *xreg, *breg;
1345 
1346  xreg = &event->hw.extra_reg;
1347  if (xreg->idx != EXTRA_REG_NONE) {
1348  c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1349  if (c == &emptyconstraint)
1350  return c;
1351  }
1352  breg = &event->hw.branch_reg;
1353  if (breg->idx != EXTRA_REG_NONE) {
1354  d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1355  if (d == &emptyconstraint) {
1356  __intel_shared_reg_put_constraints(cpuc, xreg);
1357  c = d;
1358  }
1359  }
1360  return c;
1361 }
1362 
1363 struct event_constraint *
1365 {
1366  struct event_constraint *c;
1367 
1368  if (x86_pmu.event_constraints) {
1370  if ((event->hw.config & c->cmask) == c->code)
1371  return c;
1372  }
1373  }
1374 
1375  return &unconstrained;
1376 }
1377 
1378 static struct event_constraint *
1379 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1380 {
1381  struct event_constraint *c;
1382 
1383  c = intel_bts_constraints(event);
1384  if (c)
1385  return c;
1386 
1387  c = intel_pebs_constraints(event);
1388  if (c)
1389  return c;
1390 
1391  c = intel_shared_regs_constraints(cpuc, event);
1392  if (c)
1393  return c;
1394 
1395  return x86_get_event_constraints(cpuc, event);
1396 }
1397 
1398 static void
1399 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1400  struct perf_event *event)
1401 {
1402  struct hw_perf_event_extra *reg;
1403 
1404  reg = &event->hw.extra_reg;
1405  if (reg->idx != EXTRA_REG_NONE)
1406  __intel_shared_reg_put_constraints(cpuc, reg);
1407 
1408  reg = &event->hw.branch_reg;
1409  if (reg->idx != EXTRA_REG_NONE)
1410  __intel_shared_reg_put_constraints(cpuc, reg);
1411 }
1412 
1413 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1414  struct perf_event *event)
1415 {
1416  intel_put_shared_regs_event_constraints(cpuc, event);
1417 }
1418 
1419 static void intel_pebs_aliases_core2(struct perf_event *event)
1420 {
1421  if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1422  /*
1423  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1424  * (0x003c) so that we can use it with PEBS.
1425  *
1426  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1427  * PEBS capable. However we can use INST_RETIRED.ANY_P
1428  * (0x00c0), which is a PEBS capable event, to get the same
1429  * count.
1430  *
1431  * INST_RETIRED.ANY_P counts the number of cycles that retires
1432  * CNTMASK instructions. By setting CNTMASK to a value (16)
1433  * larger than the maximum number of instructions that can be
1434  * retired per cycle (4) and then inverting the condition, we
1435  * count all cycles that retire 16 or less instructions, which
1436  * is every cycle.
1437  *
1438  * Thereby we gain a PEBS capable cycle counter.
1439  */
1440  u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1441 
1442  alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1443  event->hw.config = alt_config;
1444  }
1445 }
1446 
1447 static void intel_pebs_aliases_snb(struct perf_event *event)
1448 {
1449  if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1450  /*
1451  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1452  * (0x003c) so that we can use it with PEBS.
1453  *
1454  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1455  * PEBS capable. However we can use UOPS_RETIRED.ALL
1456  * (0x01c2), which is a PEBS capable event, to get the same
1457  * count.
1458  *
1459  * UOPS_RETIRED.ALL counts the number of cycles that retires
1460  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1461  * larger than the maximum number of micro-ops that can be
1462  * retired per cycle (4) and then inverting the condition, we
1463  * count all cycles that retire 16 or less micro-ops, which
1464  * is every cycle.
1465  *
1466  * Thereby we gain a PEBS capable cycle counter.
1467  */
1468  u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1469 
1470  alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1471  event->hw.config = alt_config;
1472  }
1473 }
1474 
1475 static int intel_pmu_hw_config(struct perf_event *event)
1476 {
1477  int ret = x86_pmu_hw_config(event);
1478 
1479  if (ret)
1480  return ret;
1481 
1482  if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1483  x86_pmu.pebs_aliases(event);
1484 
1485  if (intel_pmu_needs_lbr_smpl(event)) {
1486  ret = intel_pmu_setup_lbr_filter(event);
1487  if (ret)
1488  return ret;
1489  }
1490 
1491  if (event->attr.type != PERF_TYPE_RAW)
1492  return 0;
1493 
1494  if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1495  return 0;
1496 
1497  if (x86_pmu.version < 3)
1498  return -EINVAL;
1499 
1500  if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1501  return -EACCES;
1502 
1503  event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1504 
1505  return 0;
1506 }
1507 
1508 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1509 {
1510  if (x86_pmu.guest_get_msrs)
1511  return x86_pmu.guest_get_msrs(nr);
1512  *nr = 0;
1513  return NULL;
1514 }
1516 
1517 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1518 {
1519  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1520  struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1521 
1522  arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1523  arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1524  arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1525  /*
1526  * If PMU counter has PEBS enabled it is not enough to disable counter
1527  * on a guest entry since PEBS memory write can overshoot guest entry
1528  * and corrupt guest memory. Disabling PEBS solves the problem.
1529  */
1530  arr[1].msr = MSR_IA32_PEBS_ENABLE;
1531  arr[1].host = cpuc->pebs_enabled;
1532  arr[1].guest = 0;
1533 
1534  *nr = 2;
1535  return arr;
1536 }
1537 
1538 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1539 {
1540  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1541  struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1542  int idx;
1543 
1544  for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1545  struct perf_event *event = cpuc->events[idx];
1546 
1547  arr[idx].msr = x86_pmu_config_addr(idx);
1548  arr[idx].host = arr[idx].guest = 0;
1549 
1550  if (!test_bit(idx, cpuc->active_mask))
1551  continue;
1552 
1553  arr[idx].host = arr[idx].guest =
1554  event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1555 
1556  if (event->attr.exclude_host)
1557  arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1558  else if (event->attr.exclude_guest)
1559  arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1560  }
1561 
1562  *nr = x86_pmu.num_counters;
1563  return arr;
1564 }
1565 
1566 static void core_pmu_enable_event(struct perf_event *event)
1567 {
1568  if (!event->attr.exclude_host)
1569  x86_pmu_enable_event(event);
1570 }
1571 
1572 static void core_pmu_enable_all(int added)
1573 {
1574  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1575  int idx;
1576 
1577  for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1578  struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1579 
1580  if (!test_bit(idx, cpuc->active_mask) ||
1581  cpuc->events[idx]->attr.exclude_host)
1582  continue;
1583 
1584  __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1585  }
1586 }
1587 
1588 PMU_FORMAT_ATTR(event, "config:0-7" );
1589 PMU_FORMAT_ATTR(umask, "config:8-15" );
1590 PMU_FORMAT_ATTR(edge, "config:18" );
1591 PMU_FORMAT_ATTR(pc, "config:19" );
1592 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
1593 PMU_FORMAT_ATTR(inv, "config:23" );
1594 PMU_FORMAT_ATTR(cmask, "config:24-31" );
1595 
1596 static struct attribute *intel_arch_formats_attr[] = {
1597  &format_attr_event.attr,
1598  &format_attr_umask.attr,
1599  &format_attr_edge.attr,
1600  &format_attr_pc.attr,
1601  &format_attr_inv.attr,
1602  &format_attr_cmask.attr,
1603  NULL,
1604 };
1605 
1606 static __initconst const struct x86_pmu core_pmu = {
1607  .name = "core",
1608  .handle_irq = x86_pmu_handle_irq,
1609  .disable_all = x86_pmu_disable_all,
1610  .enable_all = core_pmu_enable_all,
1611  .enable = core_pmu_enable_event,
1612  .disable = x86_pmu_disable_event,
1613  .hw_config = x86_pmu_hw_config,
1614  .schedule_events = x86_schedule_events,
1615  .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1616  .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1617  .event_map = intel_pmu_event_map,
1618  .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1619  .apic = 1,
1620  /*
1621  * Intel PMCs cannot be accessed sanely above 32 bit width,
1622  * so we install an artificial 1<<31 period regardless of
1623  * the generic event period:
1624  */
1625  .max_period = (1ULL << 31) - 1,
1626  .get_event_constraints = intel_get_event_constraints,
1627  .put_event_constraints = intel_put_event_constraints,
1628  .event_constraints = intel_core_event_constraints,
1629  .guest_get_msrs = core_guest_get_msrs,
1630  .format_attrs = intel_arch_formats_attr,
1631 };
1632 
1634 {
1635  struct intel_shared_regs *regs;
1636  int i;
1637 
1638  regs = kzalloc_node(sizeof(struct intel_shared_regs),
1639  GFP_KERNEL, cpu_to_node(cpu));
1640  if (regs) {
1641  /*
1642  * initialize the locks to keep lockdep happy
1643  */
1644  for (i = 0; i < EXTRA_REG_MAX; i++)
1645  raw_spin_lock_init(&regs->regs[i].lock);
1646 
1647  regs->core_id = -1;
1648  }
1649  return regs;
1650 }
1651 
1652 static int intel_pmu_cpu_prepare(int cpu)
1653 {
1654  struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1655 
1657  return NOTIFY_OK;
1658 
1659  cpuc->shared_regs = allocate_shared_regs(cpu);
1660  if (!cpuc->shared_regs)
1661  return NOTIFY_BAD;
1662 
1663  return NOTIFY_OK;
1664 }
1665 
1666 static void intel_pmu_cpu_starting(int cpu)
1667 {
1668  struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1669  int core_id = topology_core_id(cpu);
1670  int i;
1671 
1673  /*
1674  * Deal with CPUs that don't clear their LBRs on power-up.
1675  */
1677 
1678  cpuc->lbr_sel = NULL;
1679 
1680  if (!cpuc->shared_regs)
1681  return;
1682 
1683  if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1685  struct intel_shared_regs *pc;
1686 
1687  pc = per_cpu(cpu_hw_events, i).shared_regs;
1688  if (pc && pc->core_id == core_id) {
1689  cpuc->kfree_on_online = cpuc->shared_regs;
1690  cpuc->shared_regs = pc;
1691  break;
1692  }
1693  }
1694  cpuc->shared_regs->core_id = core_id;
1695  cpuc->shared_regs->refcnt++;
1696  }
1697 
1698  if (x86_pmu.lbr_sel_map)
1699  cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1700 }
1701 
1702 static void intel_pmu_cpu_dying(int cpu)
1703 {
1704  struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1705  struct intel_shared_regs *pc;
1706 
1707  pc = cpuc->shared_regs;
1708  if (pc) {
1709  if (pc->core_id == -1 || --pc->refcnt == 0)
1710  kfree(pc);
1711  cpuc->shared_regs = NULL;
1712  }
1713 
1715 }
1716 
1717 static void intel_pmu_flush_branch_stack(void)
1718 {
1719  /*
1720  * Intel LBR does not tag entries with the
1721  * PID of the current task, then we need to
1722  * flush it on ctxsw
1723  * For now, we simply reset it
1724  */
1725  if (x86_pmu.lbr_nr)
1727 }
1728 
1729 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1730 
1731 static struct attribute *intel_arch3_formats_attr[] = {
1732  &format_attr_event.attr,
1733  &format_attr_umask.attr,
1734  &format_attr_edge.attr,
1735  &format_attr_pc.attr,
1736  &format_attr_any.attr,
1737  &format_attr_inv.attr,
1738  &format_attr_cmask.attr,
1739 
1740  &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1741  NULL,
1742 };
1743 
1744 static __initconst const struct x86_pmu intel_pmu = {
1745  .name = "Intel",
1746  .handle_irq = intel_pmu_handle_irq,
1747  .disable_all = intel_pmu_disable_all,
1748  .enable_all = intel_pmu_enable_all,
1749  .enable = intel_pmu_enable_event,
1750  .disable = intel_pmu_disable_event,
1751  .hw_config = intel_pmu_hw_config,
1752  .schedule_events = x86_schedule_events,
1753  .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1754  .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1755  .event_map = intel_pmu_event_map,
1756  .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1757  .apic = 1,
1758  /*
1759  * Intel PMCs cannot be accessed sanely above 32 bit width,
1760  * so we install an artificial 1<<31 period regardless of
1761  * the generic event period:
1762  */
1763  .max_period = (1ULL << 31) - 1,
1764  .get_event_constraints = intel_get_event_constraints,
1765  .put_event_constraints = intel_put_event_constraints,
1766  .pebs_aliases = intel_pebs_aliases_core2,
1767 
1768  .format_attrs = intel_arch3_formats_attr,
1769 
1770  .cpu_prepare = intel_pmu_cpu_prepare,
1771  .cpu_starting = intel_pmu_cpu_starting,
1772  .cpu_dying = intel_pmu_cpu_dying,
1773  .guest_get_msrs = intel_guest_get_msrs,
1774  .flush_branch_stack = intel_pmu_flush_branch_stack,
1775 };
1776 
1777 static __init void intel_clovertown_quirk(void)
1778 {
1779  /*
1780  * PEBS is unreliable due to:
1781  *
1782  * AJ67 - PEBS may experience CPL leaks
1783  * AJ68 - PEBS PMI may be delayed by one event
1784  * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1785  * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1786  *
1787  * AJ67 could be worked around by restricting the OS/USR flags.
1788  * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1789  *
1790  * AJ106 could possibly be worked around by not allowing LBR
1791  * usage from PEBS, including the fixup.
1792  * AJ68 could possibly be worked around by always programming
1793  * a pebs_event_reset[0] value and coping with the lost events.
1794  *
1795  * But taken together it might just make sense to not enable PEBS on
1796  * these chips.
1797  */
1798  pr_warn("PEBS disabled due to CPU errata\n");
1799  x86_pmu.pebs = 0;
1801 }
1802 
1803 static int intel_snb_pebs_broken(int cpu)
1804 {
1805  u32 rev = UINT_MAX; /* default to broken for unknown models */
1806 
1807  switch (cpu_data(cpu).x86_model) {
1808  case 42: /* SNB */
1809  rev = 0x28;
1810  break;
1811 
1812  case 45: /* SNB-EP */
1813  switch (cpu_data(cpu).x86_mask) {
1814  case 6: rev = 0x618; break;
1815  case 7: rev = 0x70c; break;
1816  }
1817  }
1818 
1819  return (cpu_data(cpu).microcode < rev);
1820 }
1821 
1822 static void intel_snb_check_microcode(void)
1823 {
1824  int pebs_broken = 0;
1825  int cpu;
1826 
1827  get_online_cpus();
1828  for_each_online_cpu(cpu) {
1829  if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1830  break;
1831  }
1832  put_online_cpus();
1833 
1834  if (pebs_broken == x86_pmu.pebs_broken)
1835  return;
1836 
1837  /*
1838  * Serialized by the microcode lock..
1839  */
1840  if (x86_pmu.pebs_broken) {
1841  pr_info("PEBS enabled due to microcode update\n");
1842  x86_pmu.pebs_broken = 0;
1843  } else {
1844  pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1845  x86_pmu.pebs_broken = 1;
1846  }
1847 }
1848 
1849 static __init void intel_sandybridge_quirk(void)
1850 {
1851  x86_pmu.check_microcode = intel_snb_check_microcode;
1852  intel_snb_check_microcode();
1853 }
1854 
1855 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1856  { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1857  { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1858  { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1859  { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1860  { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1861  { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1862  { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1863 };
1864 
1865 static __init void intel_arch_events_quirk(void)
1866 {
1867  int bit;
1868 
1869  /* disable event that reported as not presend by cpuid */
1870  for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1871  intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1872  pr_warn("CPUID marked event: \'%s\' unavailable\n",
1873  intel_arch_events_map[bit].name);
1874  }
1875 }
1876 
1877 static __init void intel_nehalem_quirk(void)
1878 {
1879  union cpuid10_ebx ebx;
1880 
1881  ebx.full = x86_pmu.events_maskl;
1882  if (ebx.split.no_branch_misses_retired) {
1883  /*
1884  * Erratum AAJ80 detected, we work it around by using
1885  * the BR_MISP_EXEC.ANY event. This will over-count
1886  * branch-misses, but it's still much better than the
1887  * architectural event which is often completely bogus:
1888  */
1889  intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1890  ebx.split.no_branch_misses_retired = 0;
1891  x86_pmu.events_maskl = ebx.full;
1892  pr_info("CPU erratum AAJ80 worked around\n");
1893  }
1894 }
1895 
1897 {
1898  union cpuid10_edx edx;
1899  union cpuid10_eax eax;
1900  union cpuid10_ebx ebx;
1901  struct event_constraint *c;
1902  unsigned int unused;
1903  int version;
1904 
1905  if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1906  switch (boot_cpu_data.x86) {
1907  case 0x6:
1908  return p6_pmu_init();
1909  case 0xb:
1910  return knc_pmu_init();
1911  case 0xf:
1912  return p4_pmu_init();
1913  }
1914  return -ENODEV;
1915  }
1916 
1917  /*
1918  * Check whether the Architectural PerfMon supports
1919  * Branch Misses Retired hw_event or not.
1920  */
1921  cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1922  if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1923  return -ENODEV;
1924 
1925  version = eax.split.version_id;
1926  if (version < 2)
1927  x86_pmu = core_pmu;
1928  else
1929  x86_pmu = intel_pmu;
1930 
1932  x86_pmu.num_counters = eax.split.num_counters;
1933  x86_pmu.cntval_bits = eax.split.bit_width;
1934  x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
1935 
1936  x86_pmu.events_maskl = ebx.full;
1937  x86_pmu.events_mask_len = eax.split.mask_length;
1938 
1940 
1941  /*
1942  * Quirk: v2 perfmon does not report fixed-purpose events, so
1943  * assume at least 3 events:
1944  */
1945  if (version > 1)
1946  x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1947 
1948  /*
1949  * v2 and above have a perf capabilities MSR
1950  */
1951  if (version > 1) {
1952  u64 capabilities;
1953 
1954  rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1956  }
1957 
1958  intel_ds_init();
1959 
1960  x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1961 
1962  /*
1963  * Install the hw-cache-events table:
1964  */
1965  switch (boot_cpu_data.x86_model) {
1966  case 14: /* 65 nm core solo/duo, "Yonah" */
1967  pr_cont("Core events, ");
1968  break;
1969 
1970  case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1971  x86_add_quirk(intel_clovertown_quirk);
1972  case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1973  case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1974  case 29: /* six-core 45 nm xeon "Dunnington" */
1975  memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1976  sizeof(hw_cache_event_ids));
1977 
1979 
1980  x86_pmu.event_constraints = intel_core2_event_constraints;
1982  pr_cont("Core2 events, ");
1983  break;
1984 
1985  case 26: /* 45 nm nehalem, "Bloomfield" */
1986  case 30: /* 45 nm nehalem, "Lynnfield" */
1987  case 46: /* 45 nm nehalem-ex, "Beckton" */
1988  memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1989  sizeof(hw_cache_event_ids));
1990  memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1991  sizeof(hw_cache_extra_regs));
1992 
1994 
1995  x86_pmu.event_constraints = intel_nehalem_event_constraints;
1997  x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1998  x86_pmu.extra_regs = intel_nehalem_extra_regs;
1999 
2000  /* UOPS_ISSUED.STALLED_CYCLES */
2001  intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2002  X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2003  /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2004  intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2005  X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2006 
2007  x86_add_quirk(intel_nehalem_quirk);
2008 
2009  pr_cont("Nehalem events, ");
2010  break;
2011 
2012  case 28: /* Atom */
2013  case 54: /* Cedariew */
2014  memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2015  sizeof(hw_cache_event_ids));
2016 
2018 
2019  x86_pmu.event_constraints = intel_gen_event_constraints;
2021  pr_cont("Atom events, ");
2022  break;
2023 
2024  case 37: /* 32 nm nehalem, "Clarkdale" */
2025  case 44: /* 32 nm nehalem, "Gulftown" */
2026  case 47: /* 32 nm Xeon E7 */
2027  memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2028  sizeof(hw_cache_event_ids));
2029  memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2030  sizeof(hw_cache_extra_regs));
2031 
2033 
2034  x86_pmu.event_constraints = intel_westmere_event_constraints;
2035  x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2037  x86_pmu.extra_regs = intel_westmere_extra_regs;
2039 
2040  /* UOPS_ISSUED.STALLED_CYCLES */
2041  intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2042  X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2043  /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2044  intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2045  X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2046 
2047  pr_cont("Westmere events, ");
2048  break;
2049 
2050  case 42: /* SandyBridge */
2051  case 45: /* SandyBridge, "Romely-EP" */
2052  x86_add_quirk(intel_sandybridge_quirk);
2053  memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2054  sizeof(hw_cache_event_ids));
2055  memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2056  sizeof(hw_cache_extra_regs));
2057 
2059 
2060  x86_pmu.event_constraints = intel_snb_event_constraints;
2062  x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2063  x86_pmu.extra_regs = intel_snb_extra_regs;
2064  /* all extra regs are per-cpu when HT is on */
2067 
2068  /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2069  intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2070  X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2071  /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2072  intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2073  X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2074 
2075  pr_cont("SandyBridge events, ");
2076  break;
2077  case 58: /* IvyBridge */
2078  memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2079  sizeof(hw_cache_event_ids));
2080  memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2081  sizeof(hw_cache_extra_regs));
2082 
2084 
2085  x86_pmu.event_constraints = intel_snb_event_constraints;
2087  x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2088  x86_pmu.extra_regs = intel_snb_extra_regs;
2089  /* all extra regs are per-cpu when HT is on */
2092 
2093  /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2094  intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2095  X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2096 
2097  pr_cont("IvyBridge events, ");
2098  break;
2099 
2100 
2101  default:
2102  switch (x86_pmu.version) {
2103  case 1:
2104  x86_pmu.event_constraints = intel_v1_event_constraints;
2105  pr_cont("generic architected perfmon v1, ");
2106  break;
2107  default:
2108  /*
2109  * default constraints for v2 and up
2110  */
2111  x86_pmu.event_constraints = intel_gen_event_constraints;
2112  pr_cont("generic architected perfmon, ");
2113  break;
2114  }
2115  }
2116 
2118  WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2121  }
2122  x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2123 
2125  WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2128  }
2129 
2130  x86_pmu.intel_ctrl |=
2132 
2133  if (x86_pmu.event_constraints) {
2134  /*
2135  * event on fixed counter2 (REF_CYCLES) only works on this
2136  * counter, so do not extend mask to generic counters
2137  */
2139  if (c->cmask != X86_RAW_EVENT_MASK
2141  continue;
2142  }
2143 
2144  c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2145  c->weight += x86_pmu.num_counters;
2146  }
2147  }
2148 
2149  return 0;
2150 }