Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perf_event_p4.c
Go to the documentation of this file.
1 /*
2  * Netburst Performance Events (P4, old Xeon)
3  *
4  * Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <[email protected]>
5  * Copyright (C) 2010 Intel Corporation, Lin Ming <[email protected]>
6  *
7  * For licencing details see kernel-base/COPYING
8  */
9 
10 #include <linux/perf_event.h>
11 
12 #include <asm/perf_event_p4.h>
13 #include <asm/hardirq.h>
14 #include <asm/apic.h>
15 
16 #include "perf_event.h"
17 
18 #define P4_CNTR_LIMIT 3
19 /*
20  * array indices: 0,1 - HT threads, used with HT enabled cpu
21  */
22 struct p4_event_bind {
23  unsigned int opcode; /* Event code and ESCR selector */
24  unsigned int escr_msr[2]; /* ESCR MSR for this event */
25  unsigned int escr_emask; /* valid ESCR EventMask bits */
26  unsigned int shared; /* event is shared across threads */
27  char cntr[2][P4_CNTR_LIMIT]; /* counter index (offset), -1 on abscence */
28 };
29 
30 struct p4_pebs_bind {
31  unsigned int metric_pebs;
32  unsigned int metric_vert;
33 };
34 
35 /* it sets P4_PEBS_ENABLE_UOP_TAG as well */
36 #define P4_GEN_PEBS_BIND(name, pebs, vert) \
37  [P4_PEBS_METRIC__##name] = { \
38  .metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG, \
39  .metric_vert = vert, \
40  }
41 
42 /*
43  * note we have P4_PEBS_ENABLE_UOP_TAG always set here
44  *
45  * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of
46  * event configuration to find out which values are to be
47  * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT
48  * resgisters
49  */
50 static struct p4_pebs_bind p4_pebs_bind_map[] = {
51  P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired, 0x0000001, 0x0000001),
52  P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired, 0x0000002, 0x0000001),
53  P4_GEN_PEBS_BIND(dtlb_load_miss_retired, 0x0000004, 0x0000001),
54  P4_GEN_PEBS_BIND(dtlb_store_miss_retired, 0x0000004, 0x0000002),
55  P4_GEN_PEBS_BIND(dtlb_all_miss_retired, 0x0000004, 0x0000003),
56  P4_GEN_PEBS_BIND(tagged_mispred_branch, 0x0018000, 0x0000010),
57  P4_GEN_PEBS_BIND(mob_load_replay_retired, 0x0000200, 0x0000001),
58  P4_GEN_PEBS_BIND(split_load_retired, 0x0000400, 0x0000001),
59  P4_GEN_PEBS_BIND(split_store_retired, 0x0000400, 0x0000002),
60 };
61 
62 /*
63  * Note that we don't use CCCR1 here, there is an
64  * exception for P4_BSQ_ALLOCATION but we just have
65  * no workaround
66  *
67  * consider this binding as resources which particular
68  * event may borrow, it doesn't contain EventMask,
69  * Tags and friends -- they are left to a caller
70  */
71 static struct p4_event_bind p4_event_bind_map[] = {
74  .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
75  .escr_emask =
83  .shared = 1,
84  .cntr = { {4, 5, -1}, {6, 7, -1} },
85  },
88  .escr_msr = { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 },
89  .escr_emask =
91  .cntr = { {0, -1, -1}, {2, -1, -1} },
92  },
95  .escr_msr = { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 },
96  .escr_emask =
100  .cntr = { {0, -1, -1}, {2, -1, -1} },
101  },
104  .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
105  .escr_emask =
108  .cntr = { {8, 9, -1}, {10, 11, -1} },
109  },
112  .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
113  .escr_emask =
116  .cntr = { {8, 9, -1}, {10, 11, -1} },
117  },
120  .escr_msr = { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 },
121  .escr_emask =
123  .cntr = { {8, 9, -1}, {10, 11, -1} },
124  },
127  .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
128  .escr_emask =
130  .cntr = { {8, 9, -1}, {10, 11, -1} },
131  },
134  .escr_msr = { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 },
135  .escr_emask =
140  .cntr = { {0, -1, -1}, {2, -1, -1} },
141  },
144  .escr_msr = { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 },
145  .escr_emask =
148  .shared = 1,
149  .cntr = { {0, -1, -1}, {2, -1, -1} },
150  },
153  .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 },
154  .escr_emask =
164  .cntr = { {0, -1, -1}, {2, -1, -1} },
165  },
168  .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
169  .escr_emask =
181  .cntr = { {0, -1, -1}, {2, -1, -1} },
182  },
183  [P4_EVENT_IOQ_ACTIVE_ENTRIES] = { /* shared ESCR */
185  .escr_msr = { MSR_P4_FSB_ESCR1, MSR_P4_FSB_ESCR1 },
186  .escr_emask =
198  .cntr = { {2, -1, -1}, {3, -1, -1} },
199  },
202  .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
203  .escr_emask =
210  .shared = 1,
211  .cntr = { {0, -1, -1}, {2, -1, -1} },
212  },
213  [P4_EVENT_BSQ_ALLOCATION] = { /* shared ESCR, broken CCCR1 */
215  .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 },
216  .escr_emask =
223  P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE) |
224  P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE) |
230  .cntr = { {0, -1, -1}, {1, -1, -1} },
231  },
232  [P4_EVENT_BSQ_ACTIVE_ENTRIES] = { /* shared ESCR */
234  .escr_msr = { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 },
235  .escr_emask =
249  .cntr = { {2, -1, -1}, {3, -1, -1} },
250  },
253  .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
254  .escr_emask =
256  .shared = 1,
257  .cntr = { {8, 9, -1}, {10, 11, -1} },
258  },
261  .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
262  .escr_emask =
264  .shared = 1,
265  .cntr = { {8, 9, -1}, {10, 11, -1} },
266  },
269  .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
270  .escr_emask =
272  .shared = 1,
273  .cntr = { {8, 9, -1}, {10, 11, -1} },
274  },
277  .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
278  .escr_emask =
280  .shared = 1,
281  .cntr = { {8, 9, -1}, {10, 11, -1} },
282  },
285  .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
286  .escr_emask =
288  .shared = 1,
289  .cntr = { {8, 9, -1}, {10, 11, -1} },
290  },
293  .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
294  .escr_emask =
296  .shared = 1,
297  .cntr = { {8, 9, -1}, {10, 11, -1} },
298  },
301  .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
302  .escr_emask =
304  .shared = 1,
305  .cntr = { {8, 9, -1}, {10, 11, -1} },
306  },
307  [P4_EVENT_X87_FP_UOP] = {
308  .opcode = P4_OPCODE(P4_EVENT_X87_FP_UOP),
309  .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
310  .escr_emask =
312  .shared = 1,
313  .cntr = { {8, 9, -1}, {10, 11, -1} },
314  },
315  [P4_EVENT_TC_MISC] = {
316  .opcode = P4_OPCODE(P4_EVENT_TC_MISC),
317  .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
318  .escr_emask =
320  .cntr = { {4, 5, -1}, {6, 7, -1} },
321  },
324  .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
325  .escr_emask =
327  .cntr = { {0, -1, -1}, {2, -1, -1} },
328  },
329  [P4_EVENT_TC_MS_XFER] = {
330  .opcode = P4_OPCODE(P4_EVENT_TC_MS_XFER),
331  .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
332  .escr_emask =
334  .cntr = { {4, 5, -1}, {6, 7, -1} },
335  },
338  .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
339  .escr_emask =
341  P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER) |
343  .cntr = { {4, 5, -1}, {6, 7, -1} },
344  },
347  .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 },
348  .escr_emask =
353  .cntr = { {4, 5, -1}, {6, 7, -1} },
354  },
357  .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 },
358  .escr_emask =
363  .cntr = { {4, 5, -1}, {6, 7, -1} },
364  },
367  .escr_msr = { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 },
368  .escr_emask =
370  .cntr = { {12, 13, 16}, {14, 15, 17} },
371  },
372  [P4_EVENT_WC_BUFFER] = {
373  .opcode = P4_OPCODE(P4_EVENT_WC_BUFFER),
374  .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
375  .escr_emask =
377  P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS),
378  .shared = 1,
379  .cntr = { {8, 9, -1}, {10, 11, -1} },
380  },
381  [P4_EVENT_B2B_CYCLES] = {
382  .opcode = P4_OPCODE(P4_EVENT_B2B_CYCLES),
383  .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
384  .escr_emask = 0,
385  .cntr = { {0, -1, -1}, {2, -1, -1} },
386  },
387  [P4_EVENT_BNR] = {
388  .opcode = P4_OPCODE(P4_EVENT_BNR),
389  .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
390  .escr_emask = 0,
391  .cntr = { {0, -1, -1}, {2, -1, -1} },
392  },
393  [P4_EVENT_SNOOP] = {
394  .opcode = P4_OPCODE(P4_EVENT_SNOOP),
395  .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
396  .escr_emask = 0,
397  .cntr = { {0, -1, -1}, {2, -1, -1} },
398  },
399  [P4_EVENT_RESPONSE] = {
400  .opcode = P4_OPCODE(P4_EVENT_RESPONSE),
401  .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
402  .escr_emask = 0,
403  .cntr = { {0, -1, -1}, {2, -1, -1} },
404  },
407  .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
408  .escr_emask =
411  .cntr = { {12, 13, 16}, {14, 15, 17} },
412  },
415  .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
416  .escr_emask =
425  .cntr = { {12, 13, 16}, {14, 15, 17} },
426  },
428  .opcode = P4_OPCODE(P4_EVENT_REPLAY_EVENT),
429  .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
430  .escr_emask =
433  .cntr = { {12, 13, 16}, {14, 15, 17} },
434  },
437  .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
438  .escr_emask =
443  .cntr = { {12, 13, 16}, {14, 15, 17} },
444  },
446  .opcode = P4_OPCODE(P4_EVENT_UOPS_RETIRED),
447  .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
448  .escr_emask =
451  .cntr = { {12, 13, 16}, {14, 15, 17} },
452  },
453  [P4_EVENT_UOP_TYPE] = {
454  .opcode = P4_OPCODE(P4_EVENT_UOP_TYPE),
455  .escr_msr = { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 },
456  .escr_emask =
459  .cntr = { {12, 13, 16}, {14, 15, 17} },
460  },
463  .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
464  .escr_emask =
469  .cntr = { {12, 13, 16}, {14, 15, 17} },
470  },
473  .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
474  .escr_emask =
476  .cntr = { {12, 13, 16}, {14, 15, 17} },
477  },
478  [P4_EVENT_X87_ASSIST] = {
479  .opcode = P4_OPCODE(P4_EVENT_X87_ASSIST),
480  .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
481  .escr_emask =
487  .cntr = { {12, 13, 16}, {14, 15, 17} },
488  },
491  .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
492  .escr_emask =
496  .cntr = { {12, 13, 16}, {14, 15, 17} },
497  },
500  .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
501  .escr_emask =
504  .cntr = { {12, 13, 16}, {14, 15, 17} },
505  },
506 };
507 
508 #define P4_GEN_CACHE_EVENT(event, bit, metric) \
509  p4_config_pack_escr(P4_ESCR_EVENT(event) | \
510  P4_ESCR_EMASK_BIT(event, bit)) | \
511  p4_config_pack_cccr(metric | \
512  P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event))))
513 
514 static __initconst const u64 p4_hw_cache_event_ids
518 {
519  [ C(L1D ) ] = {
520  [ C(OP_READ) ] = {
521  [ C(RESULT_ACCESS) ] = 0x0,
522  [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
524  },
525  },
526  [ C(LL ) ] = {
527  [ C(OP_READ) ] = {
528  [ C(RESULT_ACCESS) ] = 0x0,
529  [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
531  },
532 },
533  [ C(DTLB) ] = {
534  [ C(OP_READ) ] = {
535  [ C(RESULT_ACCESS) ] = 0x0,
536  [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
538  },
539  [ C(OP_WRITE) ] = {
540  [ C(RESULT_ACCESS) ] = 0x0,
541  [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
543  },
544  },
545  [ C(ITLB) ] = {
546  [ C(OP_READ) ] = {
547  [ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT,
549  [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS,
551  },
552  [ C(OP_WRITE) ] = {
553  [ C(RESULT_ACCESS) ] = -1,
554  [ C(RESULT_MISS) ] = -1,
555  },
556  [ C(OP_PREFETCH) ] = {
557  [ C(RESULT_ACCESS) ] = -1,
558  [ C(RESULT_MISS) ] = -1,
559  },
560  },
561  [ C(NODE) ] = {
562  [ C(OP_READ) ] = {
563  [ C(RESULT_ACCESS) ] = -1,
564  [ C(RESULT_MISS) ] = -1,
565  },
566  [ C(OP_WRITE) ] = {
567  [ C(RESULT_ACCESS) ] = -1,
568  [ C(RESULT_MISS) ] = -1,
569  },
570  [ C(OP_PREFETCH) ] = {
571  [ C(RESULT_ACCESS) ] = -1,
572  [ C(RESULT_MISS) ] = -1,
573  },
574  },
575 };
576 
577 /*
578  * Because of Netburst being quite restricted in how many
579  * identical events may run simultaneously, we introduce event aliases,
580  * ie the different events which have the same functionality but
581  * utilize non-intersected resources (ESCR/CCCR/counter registers).
582  *
583  * This allow us to relax restrictions a bit and run two or more
584  * identical events together.
585  *
586  * Never set any custom internal bits such as P4_CONFIG_HT,
587  * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are
588  * either up to date automatically or not applicable at all.
589  */
593 } p4_event_aliases[] = {
594  {
595  /*
596  * Non-halted cycles can be substituted with non-sleeping cycles (see
597  * Intel SDM Vol3b for details). We need this alias to be able
598  * to run nmi-watchdog and 'perf top' (or any other user space tool
599  * which is interested in running PERF_COUNT_HW_CPU_CYCLES)
600  * simultaneously.
601  */
602  .original =
605  .alternative =
617  },
618 };
619 
620 static u64 p4_get_alias_event(u64 config)
621 {
622  u64 config_match;
623  int i;
624 
625  /*
626  * Only event with special mark is allowed,
627  * we're to be sure it didn't come as malformed
628  * RAW event.
629  */
630  if (!(config & P4_CONFIG_ALIASABLE))
631  return 0;
632 
633  config_match = config & P4_CONFIG_EVENT_ALIAS_MASK;
634 
635  for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) {
636  if (config_match == p4_event_aliases[i].original) {
637  config_match = p4_event_aliases[i].alternative;
638  break;
639  } else if (config_match == p4_event_aliases[i].alternative) {
640  config_match = p4_event_aliases[i].original;
641  break;
642  }
643  }
644 
645  if (i >= ARRAY_SIZE(p4_event_aliases))
646  return 0;
647 
648  return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS);
649 }
650 
651 static u64 p4_general_events[PERF_COUNT_HW_MAX] = {
652  /* non-halted CPU clocks */
657 
658  /*
659  * retired instructions
660  * in a sake of simplicity we don't use the FSB tagging
661  */
666 
667  /* cache hits */
676 
677  /* cache misses */
683 
684  /* branch instructions retired */
691 
692  /* mispredicted branches retired */
696 
697  /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN): */
703 };
704 
705 static struct p4_event_bind *p4_config_get_bind(u64 config)
706 {
707  unsigned int evnt = p4_config_unpack_event(config);
708  struct p4_event_bind *bind = NULL;
709 
710  if (evnt < ARRAY_SIZE(p4_event_bind_map))
711  bind = &p4_event_bind_map[evnt];
712 
713  return bind;
714 }
715 
716 static u64 p4_pmu_event_map(int hw_event)
717 {
718  struct p4_event_bind *bind;
719  unsigned int esel;
720  u64 config;
721 
722  config = p4_general_events[hw_event];
723  bind = p4_config_get_bind(config);
724  esel = P4_OPCODE_ESEL(bind->opcode);
725  config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
726 
727  return config;
728 }
729 
730 /* check cpu model specifics */
731 static bool p4_event_match_cpu_model(unsigned int event_idx)
732 {
733  /* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */
734  if (event_idx == P4_EVENT_INSTR_COMPLETED) {
735  if (boot_cpu_data.x86_model != 3 &&
736  boot_cpu_data.x86_model != 4 &&
737  boot_cpu_data.x86_model != 6)
738  return false;
739  }
740 
741  /*
742  * For info
743  * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2
744  */
745 
746  return true;
747 }
748 
749 static int p4_validate_raw_event(struct perf_event *event)
750 {
751  unsigned int v, emask;
752 
753  /* User data may have out-of-bound event index */
754  v = p4_config_unpack_event(event->attr.config);
755  if (v >= ARRAY_SIZE(p4_event_bind_map))
756  return -EINVAL;
757 
758  /* It may be unsupported: */
759  if (!p4_event_match_cpu_model(v))
760  return -EINVAL;
761 
762  /*
763  * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as
764  * in Architectural Performance Monitoring, it means not
765  * on _which_ logical cpu to count but rather _when_, ie it
766  * depends on logical cpu state -- count event if one cpu active,
767  * none, both or any, so we just allow user to pass any value
768  * desired.
769  *
770  * In turn we always set Tx_OS/Tx_USR bits bound to logical
771  * cpu without their propagation to another cpu
772  */
773 
774  /*
775  * if an event is shared across the logical threads
776  * the user needs special permissions to be able to use it
777  */
778  if (p4_ht_active() && p4_event_bind_map[v].shared) {
779  if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
780  return -EACCES;
781  }
782 
783  /* ESCR EventMask bits may be invalid */
784  emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK;
785  if (emask & ~p4_event_bind_map[v].escr_emask)
786  return -EINVAL;
787 
788  /*
789  * it may have some invalid PEBS bits
790  */
791  if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE))
792  return -EINVAL;
793 
794  v = p4_config_unpack_metric(event->attr.config);
795  if (v >= ARRAY_SIZE(p4_pebs_bind_map))
796  return -EINVAL;
797 
798  return 0;
799 }
800 
801 static int p4_hw_config(struct perf_event *event)
802 {
803  int cpu = get_cpu();
804  int rc = 0;
805  u32 escr, cccr;
806 
807  /*
808  * the reason we use cpu that early is that: if we get scheduled
809  * first time on the same cpu -- we will not need swap thread
810  * specific flags in config (and will save some cpu cycles)
811  */
812 
813  cccr = p4_default_cccr_conf(cpu);
814  escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel,
815  event->attr.exclude_user);
816  event->hw.config = p4_config_pack_escr(escr) |
817  p4_config_pack_cccr(cccr);
818 
819  if (p4_ht_active() && p4_ht_thread(cpu))
820  event->hw.config = p4_set_ht_bit(event->hw.config);
821 
822  if (event->attr.type == PERF_TYPE_RAW) {
823  struct p4_event_bind *bind;
824  unsigned int esel;
825  /*
826  * Clear bits we reserve to be managed by kernel itself
827  * and never allowed from a user space
828  */
829  event->attr.config &= P4_CONFIG_MASK;
830 
831  rc = p4_validate_raw_event(event);
832  if (rc)
833  goto out;
834 
835  /*
836  * Note that for RAW events we allow user to use P4_CCCR_RESERVED
837  * bits since we keep additional info here (for cache events and etc)
838  */
839  event->hw.config |= event->attr.config;
840  bind = p4_config_get_bind(event->attr.config);
841  if (!bind) {
842  rc = -EINVAL;
843  goto out;
844  }
845  esel = P4_OPCODE_ESEL(bind->opcode);
846  event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
847  }
848 
849  rc = x86_setup_perfctr(event);
850 out:
851  put_cpu();
852  return rc;
853 }
854 
855 static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc)
856 {
857  u64 v;
858 
859  /* an official way for overflow indication */
860  rdmsrl(hwc->config_base, v);
861  if (v & P4_CCCR_OVF) {
862  wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF);
863  return 1;
864  }
865 
866  /*
867  * In some circumstances the overflow might issue an NMI but did
868  * not set P4_CCCR_OVF bit. Because a counter holds a negative value
869  * we simply check for high bit being set, if it's cleared it means
870  * the counter has reached zero value and continued counting before
871  * real NMI signal was received:
872  */
873  rdmsrl(hwc->event_base, v);
874  if (!(v & ARCH_P4_UNFLAGGED_BIT))
875  return 1;
876 
877  return 0;
878 }
879 
880 static void p4_pmu_disable_pebs(void)
881 {
882  /*
883  * FIXME
884  *
885  * It's still allowed that two threads setup same cache
886  * events so we can't simply clear metrics until we knew
887  * no one is depending on us, so we need kind of counter
888  * for "ReplayEvent" users.
889  *
890  * What is more complex -- RAW events, if user (for some
891  * reason) will pass some cache event metric with improper
892  * event opcode -- it's fine from hardware point of view
893  * but completely nonsense from "meaning" of such action.
894  *
895  * So at moment let leave metrics turned on forever -- it's
896  * ok for now but need to be revisited!
897  *
898  * (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, (u64)0);
899  * (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, (u64)0);
900  */
901 }
902 
903 static inline void p4_pmu_disable_event(struct perf_event *event)
904 {
905  struct hw_perf_event *hwc = &event->hw;
906 
907  /*
908  * If event gets disabled while counter is in overflowed
909  * state we need to clear P4_CCCR_OVF, otherwise interrupt get
910  * asserted again and again
911  */
912  (void)wrmsrl_safe(hwc->config_base,
913  (u64)(p4_config_unpack_cccr(hwc->config)) &
914  ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED);
915 }
916 
917 static void p4_pmu_disable_all(void)
918 {
919  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
920  int idx;
921 
922  for (idx = 0; idx < x86_pmu.num_counters; idx++) {
923  struct perf_event *event = cpuc->events[idx];
924  if (!test_bit(idx, cpuc->active_mask))
925  continue;
926  p4_pmu_disable_event(event);
927  }
928 
929  p4_pmu_disable_pebs();
930 }
931 
932 /* configuration must be valid */
933 static void p4_pmu_enable_pebs(u64 config)
934 {
935  struct p4_pebs_bind *bind;
936  unsigned int idx;
937 
939 
940  idx = p4_config_unpack_metric(config);
941  if (idx == P4_PEBS_METRIC__none)
942  return;
943 
944  bind = &p4_pebs_bind_map[idx];
945 
946  (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, (u64)bind->metric_pebs);
947  (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, (u64)bind->metric_vert);
948 }
949 
950 static void p4_pmu_enable_event(struct perf_event *event)
951 {
952  struct hw_perf_event *hwc = &event->hw;
953  int thread = p4_ht_config_thread(hwc->config);
954  u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config));
955  unsigned int idx = p4_config_unpack_event(hwc->config);
956  struct p4_event_bind *bind;
957  u64 escr_addr, cccr;
958 
959  bind = &p4_event_bind_map[idx];
960  escr_addr = (u64)bind->escr_msr[thread];
961 
962  /*
963  * - we dont support cascaded counters yet
964  * - and counter 1 is broken (erratum)
965  */
966  WARN_ON_ONCE(p4_is_event_cascaded(hwc->config));
967  WARN_ON_ONCE(hwc->idx == 1);
968 
969  /* we need a real Event value */
970  escr_conf &= ~P4_ESCR_EVENT_MASK;
971  escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode));
972 
973  cccr = p4_config_unpack_cccr(hwc->config);
974 
975  /*
976  * it could be Cache event so we need to write metrics
977  * into additional MSRs
978  */
979  p4_pmu_enable_pebs(hwc->config);
980 
981  (void)wrmsrl_safe(escr_addr, escr_conf);
982  (void)wrmsrl_safe(hwc->config_base,
983  (cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE);
984 }
985 
986 static void p4_pmu_enable_all(int added)
987 {
988  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
989  int idx;
990 
991  for (idx = 0; idx < x86_pmu.num_counters; idx++) {
992  struct perf_event *event = cpuc->events[idx];
993  if (!test_bit(idx, cpuc->active_mask))
994  continue;
995  p4_pmu_enable_event(event);
996  }
997 }
998 
999 static int p4_pmu_handle_irq(struct pt_regs *regs)
1000 {
1001  struct perf_sample_data data;
1002  struct cpu_hw_events *cpuc;
1003  struct perf_event *event;
1004  struct hw_perf_event *hwc;
1005  int idx, handled = 0;
1006  u64 val;
1007 
1008  cpuc = &__get_cpu_var(cpu_hw_events);
1009 
1010  for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1011  int overflow;
1012 
1013  if (!test_bit(idx, cpuc->active_mask)) {
1014  /* catch in-flight IRQs */
1015  if (__test_and_clear_bit(idx, cpuc->running))
1016  handled++;
1017  continue;
1018  }
1019 
1020  event = cpuc->events[idx];
1021  hwc = &event->hw;
1022 
1023  WARN_ON_ONCE(hwc->idx != idx);
1024 
1025  /* it might be unflagged overflow */
1026  overflow = p4_pmu_clear_cccr_ovf(hwc);
1027 
1028  val = x86_perf_event_update(event);
1029  if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1))))
1030  continue;
1031 
1032  handled += overflow;
1033 
1034  /* event overflow for sure */
1035  perf_sample_data_init(&data, 0, hwc->last_period);
1036 
1037  if (!x86_perf_event_set_period(event))
1038  continue;
1039 
1040 
1041  if (perf_event_overflow(event, &data, regs))
1042  x86_pmu_stop(event, 0);
1043  }
1044 
1045  if (handled)
1046  inc_irq_stat(apic_perf_irqs);
1047 
1048  /*
1049  * When dealing with the unmasking of the LVTPC on P4 perf hw, it has
1050  * been observed that the OVF bit flag has to be cleared first _before_
1051  * the LVTPC can be unmasked.
1052  *
1053  * The reason is the NMI line will continue to be asserted while the OVF
1054  * bit is set. This causes a second NMI to generate if the LVTPC is
1055  * unmasked before the OVF bit is cleared, leading to unknown NMI
1056  * messages.
1057  */
1058  apic_write(APIC_LVTPC, APIC_DM_NMI);
1059 
1060  return handled;
1061 }
1062 
1063 /*
1064  * swap thread specific fields according to a thread
1065  * we are going to run on
1066  */
1067 static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu)
1068 {
1069  u32 escr, cccr;
1070 
1071  /*
1072  * we either lucky and continue on same cpu or no HT support
1073  */
1074  if (!p4_should_swap_ts(hwc->config, cpu))
1075  return;
1076 
1077  /*
1078  * the event is migrated from an another logical
1079  * cpu, so we need to swap thread specific flags
1080  */
1081 
1082  escr = p4_config_unpack_escr(hwc->config);
1083  cccr = p4_config_unpack_cccr(hwc->config);
1084 
1085  if (p4_ht_thread(cpu)) {
1086  cccr &= ~P4_CCCR_OVF_PMI_T0;
1087  cccr |= P4_CCCR_OVF_PMI_T1;
1088  if (escr & P4_ESCR_T0_OS) {
1089  escr &= ~P4_ESCR_T0_OS;
1090  escr |= P4_ESCR_T1_OS;
1091  }
1092  if (escr & P4_ESCR_T0_USR) {
1093  escr &= ~P4_ESCR_T0_USR;
1094  escr |= P4_ESCR_T1_USR;
1095  }
1096  hwc->config = p4_config_pack_escr(escr);
1097  hwc->config |= p4_config_pack_cccr(cccr);
1098  hwc->config |= P4_CONFIG_HT;
1099  } else {
1100  cccr &= ~P4_CCCR_OVF_PMI_T1;
1101  cccr |= P4_CCCR_OVF_PMI_T0;
1102  if (escr & P4_ESCR_T1_OS) {
1103  escr &= ~P4_ESCR_T1_OS;
1104  escr |= P4_ESCR_T0_OS;
1105  }
1106  if (escr & P4_ESCR_T1_USR) {
1107  escr &= ~P4_ESCR_T1_USR;
1108  escr |= P4_ESCR_T0_USR;
1109  }
1110  hwc->config = p4_config_pack_escr(escr);
1111  hwc->config |= p4_config_pack_cccr(cccr);
1112  hwc->config &= ~P4_CONFIG_HT;
1113  }
1114 }
1115 
1116 /*
1117  * ESCR address hashing is tricky, ESCRs are not sequential
1118  * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and
1119  * the metric between any ESCRs is laid in range [0xa0,0xe1]
1120  *
1121  * so we make ~70% filled hashtable
1122  */
1123 
1124 #define P4_ESCR_MSR_BASE 0x000003a0
1125 #define P4_ESCR_MSR_MAX 0x000003e1
1126 #define P4_ESCR_MSR_TABLE_SIZE (P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1)
1127 #define P4_ESCR_MSR_IDX(msr) (msr - P4_ESCR_MSR_BASE)
1128 #define P4_ESCR_MSR_TABLE_ENTRY(msr) [P4_ESCR_MSR_IDX(msr)] = msr
1129 
1130 static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = {
1177 };
1178 
1179 static int p4_get_escr_idx(unsigned int addr)
1180 {
1181  unsigned int idx = P4_ESCR_MSR_IDX(addr);
1182 
1183  if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE ||
1184  !p4_escr_table[idx] ||
1185  p4_escr_table[idx] != addr)) {
1186  WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr);
1187  return -1;
1188  }
1189 
1190  return idx;
1191 }
1192 
1193 static int p4_next_cntr(int thread, unsigned long *used_mask,
1194  struct p4_event_bind *bind)
1195 {
1196  int i, j;
1197 
1198  for (i = 0; i < P4_CNTR_LIMIT; i++) {
1199  j = bind->cntr[thread][i];
1200  if (j != -1 && !test_bit(j, used_mask))
1201  return j;
1202  }
1203 
1204  return -1;
1205 }
1206 
1207 static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1208 {
1209  unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1210  unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)];
1211  int cpu = smp_processor_id();
1212  struct hw_perf_event *hwc;
1213  struct p4_event_bind *bind;
1214  unsigned int i, thread, num;
1215  int cntr_idx, escr_idx;
1216  u64 config_alias;
1217  int pass;
1218 
1219  bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1220  bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE);
1221 
1222  for (i = 0, num = n; i < n; i++, num--) {
1223 
1224  hwc = &cpuc->event_list[i]->hw;
1225  thread = p4_ht_thread(cpu);
1226  pass = 0;
1227 
1228 again:
1229  /*
1230  * It's possible to hit a circular lock
1231  * between original and alternative events
1232  * if both are scheduled already.
1233  */
1234  if (pass > 2)
1235  goto done;
1236 
1237  bind = p4_config_get_bind(hwc->config);
1238  escr_idx = p4_get_escr_idx(bind->escr_msr[thread]);
1239  if (unlikely(escr_idx == -1))
1240  goto done;
1241 
1242  if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) {
1243  cntr_idx = hwc->idx;
1244  if (assign)
1245  assign[i] = hwc->idx;
1246  goto reserve;
1247  }
1248 
1249  cntr_idx = p4_next_cntr(thread, used_mask, bind);
1250  if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) {
1251  /*
1252  * Check whether an event alias is still available.
1253  */
1254  config_alias = p4_get_alias_event(hwc->config);
1255  if (!config_alias)
1256  goto done;
1257  hwc->config = config_alias;
1258  pass++;
1259  goto again;
1260  }
1261 
1262  p4_pmu_swap_config_ts(hwc, cpu);
1263  if (assign)
1264  assign[i] = cntr_idx;
1265 reserve:
1266  set_bit(cntr_idx, used_mask);
1267  set_bit(escr_idx, escr_mask);
1268  }
1269 
1270 done:
1271  return num ? -EINVAL : 0;
1272 }
1273 
1274 PMU_FORMAT_ATTR(cccr, "config:0-31" );
1275 PMU_FORMAT_ATTR(escr, "config:32-62");
1276 PMU_FORMAT_ATTR(ht, "config:63" );
1277 
1278 static struct attribute *intel_p4_formats_attr[] = {
1279  &format_attr_cccr.attr,
1280  &format_attr_escr.attr,
1281  &format_attr_ht.attr,
1282  NULL,
1283 };
1284 
1285 static __initconst const struct x86_pmu p4_pmu = {
1286  .name = "Netburst P4/Xeon",
1287  .handle_irq = p4_pmu_handle_irq,
1288  .disable_all = p4_pmu_disable_all,
1289  .enable_all = p4_pmu_enable_all,
1290  .enable = p4_pmu_enable_event,
1291  .disable = p4_pmu_disable_event,
1292  .eventsel = MSR_P4_BPU_CCCR0,
1293  .perfctr = MSR_P4_BPU_PERFCTR0,
1294  .event_map = p4_pmu_event_map,
1295  .max_events = ARRAY_SIZE(p4_general_events),
1296  .get_event_constraints = x86_get_event_constraints,
1297  /*
1298  * IF HT disabled we may need to use all
1299  * ARCH_P4_MAX_CCCR counters simulaneously
1300  * though leave it restricted at moment assuming
1301  * HT is on
1302  */
1303  .num_counters = ARCH_P4_MAX_CCCR,
1304  .apic = 1,
1305  .cntval_bits = ARCH_P4_CNTRVAL_BITS,
1306  .cntval_mask = ARCH_P4_CNTRVAL_MASK,
1307  .max_period = (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1,
1308  .hw_config = p4_hw_config,
1309  .schedule_events = p4_pmu_schedule_events,
1310  /*
1311  * This handles erratum N15 in intel doc 249199-029,
1312  * the counter may not be updated correctly on write
1313  * so we need a second write operation to do the trick
1314  * (the official workaround didn't work)
1315  *
1316  * the former idea is taken from OProfile code
1317  */
1318  .perfctr_second_write = 1,
1319 
1320  .format_attrs = intel_p4_formats_attr,
1321 };
1322 
1324 {
1325  unsigned int low, high;
1326 
1327  /* If we get stripped -- indexing fails */
1329 
1330  rdmsr(MSR_IA32_MISC_ENABLE, low, high);
1331  if (!(low & (1 << 7))) {
1332  pr_cont("unsupported Netburst CPU model %d ",
1333  boot_cpu_data.x86_model);
1334  return -ENODEV;
1335  }
1336 
1337  memcpy(hw_cache_event_ids, p4_hw_cache_event_ids,
1338  sizeof(hw_cache_event_ids));
1339 
1340  pr_cont("Netburst events, ");
1341 
1342  x86_pmu = p4_pmu;
1343 
1344  return 0;
1345 }