Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
setup_64.c
Go to the documentation of this file.
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 #undef DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/sections.h>
52 #include <asm/btext.h>
53 #include <asm/nvram.h>
54 #include <asm/setup.h>
55 #include <asm/rtas.h>
56 #include <asm/iommu.h>
57 #include <asm/serial.h>
58 #include <asm/cache.h>
59 #include <asm/page.h>
60 #include <asm/mmu.h>
61 #include <asm/firmware.h>
62 #include <asm/xmon.h>
63 #include <asm/udbg.h>
64 #include <asm/kexec.h>
65 #include <asm/mmu_context.h>
66 #include <asm/code-patching.h>
67 #include <asm/kvm_ppc.h>
68 #include <asm/hugetlb.h>
69 
70 #include "setup.h"
71 
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77 
78 int boot_cpuid = 0;
81 
82 /* Pick defaults since we might want to patch instructions
83  * before we've read this from the device tree.
84  */
86  .dline_size = 0x40,
87  .log_dline_size = 6,
88  .iline_size = 0x40,
89  .log_iline_size = 6
90 };
92 
93 /*
94  * These are used in binfmt_elf.c to put aux entries on the stack
95  * for each elf executable being started.
96  */
100 
101 #ifdef CONFIG_SMP
102 
103 static char *smt_enabled_cmdline;
104 
105 /* Look for ibm,smt-enabled OF option */
106 static void check_smt_enabled(void)
107 {
108  struct device_node *dn;
109  const char *smt_option;
110 
111  /* Default to enabling all threads */
113 
114  /* Allow the command line to overrule the OF option */
115  if (smt_enabled_cmdline) {
116  if (!strcmp(smt_enabled_cmdline, "on"))
118  else if (!strcmp(smt_enabled_cmdline, "off"))
120  else {
121  long smt;
122  int rc;
123 
124  rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
125  if (!rc)
127  min(threads_per_core, (int)smt);
128  }
129  } else {
130  dn = of_find_node_by_path("/options");
131  if (dn) {
132  smt_option = of_get_property(dn, "ibm,smt-enabled",
133  NULL);
134 
135  if (smt_option) {
136  if (!strcmp(smt_option, "on"))
138  else if (!strcmp(smt_option, "off"))
140  }
141 
142  of_node_put(dn);
143  }
144  }
145 }
146 
147 /* Look for smt-enabled= cmdline option */
148 static int __init early_smt_enabled(char *p)
149 {
150  smt_enabled_cmdline = p;
151  return 0;
152 }
153 early_param("smt-enabled", early_smt_enabled);
154 
155 #else
156 #define check_smt_enabled()
157 #endif /* CONFIG_SMP */
158 
159 /*
160  * Early initialization entry point. This is called by head.S
161  * with MMU translation disabled. We rely on the "feature" of
162  * the CPU that ignores the top 2 bits of the address in real
163  * mode so we can access kernel globals normally provided we
164  * only toy with things in the RMO region. From here, we do
165  * some early parsing of the device-tree to setup out MEMBLOCK
166  * data structures, and allocate & initialize the hash table
167  * and segment tables so we can start running with translation
168  * enabled.
169  *
170  * It is this function which will call the probe() callback of
171  * the various platform types and copy the matching one to the
172  * global ppc_md structure. Your platform can eventually do
173  * some very early initializations from the probe() routine, but
174  * this is not recommended, be very careful as, for example, the
175  * device-tree is not accessible via normal means at this point.
176  */
177 
178 void __init early_setup(unsigned long dt_ptr)
179 {
180  /* -------- printk is _NOT_ safe to use here ! ------- */
181 
182  /* Identify CPU type */
184 
185  /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
188 
189  /* Initialize lockdep early or else spinlocks will blow */
190  lockdep_init();
191 
192  /* -------- printk is now safe to use ------- */
193 
194  /* Enable early debugging if any specified (see udbg.h) */
195  udbg_early_init();
196 
197  DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
198 
199  /*
200  * Do early initialization using the flattened device
201  * tree, such as retrieving the physical memory map or
202  * calculating/retrieving the hash table size.
203  */
204  early_init_devtree(__va(dt_ptr));
205 
206  /* Now we know the logical id of our boot cpu, setup the paca. */
208 
209  /* Fix up paca fields required for the boot cpu */
210  get_paca()->cpu_start = 1;
211  /* Allow percpu accesses to "work" until we setup percpu data */
212  get_paca()->data_offset = 0;
213 
214  /* Probe the machine type */
215  probe_machine();
216 
218 
219  DBG("Found, Initializing memory management...\n");
220 
221  /* Initialize the hash table or TLB handling */
222  early_init_mmu();
223 
224  /*
225  * Reserve any gigantic pages requested on the command line.
226  * memblock needs to have been initialized by the time this is
227  * called since this will reserve memory.
228  */
229  reserve_hugetlb_gpages();
230 
231  DBG(" <- early_setup()\n");
232 }
233 
234 #ifdef CONFIG_SMP
235 void early_setup_secondary(void)
236 {
237  /* Mark interrupts enabled in PACA */
238  get_paca()->soft_enabled = 0;
239 
240  /* Initialize the hash table or TLB handling */
241  early_init_mmu_secondary();
242 }
243 
244 #endif /* CONFIG_SMP */
245 
246 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
247 void smp_release_cpus(void)
248 {
249  unsigned long *ptr;
250  int i;
251 
252  DBG(" -> smp_release_cpus()\n");
253 
254  /* All secondary cpus are spinning on a common spinloop, release them
255  * all now so they can start to spin on their individual paca
256  * spinloops. For non SMP kernels, the secondary cpus never get out
257  * of the common spinloop.
258  */
259 
260  ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
261  - PHYSICAL_START);
262  *ptr = __pa(generic_secondary_smp_init);
263 
264  /* And wait a bit for them to catch up */
265  for (i = 0; i < 100000; i++) {
266  mb();
267  HMT_low();
268  if (spinning_secondaries == 0)
269  break;
270  udelay(1);
271  }
272  DBG("spinning_secondaries = %d\n", spinning_secondaries);
273 
274  DBG(" <- smp_release_cpus()\n");
275 }
276 #endif /* CONFIG_SMP || CONFIG_KEXEC */
277 
278 /*
279  * Initialize some remaining members of the ppc64_caches and systemcfg
280  * structures
281  * (at least until we get rid of them completely). This is mostly some
282  * cache informations about the CPU that will be used by cache flush
283  * routines and/or provided to userland
284  */
285 static void __init initialize_cache_info(void)
286 {
287  struct device_node *np;
288  unsigned long num_cpus = 0;
289 
290  DBG(" -> initialize_cache_info()\n");
291 
292  for_each_node_by_type(np, "cpu") {
293  num_cpus += 1;
294 
295  /*
296  * We're assuming *all* of the CPUs have the same
297  * d-cache and i-cache sizes... -Peter
298  */
299  if (num_cpus == 1) {
300  const u32 *sizep, *lsizep;
301  u32 size, lsize;
302 
303  size = 0;
304  lsize = cur_cpu_spec->dcache_bsize;
305  sizep = of_get_property(np, "d-cache-size", NULL);
306  if (sizep != NULL)
307  size = *sizep;
308  lsizep = of_get_property(np, "d-cache-block-size",
309  NULL);
310  /* fallback if block size missing */
311  if (lsizep == NULL)
312  lsizep = of_get_property(np,
313  "d-cache-line-size",
314  NULL);
315  if (lsizep != NULL)
316  lsize = *lsizep;
317  if (sizep == 0 || lsizep == 0)
318  DBG("Argh, can't find dcache properties ! "
319  "sizep: %p, lsizep: %p\n", sizep, lsizep);
320 
321  ppc64_caches.dsize = size;
322  ppc64_caches.dline_size = lsize;
323  ppc64_caches.log_dline_size = __ilog2(lsize);
324  ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
325 
326  size = 0;
327  lsize = cur_cpu_spec->icache_bsize;
328  sizep = of_get_property(np, "i-cache-size", NULL);
329  if (sizep != NULL)
330  size = *sizep;
331  lsizep = of_get_property(np, "i-cache-block-size",
332  NULL);
333  if (lsizep == NULL)
334  lsizep = of_get_property(np,
335  "i-cache-line-size",
336  NULL);
337  if (lsizep != NULL)
338  lsize = *lsizep;
339  if (sizep == 0 || lsizep == 0)
340  DBG("Argh, can't find icache properties ! "
341  "sizep: %p, lsizep: %p\n", sizep, lsizep);
342 
343  ppc64_caches.isize = size;
344  ppc64_caches.iline_size = lsize;
345  ppc64_caches.log_iline_size = __ilog2(lsize);
346  ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
347  }
348  }
349 
350  DBG(" <- initialize_cache_info()\n");
351 }
352 
353 
354 /*
355  * Do some initial setup of the system. The parameters are those which
356  * were passed in from the bootloader.
357  */
359 {
360  DBG(" -> setup_system()\n");
361 
362  /* Apply the CPUs-specific and firmware specific fixups to kernel
363  * text (nop out sections not relevant to this CPU or this firmware)
364  */
365  do_feature_fixups(cur_cpu_spec->cpu_features,
367  do_feature_fixups(cur_cpu_spec->mmu_features,
368  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
369  do_feature_fixups(powerpc_firmware_features,
370  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
371  do_lwsync_fixups(cur_cpu_spec->cpu_features,
372  &__start___lwsync_fixup, &__stop___lwsync_fixup);
373  do_final_fixups();
374 
375  /*
376  * Unflatten the device-tree passed by prom_init or kexec
377  */
378  unflatten_device_tree();
379 
380  /*
381  * Fill the ppc64_caches & systemcfg structures with informations
382  * retrieved from the device-tree.
383  */
384  initialize_cache_info();
385 
386 #ifdef CONFIG_PPC_RTAS
387  /*
388  * Initialize RTAS if available
389  */
390  rtas_initialize();
391 #endif /* CONFIG_PPC_RTAS */
392 
393  /*
394  * Check if we have an initrd provided via the device-tree
395  */
397 
398  /*
399  * Do some platform specific early initializations, that includes
400  * setting up the hash table pointers. It also sets up some interrupt-mapping
401  * related options that will be used by finish_device_tree()
402  */
403  if (ppc_md.init_early)
404  ppc_md.init_early();
405 
406  /*
407  * We can discover serial ports now since the above did setup the
408  * hash table management for us, thus ioremap works. We do that early
409  * so that further code can be debugged
410  */
412 
413  /*
414  * Register early console
415  */
417 
418  /*
419  * Initialize xmon
420  */
421  xmon_setup();
422 
423  smp_setup_cpu_maps();
425 
426 #ifdef CONFIG_SMP
427  /* Release secondary cpus out of their spinloops at 0x60 now that
428  * we can map physical -> logical CPU ids
429  */
430  smp_release_cpus();
431 #endif
432 
433  printk("Starting Linux PPC64 %s\n", init_utsname()->version);
434 
435  printk("-----------------------------------------------------\n");
436  printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
437  printk("physicalMemorySize = 0x%llx\n", memblock_phys_mem_size());
438  if (ppc64_caches.dline_size != 0x80)
439  printk("ppc64_caches.dcache_line_size = 0x%x\n",
440  ppc64_caches.dline_size);
441  if (ppc64_caches.iline_size != 0x80)
442  printk("ppc64_caches.icache_line_size = 0x%x\n",
443  ppc64_caches.iline_size);
444 #ifdef CONFIG_PPC_STD_MMU_64
445  if (htab_address)
446  printk("htab_address = 0x%p\n", htab_address);
447  printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
448 #endif /* CONFIG_PPC_STD_MMU_64 */
449  if (PHYSICAL_START > 0)
450  printk("physical_start = 0x%llx\n",
451  (unsigned long long)PHYSICAL_START);
452  printk("-----------------------------------------------------\n");
453 
454  DBG(" <- setup_system()\n");
455 }
456 
457 /* This returns the limit below which memory accesses to the linear
458  * mapping are guarnateed not to cause a TLB or SLB miss. This is
459  * used to allocate interrupt or emergency stacks for which our
460  * exception entry path doesn't deal with being interrupted.
461  */
462 static u64 safe_stack_limit(void)
463 {
464 #ifdef CONFIG_PPC_BOOK3E
465  /* Freescale BookE bolts the entire linear mapping */
466  if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
467  return linear_map_top;
468  /* Other BookE, we assume the first GB is bolted */
469  return 1ul << 30;
470 #else
471  /* BookS, the first segment is bolted */
472  if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
473  return 1UL << SID_SHIFT_1T;
474  return 1UL << SID_SHIFT;
475 #endif
476 }
477 
478 static void __init irqstack_early_init(void)
479 {
480  u64 limit = safe_stack_limit();
481  unsigned int i;
482 
483  /*
484  * Interrupt stacks must be in the first segment since we
485  * cannot afford to take SLB misses on them.
486  */
488  softirq_ctx[i] = (struct thread_info *)
490  THREAD_SIZE, limit));
491  hardirq_ctx[i] = (struct thread_info *)
493  THREAD_SIZE, limit));
494  }
495 }
496 
497 #ifdef CONFIG_PPC_BOOK3E
498 static void __init exc_lvl_early_init(void)
499 {
500  extern unsigned int interrupt_base_book3e;
501  extern unsigned int exc_debug_debug_book3e;
502 
503  unsigned int i;
504 
506  critirq_ctx[i] = (struct thread_info *)
508  dbgirq_ctx[i] = (struct thread_info *)
510  mcheckirq_ctx[i] = (struct thread_info *)
512  }
513 
515  patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
516  (unsigned long)&exc_debug_debug_book3e, 0);
517 }
518 #else
519 #define exc_lvl_early_init()
520 #endif
521 
522 /*
523  * Stack space used when we detect a bad kernel stack pointer, and
524  * early in SMP boots before relocation is enabled.
525  */
526 static void __init emergency_stack_init(void)
527 {
528  u64 limit;
529  unsigned int i;
530 
531  /*
532  * Emergency stacks must be under 256MB, we cannot afford to take
533  * SLB misses on them. The ABI also requires them to be 128-byte
534  * aligned.
535  *
536  * Since we use these as temporary stacks during secondary CPU
537  * bringup, we need to get at them in real mode. This means they
538  * must also be within the RMO region.
539  */
540  limit = min(safe_stack_limit(), ppc64_rma_size);
541 
543  unsigned long sp;
545  sp += THREAD_SIZE;
546  paca[i].emergency_sp = __va(sp);
547  }
548 }
549 
550 /*
551  * Called into from start_kernel this initializes bootmem, which is used
552  * to manage page allocation until mem_init is called.
553  */
554 void __init setup_arch(char **cmdline_p)
555 {
556  ppc64_boot_msg(0x12, "Setup Arch");
557 
558  *cmdline_p = cmd_line;
559 
560  /*
561  * Set cache line size based on type of cpu as a default.
562  * Systems with OF can look in the properties on the cpu node(s)
563  * for a possibly more accurate value.
564  */
565  dcache_bsize = ppc64_caches.dline_size;
566  icache_bsize = ppc64_caches.iline_size;
567 
568  /* reboot on panic */
569  panic_timeout = 180;
570 
571  if (ppc_md.panic)
572  setup_panic();
573 
574  init_mm.start_code = (unsigned long)_stext;
575  init_mm.end_code = (unsigned long) _etext;
576  init_mm.end_data = (unsigned long) _edata;
577  init_mm.brk = klimit;
578 
579  irqstack_early_init();
581  emergency_stack_init();
582 
583 #ifdef CONFIG_PPC_STD_MMU_64
584  stabs_alloc();
585 #endif
586  /* set up the bootmem stuff with available memory */
587  do_init_bootmem();
588  sparse_init();
589 
590 #ifdef CONFIG_DUMMY_CONSOLE
592 #endif
593 
594  if (ppc_md.setup_arch)
595  ppc_md.setup_arch();
596 
597  paging_init();
598 
599  /* Initialize the MMU context management stuff */
601 
602  kvm_linear_init();
603 
604  ppc64_boot_msg(0x15, "Setup Done");
605 }
606 
607 
608 /* ToDo: do something useful if ppc_md is not yet setup. */
609 #define PPC64_LINUX_FUNCTION 0x0f000000
610 #define PPC64_IPL_MESSAGE 0xc0000000
611 #define PPC64_TERM_MESSAGE 0xb0000000
612 
613 static void ppc64_do_msg(unsigned int src, const char *msg)
614 {
615  if (ppc_md.progress) {
616  char buf[128];
617 
618  sprintf(buf, "%08X\n", src);
619  ppc_md.progress(buf, 0);
620  snprintf(buf, 128, "%s", msg);
621  ppc_md.progress(buf, 0);
622  }
623 }
624 
625 /* Print a boot progress message. */
626 void ppc64_boot_msg(unsigned int src, const char *msg)
627 {
628  ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
629  printk("[boot]%04x %s\n", src, msg);
630 }
631 
632 #ifdef CONFIG_SMP
633 #define PCPU_DYN_SIZE ()
634 
635 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
636 {
637  return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
639 }
640 
641 static void __init pcpu_fc_free(void *ptr, size_t size)
642 {
643  free_bootmem(__pa(ptr), size);
644 }
645 
646 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
647 {
648  if (cpu_to_node(from) == cpu_to_node(to))
649  return LOCAL_DISTANCE;
650  else
651  return REMOTE_DISTANCE;
652 }
653 
654 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
655 EXPORT_SYMBOL(__per_cpu_offset);
656 
657 void __init setup_per_cpu_areas(void)
658 {
659  const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
660  size_t atom_size;
661  unsigned long delta;
662  unsigned int cpu;
663  int rc;
664 
665  /*
666  * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
667  * to group units. For larger mappings, use 1M atom which
668  * should be large enough to contain a number of units.
669  */
670  if (mmu_linear_psize == MMU_PAGE_4K)
671  atom_size = PAGE_SIZE;
672  else
673  atom_size = 1 << 20;
674 
675  rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
676  pcpu_fc_alloc, pcpu_fc_free);
677  if (rc < 0)
678  panic("cannot initialize percpu area (err=%d)", rc);
679 
680  delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
681  for_each_possible_cpu(cpu) {
682  __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
683  paca[cpu].data_offset = __per_cpu_offset[cpu];
684  }
685 }
686 #endif
687 
688 
689 #ifdef CONFIG_PPC_INDIRECT_IO
690 struct ppc_pci_io ppc_pci_io;
691 EXPORT_SYMBOL(ppc_pci_io);
692 #endif /* CONFIG_PPC_INDIRECT_IO */
693