Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ptp.c
Go to the documentation of this file.
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2011 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 /* Theory of operation:
11  *
12  * PTP support is assisted by firmware running on the MC, which provides
13  * the hardware timestamping capabilities. Both transmitted and received
14  * PTP event packets are queued onto internal queues for subsequent processing;
15  * this is because the MC operations are relatively long and would block
16  * block NAPI/interrupt operation.
17  *
18  * Receive event processing:
19  * The event contains the packet's UUID and sequence number, together
20  * with the hardware timestamp. The PTP receive packet queue is searched
21  * for this UUID/sequence number and, if found, put on a pending queue.
22  * Packets not matching are delivered without timestamps (MCDI events will
23  * always arrive after the actual packet).
24  * It is important for the operation of the PTP protocol that the ordering
25  * of packets between the event and general port is maintained.
26  *
27  * Work queue processing:
28  * If work waiting, synchronise host/hardware time
29  *
30  * Transmit: send packet through MC, which returns the transmission time
31  * that is converted to an appropriate timestamp.
32  *
33  * Receive: the packet's reception time is converted to an appropriate
34  * timestamp.
35  */
36 #include <linux/ip.h>
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
45 #include "efx.h"
46 #include "mcdi.h"
47 #include "mcdi_pcol.h"
48 #include "io.h"
49 #include "regs.h"
50 #include "nic.h"
51 
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
54 
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
57 
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
60 
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
63 
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define MIN_SYNCHRONISATION_NS 120
66 
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
69 
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
72 
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
75 
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
78 
79 /* Offsets into PTP packet for identification. These offsets are from the
80  * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81  * PTP V2 permit the use of IPV4 options.
82  */
83 #define PTP_DPORT_OFFSET 22
84 
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
87 
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
90 
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
93 
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95  * includes IP header.
96  */
97 #define PTP_V1_MIN_LENGTH 64
98 
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
101 
102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
103  * the MC only captures the last six bytes of the clock identity. These values
104  * reflect those, not the ones used in the standard. The standard permits
105  * mapping of V1 UUIDs to V2 UUIDs with these same values.
106  */
107 #define PTP_V2_MC_UUID_LENGTH 6
108 #define PTP_V2_MC_UUID_OFFSET 50
109 
110 #define PTP_V2_SEQUENCE_LENGTH 2
111 #define PTP_V2_SEQUENCE_OFFSET 58
112 
113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
114  * includes IP header.
115  */
116 #define PTP_V2_MIN_LENGTH 63
117 
118 #define PTP_MIN_LENGTH 63
119 
120 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
121 #define PTP_EVENT_PORT 319
122 #define PTP_GENERAL_PORT 320
123 
124 /* Annoyingly the format of the version numbers are different between
125  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
126  */
127 #define PTP_VERSION_V1 1
128 
129 #define PTP_VERSION_V2 2
130 #define PTP_VERSION_V2_MASK 0x0f
131 
137 };
138 
139 /* NIC synchronised with single word of time only comprising
140  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
141  */
142 #define MC_NANOSECOND_BITS 30
143 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
144 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
145 
146 /* Maximum parts-per-billion adjustment that is acceptable */
147 #define MAX_PPB 1000000
148 
149 /* Number of bits required to hold the above */
150 #define MAX_PPB_BITS 20
151 
152 /* Number of extra bits allowed when calculating fractional ns.
153  * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
154  * be less than 63.
155  */
156 #define PPB_EXTRA_BITS 2
157 
158 /* Precalculate scale word to avoid long long division at runtime */
159 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
160  MAX_PPB_BITS)) / 1000000000LL)
161 
162 #define PTP_SYNC_ATTEMPTS 4
163 
174  unsigned long expiry;
176 };
177 
185  struct list_head link;
189  unsigned long expiry;
190 };
191 
209  u32 window; /* Derived: end - start, allowing for wrap */
210 };
211 
263 struct efx_ptp_data {
278  bool enabled;
279  unsigned int mode;
282  int evt_code;
285  unsigned last_sync_ns;
286  unsigned base_sync_ns;
298 };
299 
300 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
301 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
302 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
303 static int efx_phc_settime(struct ptp_clock_info *ptp,
304  const struct timespec *e_ts);
305 static int efx_phc_enable(struct ptp_clock_info *ptp,
306  struct ptp_clock_request *request, int on);
307 
308 /* Enable MCDI PTP support. */
309 static int efx_ptp_enable(struct efx_nic *efx)
310 {
312 
313  MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
314  MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
315  efx->ptp_data->channel->channel);
316  MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
317 
318  return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
319  NULL, 0, NULL);
320 }
321 
322 /* Disable MCDI PTP support.
323  *
324  * Note that this function should never rely on the presence of ptp_data -
325  * may be called before that exists.
326  */
327 static int efx_ptp_disable(struct efx_nic *efx)
328 {
330 
331  MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
332  return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
333  NULL, 0, NULL);
334 }
335 
336 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
337 {
338  struct sk_buff *skb;
339 
340  while ((skb = skb_dequeue(q))) {
342  netif_receive_skb(skb);
343  local_bh_enable();
344  }
345 }
346 
347 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
348 {
349  netif_err(efx, drv, efx->net_dev,
350  "ERROR: PTP requires MSI-X and 1 additional interrupt"
351  "vector. PTP disabled\n");
352 }
353 
354 /* Repeatedly send the host time to the MC which will capture the hardware
355  * time.
356  */
357 static void efx_ptp_send_times(struct efx_nic *efx,
358  struct pps_event_time *last_time)
359 {
360  struct pps_event_time now;
361  struct timespec limit;
362  struct efx_ptp_data *ptp = efx->ptp_data;
363  struct timespec start;
364  int *mc_running = ptp->start.addr;
365 
366  pps_get_ts(&now);
367  start = now.ts_real;
368  limit = now.ts_real;
369  timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
370 
371  /* Write host time for specified period or until MC is done */
372  while ((timespec_compare(&now.ts_real, &limit) < 0) &&
373  ACCESS_ONCE(*mc_running)) {
374  struct timespec update_time;
375  unsigned int host_time;
376 
377  /* Don't update continuously to avoid saturating the PCIe bus */
378  update_time = now.ts_real;
379  timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
380  do {
381  pps_get_ts(&now);
382  } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
383  ACCESS_ONCE(*mc_running));
384 
385  /* Synchronise NIC with single word of time only */
386  host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
387  now.ts_real.tv_nsec);
388  /* Update host time in NIC memory */
389  _efx_writed(efx, cpu_to_le32(host_time),
391  }
392  *last_time = now;
393 }
394 
395 /* Read a timeset from the MC's results and partial process. */
396 static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset)
397 {
398  unsigned start_ns, end_ns;
399 
400  timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
401  timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
402  timeset->nanoseconds = MCDI_DWORD(data,
403  PTP_OUT_SYNCHRONIZE_NANOSECONDS);
404  timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
405  timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
406 
407  /* Ignore seconds */
408  start_ns = timeset->host_start & MC_NANOSECOND_MASK;
409  end_ns = timeset->host_end & MC_NANOSECOND_MASK;
410  /* Allow for rollover */
411  if (end_ns < start_ns)
412  end_ns += NSEC_PER_SEC;
413  /* Determine duration of operation */
414  timeset->window = end_ns - start_ns;
415 }
416 
417 /* Process times received from MC.
418  *
419  * Extract times from returned results, and establish the minimum value
420  * seen. The minimum value represents the "best" possible time and events
421  * too much greater than this are rejected - the machine is, perhaps, too
422  * busy. A number of readings are taken so that, hopefully, at least one good
423  * synchronisation will be seen in the results.
424  */
425 static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
426  size_t response_length,
427  const struct pps_event_time *last_time)
428 {
429  unsigned number_readings = (response_length /
431  unsigned i;
432  unsigned min;
433  unsigned min_set = 0;
434  unsigned total;
435  unsigned ngood = 0;
436  unsigned last_good = 0;
437  struct efx_ptp_data *ptp = efx->ptp_data;
438  bool min_valid = false;
439  u32 last_sec;
440  u32 start_sec;
441  struct timespec delta;
442 
443  if (number_readings == 0)
444  return -EAGAIN;
445 
446  /* Find minimum value in this set of results, discarding clearly
447  * erroneous results.
448  */
449  for (i = 0; i < number_readings; i++) {
450  efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]);
452  if (ptp->timeset[i].window > SYNCHRONISATION_GRANULARITY_NS) {
453  if (min_valid) {
454  if (ptp->timeset[i].window < min_set)
455  min_set = ptp->timeset[i].window;
456  } else {
457  min_valid = true;
458  min_set = ptp->timeset[i].window;
459  }
460  }
461  }
462 
463  if (min_valid) {
464  if (ptp->base_sync_valid && (min_set > ptp->base_sync_ns))
465  min = ptp->base_sync_ns;
466  else
467  min = min_set;
468  } else {
470  }
471 
472  /* Discard excessively long synchronise durations. The MC times
473  * when it finishes reading the host time so the corrected window
474  * time should be fairly constant for a given platform.
475  */
476  total = 0;
477  for (i = 0; i < number_readings; i++)
478  if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
479  unsigned win;
480 
481  win = ptp->timeset[i].window - ptp->timeset[i].waitns;
482  if (win >= MIN_SYNCHRONISATION_NS &&
483  win < MAX_SYNCHRONISATION_NS) {
484  total += ptp->timeset[i].window;
485  ngood++;
486  last_good = i;
487  }
488  }
489 
490  if (ngood == 0) {
491  netif_warn(efx, drv, efx->net_dev,
492  "PTP no suitable synchronisations %dns %dns\n",
493  ptp->base_sync_ns, min_set);
494  return -EAGAIN;
495  }
496 
497  /* Average minimum this synchronisation */
498  ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
499  if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
500  ptp->base_sync_valid = true;
501  ptp->base_sync_ns = ptp->last_sync_ns;
502  }
503 
504  /* Calculate delay from actual PPS to last_time */
505  delta.tv_nsec =
506  ptp->timeset[last_good].nanoseconds +
507  last_time->ts_real.tv_nsec -
508  (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
509 
510  /* It is possible that the seconds rolled over between taking
511  * the start reading and the last value written by the host. The
512  * timescales are such that a gap of more than one second is never
513  * expected.
514  */
515  start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
516  last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
517  if (start_sec != last_sec) {
518  if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
519  netif_warn(efx, hw, efx->net_dev,
520  "PTP bad synchronisation seconds\n");
521  return -EAGAIN;
522  } else {
523  delta.tv_sec = 1;
524  }
525  } else {
526  delta.tv_sec = 0;
527  }
528 
529  ptp->host_time_pps = *last_time;
530  pps_sub_ts(&ptp->host_time_pps, delta);
531 
532  return 0;
533 }
534 
535 /* Synchronize times between the host and the MC */
536 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
537 {
538  struct efx_ptp_data *ptp = efx->ptp_data;
540  size_t response_length;
541  int rc;
542  unsigned long timeout;
543  struct pps_event_time last_time = {};
544  unsigned int loops = 0;
545  int *start = ptp->start.addr;
546 
547  MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
548  MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
549  num_readings);
550  MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO,
551  (u32)ptp->start.dma_addr);
552  MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI,
553  (u32)((u64)ptp->start.dma_addr >> 32));
554 
555  /* Clear flag that signals MC ready */
556  ACCESS_ONCE(*start) = 0;
557  efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
559 
560  /* Wait for start from MCDI (or timeout) */
562  while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
563  udelay(20); /* Usually start MCDI execution quickly */
564  loops++;
565  }
566 
567  if (ACCESS_ONCE(*start))
568  efx_ptp_send_times(efx, &last_time);
569 
570  /* Collect results */
573  synch_buf, sizeof(synch_buf),
574  &response_length);
575  if (rc == 0)
576  rc = efx_ptp_process_times(efx, synch_buf, response_length,
577  &last_time);
578 
579  return rc;
580 }
581 
582 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
583 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
584 {
585  u8 *txbuf = efx->ptp_data->txbuf;
586  struct skb_shared_hwtstamps timestamps;
587  int rc = -EIO;
588  /* MCDI driver requires word aligned lengths */
589  size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4);
591 
592  MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
593  MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
594  if (skb_shinfo(skb)->nr_frags != 0) {
595  rc = skb_linearize(skb);
596  if (rc != 0)
597  goto fail;
598  }
599 
600  if (skb->ip_summed == CHECKSUM_PARTIAL) {
601  rc = skb_checksum_help(skb);
602  if (rc != 0)
603  goto fail;
604  }
605  skb_copy_from_linear_data(skb,
607  len);
608  rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime,
609  sizeof(txtime), &len);
610  if (rc != 0)
611  goto fail;
612 
613  memset(&timestamps, 0, sizeof(timestamps));
614  timestamps.hwtstamp = ktime_set(
615  MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
616  MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
617 
618  skb_tstamp_tx(skb, &timestamps);
619 
620  rc = 0;
621 
622 fail:
623  dev_kfree_skb(skb);
624 
625  return rc;
626 }
627 
628 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
629 {
630  struct efx_ptp_data *ptp = efx->ptp_data;
631  struct list_head *cursor;
632  struct list_head *next;
633 
634  /* Drop time-expired events */
635  spin_lock_bh(&ptp->evt_lock);
636  if (!list_empty(&ptp->evt_list)) {
637  list_for_each_safe(cursor, next, &ptp->evt_list) {
638  struct efx_ptp_event_rx *evt;
639 
640  evt = list_entry(cursor, struct efx_ptp_event_rx,
641  link);
642  if (time_after(jiffies, evt->expiry)) {
643  list_move(&evt->link, &ptp->evt_free_list);
644  netif_warn(efx, hw, efx->net_dev,
645  "PTP rx event dropped\n");
646  }
647  }
648  }
649  spin_unlock_bh(&ptp->evt_lock);
650 }
651 
652 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
653  struct sk_buff *skb)
654 {
655  struct efx_ptp_data *ptp = efx->ptp_data;
656  bool evts_waiting;
657  struct list_head *cursor;
658  struct list_head *next;
659  struct efx_ptp_match *match;
661 
662  spin_lock_bh(&ptp->evt_lock);
663  evts_waiting = !list_empty(&ptp->evt_list);
664  spin_unlock_bh(&ptp->evt_lock);
665 
666  if (!evts_waiting)
668 
669  match = (struct efx_ptp_match *)skb->cb;
670  /* Look for a matching timestamp in the event queue */
671  spin_lock_bh(&ptp->evt_lock);
672  list_for_each_safe(cursor, next, &ptp->evt_list) {
673  struct efx_ptp_event_rx *evt;
674 
675  evt = list_entry(cursor, struct efx_ptp_event_rx, link);
676  if ((evt->seq0 == match->words[0]) &&
677  (evt->seq1 == match->words[1])) {
678  struct skb_shared_hwtstamps *timestamps;
679 
680  /* Match - add in hardware timestamp */
681  timestamps = skb_hwtstamps(skb);
682  timestamps->hwtstamp = evt->hwtimestamp;
683 
686  list_move(&evt->link, &ptp->evt_free_list);
687  break;
688  }
689  }
690  spin_unlock_bh(&ptp->evt_lock);
691 
692  return rc;
693 }
694 
695 /* Process any queued receive events and corresponding packets
696  *
697  * q is returned with all the packets that are ready for delivery.
698  * true is returned if at least one of those packets requires
699  * synchronisation.
700  */
701 static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
702 {
703  struct efx_ptp_data *ptp = efx->ptp_data;
704  bool rc = false;
705  struct sk_buff *skb;
706 
707  while ((skb = skb_dequeue(&ptp->rxq))) {
708  struct efx_ptp_match *match;
709 
710  match = (struct efx_ptp_match *)skb->cb;
712  __skb_queue_tail(q, skb);
713  } else if (efx_ptp_match_rx(efx, skb) ==
715  rc = true;
716  __skb_queue_tail(q, skb);
717  } else if (time_after(jiffies, match->expiry)) {
719  netif_warn(efx, rx_err, efx->net_dev,
720  "PTP packet - no timestamp seen\n");
721  __skb_queue_tail(q, skb);
722  } else {
723  /* Replace unprocessed entry and stop */
724  skb_queue_head(&ptp->rxq, skb);
725  break;
726  }
727  }
728 
729  return rc;
730 }
731 
732 /* Complete processing of a received packet */
733 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
734 {
736  netif_receive_skb(skb);
737  local_bh_enable();
738 }
739 
740 static int efx_ptp_start(struct efx_nic *efx)
741 {
742  struct efx_ptp_data *ptp = efx->ptp_data;
743  struct efx_filter_spec rxfilter;
744  int rc;
745 
746  ptp->reset_required = false;
747 
748  /* Must filter on both event and general ports to ensure
749  * that there is no packet re-ordering.
750  */
751  efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
752  efx_rx_queue_index(
753  efx_channel_get_rx_queue(ptp->channel)));
754  rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
757  if (rc != 0)
758  return rc;
759 
760  rc = efx_filter_insert_filter(efx, &rxfilter, true);
761  if (rc < 0)
762  return rc;
763  ptp->rxfilter_event = rc;
764 
765  efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
766  efx_rx_queue_index(
767  efx_channel_get_rx_queue(ptp->channel)));
768  rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
771  if (rc != 0)
772  goto fail;
773 
774  rc = efx_filter_insert_filter(efx, &rxfilter, true);
775  if (rc < 0)
776  goto fail;
777  ptp->rxfilter_general = rc;
778 
779  rc = efx_ptp_enable(efx);
780  if (rc != 0)
781  goto fail2;
782 
783  ptp->evt_frag_idx = 0;
784  ptp->current_adjfreq = 0;
785  ptp->rxfilter_installed = true;
786 
787  return 0;
788 
789 fail2:
791  ptp->rxfilter_general);
792 fail:
794  ptp->rxfilter_event);
795 
796  return rc;
797 }
798 
799 static int efx_ptp_stop(struct efx_nic *efx)
800 {
801  struct efx_ptp_data *ptp = efx->ptp_data;
802  int rc = efx_ptp_disable(efx);
803  struct list_head *cursor;
804  struct list_head *next;
805 
806  if (ptp->rxfilter_installed) {
808  ptp->rxfilter_general);
810  ptp->rxfilter_event);
811  ptp->rxfilter_installed = false;
812  }
813 
814  /* Make sure RX packets are really delivered */
815  efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
816  skb_queue_purge(&efx->ptp_data->txq);
817 
818  /* Drop any pending receive events */
819  spin_lock_bh(&efx->ptp_data->evt_lock);
820  list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
821  list_move(cursor, &efx->ptp_data->evt_free_list);
822  }
823  spin_unlock_bh(&efx->ptp_data->evt_lock);
824 
825  return rc;
826 }
827 
828 static void efx_ptp_pps_worker(struct work_struct *work)
829 {
830  struct efx_ptp_data *ptp =
831  container_of(work, struct efx_ptp_data, pps_work);
832  struct efx_nic *efx = ptp->channel->efx;
833  struct ptp_clock_event ptp_evt;
834 
835  if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
836  return;
837 
838  ptp_evt.type = PTP_CLOCK_PPSUSR;
839  ptp_evt.pps_times = ptp->host_time_pps;
840  ptp_clock_event(ptp->phc_clock, &ptp_evt);
841 }
842 
843 /* Process any pending transmissions and timestamp any received packets.
844  */
845 static void efx_ptp_worker(struct work_struct *work)
846 {
847  struct efx_ptp_data *ptp_data =
848  container_of(work, struct efx_ptp_data, work);
849  struct efx_nic *efx = ptp_data->channel->efx;
850  struct sk_buff *skb;
851  struct sk_buff_head tempq;
852 
853  if (ptp_data->reset_required) {
854  efx_ptp_stop(efx);
855  efx_ptp_start(efx);
856  return;
857  }
858 
859  efx_ptp_drop_time_expired_events(efx);
860 
861  __skb_queue_head_init(&tempq);
862  if (efx_ptp_process_events(efx, &tempq) ||
863  !skb_queue_empty(&ptp_data->txq)) {
864 
865  while ((skb = skb_dequeue(&ptp_data->txq)))
866  efx_ptp_xmit_skb(efx, skb);
867  }
868 
869  while ((skb = __skb_dequeue(&tempq)))
870  efx_ptp_process_rx(efx, skb);
871 }
872 
873 /* Initialise PTP channel and state.
874  *
875  * Setting core_index to zero causes the queue to be initialised and doesn't
876  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
877  */
878 static int efx_ptp_probe_channel(struct efx_channel *channel)
879 {
880  struct efx_nic *efx = channel->efx;
881  struct efx_ptp_data *ptp;
882  int rc = 0;
883  unsigned int pos;
884 
885  channel->irq_moderation = 0;
886  channel->rx_queue.core_index = 0;
887 
888  ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
889  efx->ptp_data = ptp;
890  if (!efx->ptp_data)
891  return -ENOMEM;
892 
893  rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int));
894  if (rc != 0)
895  goto fail1;
896 
897  ptp->channel = channel;
898  skb_queue_head_init(&ptp->rxq);
899  skb_queue_head_init(&ptp->txq);
900  ptp->workwq = create_singlethread_workqueue("sfc_ptp");
901  if (!ptp->workwq) {
902  rc = -ENOMEM;
903  goto fail2;
904  }
905 
906  INIT_WORK(&ptp->work, efx_ptp_worker);
907  ptp->config.flags = 0;
908  ptp->config.tx_type = HWTSTAMP_TX_OFF;
909  ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
910  INIT_LIST_HEAD(&ptp->evt_list);
911  INIT_LIST_HEAD(&ptp->evt_free_list);
912  spin_lock_init(&ptp->evt_lock);
913  for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
914  list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
915 
916  ptp->phc_clock_info.owner = THIS_MODULE;
917  snprintf(ptp->phc_clock_info.name,
918  sizeof(ptp->phc_clock_info.name),
919  "%pm", efx->net_dev->perm_addr);
920  ptp->phc_clock_info.max_adj = MAX_PPB;
921  ptp->phc_clock_info.n_alarm = 0;
922  ptp->phc_clock_info.n_ext_ts = 0;
923  ptp->phc_clock_info.n_per_out = 0;
924  ptp->phc_clock_info.pps = 1;
925  ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
926  ptp->phc_clock_info.adjtime = efx_phc_adjtime;
927  ptp->phc_clock_info.gettime = efx_phc_gettime;
928  ptp->phc_clock_info.settime = efx_phc_settime;
929  ptp->phc_clock_info.enable = efx_phc_enable;
930 
932  &efx->pci_dev->dev);
933  if (!ptp->phc_clock)
934  goto fail3;
935 
936  INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
937  ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
938  if (!ptp->pps_workwq) {
939  rc = -ENOMEM;
940  goto fail4;
941  }
942  ptp->nic_ts_enabled = false;
943 
944  return 0;
945 fail4:
946  ptp_clock_unregister(efx->ptp_data->phc_clock);
947 
948 fail3:
949  destroy_workqueue(efx->ptp_data->workwq);
950 
951 fail2:
952  efx_nic_free_buffer(efx, &ptp->start);
953 
954 fail1:
955  kfree(efx->ptp_data);
956  efx->ptp_data = NULL;
957 
958  return rc;
959 }
960 
961 static void efx_ptp_remove_channel(struct efx_channel *channel)
962 {
963  struct efx_nic *efx = channel->efx;
964 
965  if (!efx->ptp_data)
966  return;
967 
968  (void)efx_ptp_disable(channel->efx);
969 
970  cancel_work_sync(&efx->ptp_data->work);
971  cancel_work_sync(&efx->ptp_data->pps_work);
972 
973  skb_queue_purge(&efx->ptp_data->rxq);
974  skb_queue_purge(&efx->ptp_data->txq);
975 
976  ptp_clock_unregister(efx->ptp_data->phc_clock);
977 
978  destroy_workqueue(efx->ptp_data->workwq);
979  destroy_workqueue(efx->ptp_data->pps_workwq);
980 
981  efx_nic_free_buffer(efx, &efx->ptp_data->start);
982  kfree(efx->ptp_data);
983 }
984 
985 static void efx_ptp_get_channel_name(struct efx_channel *channel,
986  char *buf, size_t len)
987 {
988  snprintf(buf, len, "%s-ptp", channel->efx->name);
989 }
990 
991 /* Determine whether this packet should be processed by the PTP module
992  * or transmitted conventionally.
993  */
994 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
995 {
996  return efx->ptp_data &&
997  efx->ptp_data->enabled &&
998  skb->len >= PTP_MIN_LENGTH &&
1000  likely(skb->protocol == htons(ETH_P_IP)) &&
1001  ip_hdr(skb)->protocol == IPPROTO_UDP &&
1002  udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1003 }
1004 
1005 /* Receive a PTP packet. Packets are queued until the arrival of
1006  * the receive timestamp from the MC - this will probably occur after the
1007  * packet arrival because of the processing in the MC.
1008  */
1009 static void efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1010 {
1011  struct efx_nic *efx = channel->efx;
1012  struct efx_ptp_data *ptp = efx->ptp_data;
1013  struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1014  u8 *data;
1015  unsigned int version;
1016 
1017  match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1018 
1019  /* Correct version? */
1020  if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1021  if (skb->len < PTP_V1_MIN_LENGTH) {
1022  netif_receive_skb(skb);
1023  return;
1024  }
1026  if (version != PTP_VERSION_V1) {
1027  netif_receive_skb(skb);
1028  return;
1029  }
1030  } else {
1031  if (skb->len < PTP_V2_MIN_LENGTH) {
1032  netif_receive_skb(skb);
1033  return;
1034  }
1036 
1037  BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2);
1042 
1044  netif_receive_skb(skb);
1045  return;
1046  }
1047  }
1048 
1049  /* Does this packet require timestamping? */
1050  if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1051  struct skb_shared_hwtstamps *timestamps;
1052 
1054 
1055  /* Clear all timestamps held: filled in later */
1056  timestamps = skb_hwtstamps(skb);
1057  memset(timestamps, 0, sizeof(*timestamps));
1058 
1059  /* Extract UUID/Sequence information */
1060  data = skb->data + PTP_V1_UUID_OFFSET;
1061  match->words[0] = (data[0] |
1062  (data[1] << 8) |
1063  (data[2] << 16) |
1064  (data[3] << 24));
1065  match->words[1] = (data[4] |
1066  (data[5] << 8) |
1068  PTP_V1_SEQUENCE_LENGTH - 1] <<
1069  16));
1070  } else {
1072  }
1073 
1074  skb_queue_tail(&ptp->rxq, skb);
1075  queue_work(ptp->workwq, &ptp->work);
1076 }
1077 
1078 /* Transmit a PTP packet. This has to be transmitted by the MC
1079  * itself, through an MCDI call. MCDI calls aren't permitted
1080  * in the transmit path so defer the actual transmission to a suitable worker.
1081  */
1082 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1083 {
1084  struct efx_ptp_data *ptp = efx->ptp_data;
1085 
1086  skb_queue_tail(&ptp->txq, skb);
1087 
1088  if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1090  efx_xmit_hwtstamp_pending(skb);
1091  queue_work(ptp->workwq, &ptp->work);
1092 
1093  return NETDEV_TX_OK;
1094 }
1095 
1096 static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1097  unsigned int new_mode)
1098 {
1099  if ((enable_wanted != efx->ptp_data->enabled) ||
1100  (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1101  int rc;
1102 
1103  if (enable_wanted) {
1104  /* Change of mode requires disable */
1105  if (efx->ptp_data->enabled &&
1106  (efx->ptp_data->mode != new_mode)) {
1107  efx->ptp_data->enabled = false;
1108  rc = efx_ptp_stop(efx);
1109  if (rc != 0)
1110  return rc;
1111  }
1112 
1113  /* Set new operating mode and establish
1114  * baseline synchronisation, which must
1115  * succeed.
1116  */
1117  efx->ptp_data->mode = new_mode;
1118  rc = efx_ptp_start(efx);
1119  if (rc == 0) {
1120  rc = efx_ptp_synchronize(efx,
1121  PTP_SYNC_ATTEMPTS * 2);
1122  if (rc != 0)
1123  efx_ptp_stop(efx);
1124  }
1125  } else {
1126  rc = efx_ptp_stop(efx);
1127  }
1128 
1129  if (rc != 0)
1130  return rc;
1131 
1132  efx->ptp_data->enabled = enable_wanted;
1133  }
1134 
1135  return 0;
1136 }
1137 
1138 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1139 {
1140  bool enable_wanted = false;
1141  unsigned int new_mode;
1142  int rc;
1143 
1144  if (init->flags)
1145  return -EINVAL;
1146 
1147  if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1148  (init->tx_type != HWTSTAMP_TX_ON))
1149  return -ERANGE;
1150 
1151  new_mode = efx->ptp_data->mode;
1152  /* Determine whether any PTP HW operations are required */
1153  switch (init->rx_filter) {
1154  case HWTSTAMP_FILTER_NONE:
1155  break;
1160  new_mode = MC_CMD_PTP_MODE_V1;
1161  enable_wanted = true;
1162  break;
1166  /* Although these three are accepted only IPV4 packets will be
1167  * timestamped
1168  */
1170  new_mode = MC_CMD_PTP_MODE_V2;
1171  enable_wanted = true;
1172  break;
1179  /* Non-IP + IPv6 timestamping not supported */
1180  return -ERANGE;
1181  break;
1182  default:
1183  return -ERANGE;
1184  }
1185 
1186  if (init->tx_type != HWTSTAMP_TX_OFF)
1187  enable_wanted = true;
1188 
1189  rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1190  if (rc != 0)
1191  return rc;
1192 
1193  efx->ptp_data->config = *init;
1194 
1195  return 0;
1196 }
1197 
1198 int
1200 {
1201  struct efx_nic *efx = netdev_priv(net_dev);
1202  struct efx_ptp_data *ptp = efx->ptp_data;
1203 
1204  if (!ptp)
1205  return -EOPNOTSUPP;
1206 
1210  ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1211  ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1212  ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1219  return 0;
1220 }
1221 
1222 int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1223 {
1224  struct hwtstamp_config config;
1225  int rc;
1226 
1227  /* Not a PTP enabled port */
1228  if (!efx->ptp_data)
1229  return -EOPNOTSUPP;
1230 
1231  if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1232  return -EFAULT;
1233 
1234  rc = efx_ptp_ts_init(efx, &config);
1235  if (rc != 0)
1236  return rc;
1237 
1238  return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1239  ? -EFAULT : 0;
1240 }
1241 
1242 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1243 {
1244  struct efx_ptp_data *ptp = efx->ptp_data;
1245 
1246  netif_err(efx, hw, efx->net_dev,
1247  "PTP unexpected event length: got %d expected %d\n",
1248  ptp->evt_frag_idx, expected_frag_len);
1249  ptp->reset_required = true;
1250  queue_work(ptp->workwq, &ptp->work);
1251 }
1252 
1253 /* Process a completed receive event. Put it on the event queue and
1254  * start worker thread. This is required because event and their
1255  * correspoding packets may come in either order.
1256  */
1257 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1258 {
1259  struct efx_ptp_event_rx *evt = NULL;
1260 
1261  if (ptp->evt_frag_idx != 3) {
1262  ptp_event_failure(efx, 3);
1263  return;
1264  }
1265 
1266  spin_lock_bh(&ptp->evt_lock);
1267  if (!list_empty(&ptp->evt_free_list)) {
1268  evt = list_first_entry(&ptp->evt_free_list,
1269  struct efx_ptp_event_rx, link);
1270  list_del(&evt->link);
1271 
1272  evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1273  evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1274  MCDI_EVENT_SRC) |
1275  (EFX_QWORD_FIELD(ptp->evt_frags[1],
1276  MCDI_EVENT_SRC) << 8) |
1277  (EFX_QWORD_FIELD(ptp->evt_frags[0],
1278  MCDI_EVENT_SRC) << 16));
1279  evt->hwtimestamp = ktime_set(
1280  EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1281  EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1283  list_add_tail(&evt->link, &ptp->evt_list);
1284 
1285  queue_work(ptp->workwq, &ptp->work);
1286  } else {
1287  netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1288  }
1289  spin_unlock_bh(&ptp->evt_lock);
1290 }
1291 
1292 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1293 {
1294  int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1295  if (ptp->evt_frag_idx != 1) {
1296  ptp_event_failure(efx, 1);
1297  return;
1298  }
1299 
1300  netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1301 }
1302 
1303 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1304 {
1305  if (ptp->nic_ts_enabled)
1306  queue_work(ptp->pps_workwq, &ptp->pps_work);
1307 }
1308 
1309 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1310 {
1311  struct efx_ptp_data *ptp = efx->ptp_data;
1312  int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1313 
1314  if (!ptp->enabled)
1315  return;
1316 
1317  if (ptp->evt_frag_idx == 0) {
1318  ptp->evt_code = code;
1319  } else if (ptp->evt_code != code) {
1320  netif_err(efx, hw, efx->net_dev,
1321  "PTP out of sequence event %d\n", code);
1322  ptp->evt_frag_idx = 0;
1323  }
1324 
1325  ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1326  if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1327  /* Process resulting event */
1328  switch (code) {
1330  ptp_event_rx(efx, ptp);
1331  break;
1333  ptp_event_fault(efx, ptp);
1334  break;
1336  ptp_event_pps(efx, ptp);
1337  break;
1338  default:
1339  netif_err(efx, hw, efx->net_dev,
1340  "PTP unknown event %d\n", code);
1341  break;
1342  }
1343  ptp->evt_frag_idx = 0;
1344  } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1345  netif_err(efx, hw, efx->net_dev,
1346  "PTP too many event fragments\n");
1347  ptp->evt_frag_idx = 0;
1348  }
1349 }
1350 
1351 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1352 {
1353  struct efx_ptp_data *ptp_data = container_of(ptp,
1354  struct efx_ptp_data,
1355  phc_clock_info);
1356  struct efx_nic *efx = ptp_data->channel->efx;
1358  s64 adjustment_ns;
1359  int rc;
1360 
1361  if (delta > MAX_PPB)
1362  delta = MAX_PPB;
1363  else if (delta < -MAX_PPB)
1364  delta = -MAX_PPB;
1365 
1366  /* Convert ppb to fixed point ns. */
1367  adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1369 
1370  MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1371  MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns);
1372  MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI,
1373  (u32)(adjustment_ns >> 32));
1374  MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1375  MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1376  rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1377  NULL, 0, NULL);
1378  if (rc != 0)
1379  return rc;
1380 
1381  ptp_data->current_adjfreq = delta;
1382  return 0;
1383 }
1384 
1385 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1386 {
1387  struct efx_ptp_data *ptp_data = container_of(ptp,
1388  struct efx_ptp_data,
1389  phc_clock_info);
1390  struct efx_nic *efx = ptp_data->channel->efx;
1391  struct timespec delta_ts = ns_to_timespec(delta);
1393 
1394  MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1395  MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0);
1396  MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0);
1397  MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1398  MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1399  return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1400  NULL, 0, NULL);
1401 }
1402 
1403 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1404 {
1405  struct efx_ptp_data *ptp_data = container_of(ptp,
1406  struct efx_ptp_data,
1407  phc_clock_info);
1408  struct efx_nic *efx = ptp_data->channel->efx;
1411  int rc;
1412 
1413  MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1414 
1415  rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1416  outbuf, sizeof(outbuf), NULL);
1417  if (rc != 0)
1418  return rc;
1419 
1420  ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1421  ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1422  return 0;
1423 }
1424 
1425 static int efx_phc_settime(struct ptp_clock_info *ptp,
1426  const struct timespec *e_ts)
1427 {
1428  /* Get the current NIC time, efx_phc_gettime.
1429  * Subtract from the desired time to get the offset
1430  * call efx_phc_adjtime with the offset
1431  */
1432  int rc;
1433  struct timespec time_now;
1434  struct timespec delta;
1435 
1436  rc = efx_phc_gettime(ptp, &time_now);
1437  if (rc != 0)
1438  return rc;
1439 
1440  delta = timespec_sub(*e_ts, time_now);
1441 
1442  efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1443  if (rc != 0)
1444  return rc;
1445 
1446  return 0;
1447 }
1448 
1449 static int efx_phc_enable(struct ptp_clock_info *ptp,
1450  struct ptp_clock_request *request,
1451  int enable)
1452 {
1453  struct efx_ptp_data *ptp_data = container_of(ptp,
1454  struct efx_ptp_data,
1455  phc_clock_info);
1456  if (request->type != PTP_CLK_REQ_PPS)
1457  return -EOPNOTSUPP;
1458 
1459  ptp_data->nic_ts_enabled = !!enable;
1460  return 0;
1461 }
1462 
1463 static const struct efx_channel_type efx_ptp_channel_type = {
1464  .handle_no_channel = efx_ptp_handle_no_channel,
1465  .pre_probe = efx_ptp_probe_channel,
1466  .post_remove = efx_ptp_remove_channel,
1467  .get_name = efx_ptp_get_channel_name,
1468  /* no copy operation; there is no need to reallocate this channel */
1469  .receive_skb = efx_ptp_rx,
1470  .keep_eventq = false,
1471 };
1472 
1473 void efx_ptp_probe(struct efx_nic *efx)
1474 {
1475  /* Check whether PTP is implemented on this NIC. The DISABLE
1476  * operation will succeed if and only if it is implemented.
1477  */
1478  if (efx_ptp_disable(efx) == 0)
1480  &efx_ptp_channel_type;
1481 }