Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
raid10.c
Go to the documentation of this file.
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c. See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  * chunk_size
37  * raid_disks
38  * near_copies (stored in low byte of layout)
39  * far_copies (stored in second byte of layout)
40  * far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57 
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define NR_RAID10_BIOS 256
62 
63 /* when we get a read error on a read-only array, we redirect to another
64  * device without failing the first device, or trying to over-write to
65  * correct the read error. To keep track of bad blocks on a per-bio
66  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67  */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70  * bad-block marking which must be done from process context. So we record
71  * the success by setting devs[n].bio to IO_MADE_GOOD
72  */
73 #define IO_MADE_GOOD ((struct bio *)2)
74 
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76 
77 /* When there are this many requests queued to be written by
78  * the raid10 thread, we become 'congested' to provide back-pressure
79  * for writeback.
80  */
81 static int max_queued_requests = 1024;
82 
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87  int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91 
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94  struct r10conf *conf = data;
95  int size = offsetof(struct r10bio, devs[conf->copies]);
96 
97  /* allocate a r10bio with room for raid_disks entries in the
98  * bios array */
99  return kzalloc(size, gfp_flags);
100 }
101 
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104  kfree(r10_bio);
105 }
106 
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114 
115 /*
116  * When performing a resync, we need to read and compare, so
117  * we need as many pages are there are copies.
118  * When performing a recovery, we need 2 bios, one for read,
119  * one for write (we recover only one drive per r10buf)
120  *
121  */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124  struct r10conf *conf = data;
125  struct page *page;
126  struct r10bio *r10_bio;
127  struct bio *bio;
128  int i, j;
129  int nalloc;
130 
131  r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132  if (!r10_bio)
133  return NULL;
134 
135  if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136  test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137  nalloc = conf->copies; /* resync */
138  else
139  nalloc = 2; /* recovery */
140 
141  /*
142  * Allocate bios.
143  */
144  for (j = nalloc ; j-- ; ) {
145  bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146  if (!bio)
147  goto out_free_bio;
148  r10_bio->devs[j].bio = bio;
149  if (!conf->have_replacement)
150  continue;
151  bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152  if (!bio)
153  goto out_free_bio;
154  r10_bio->devs[j].repl_bio = bio;
155  }
156  /*
157  * Allocate RESYNC_PAGES data pages and attach them
158  * where needed.
159  */
160  for (j = 0 ; j < nalloc; j++) {
161  struct bio *rbio = r10_bio->devs[j].repl_bio;
162  bio = r10_bio->devs[j].bio;
163  for (i = 0; i < RESYNC_PAGES; i++) {
164  if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165  &conf->mddev->recovery)) {
166  /* we can share bv_page's during recovery
167  * and reshape */
168  struct bio *rbio = r10_bio->devs[0].bio;
169  page = rbio->bi_io_vec[i].bv_page;
170  get_page(page);
171  } else
172  page = alloc_page(gfp_flags);
173  if (unlikely(!page))
174  goto out_free_pages;
175 
176  bio->bi_io_vec[i].bv_page = page;
177  if (rbio)
178  rbio->bi_io_vec[i].bv_page = page;
179  }
180  }
181 
182  return r10_bio;
183 
184 out_free_pages:
185  for ( ; i > 0 ; i--)
186  safe_put_page(bio->bi_io_vec[i-1].bv_page);
187  while (j--)
188  for (i = 0; i < RESYNC_PAGES ; i++)
189  safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190  j = 0;
191 out_free_bio:
192  for ( ; j < nalloc; j++) {
193  if (r10_bio->devs[j].bio)
194  bio_put(r10_bio->devs[j].bio);
195  if (r10_bio->devs[j].repl_bio)
196  bio_put(r10_bio->devs[j].repl_bio);
197  }
198  r10bio_pool_free(r10_bio, conf);
199  return NULL;
200 }
201 
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204  int i;
205  struct r10conf *conf = data;
206  struct r10bio *r10bio = __r10_bio;
207  int j;
208 
209  for (j=0; j < conf->copies; j++) {
210  struct bio *bio = r10bio->devs[j].bio;
211  if (bio) {
212  for (i = 0; i < RESYNC_PAGES; i++) {
213  safe_put_page(bio->bi_io_vec[i].bv_page);
214  bio->bi_io_vec[i].bv_page = NULL;
215  }
216  bio_put(bio);
217  }
218  bio = r10bio->devs[j].repl_bio;
219  if (bio)
220  bio_put(bio);
221  }
222  r10bio_pool_free(r10bio, conf);
223 }
224 
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227  int i;
228 
229  for (i = 0; i < conf->copies; i++) {
230  struct bio **bio = & r10_bio->devs[i].bio;
231  if (!BIO_SPECIAL(*bio))
232  bio_put(*bio);
233  *bio = NULL;
234  bio = &r10_bio->devs[i].repl_bio;
235  if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236  bio_put(*bio);
237  *bio = NULL;
238  }
239 }
240 
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243  struct r10conf *conf = r10_bio->mddev->private;
244 
245  put_all_bios(conf, r10_bio);
246  mempool_free(r10_bio, conf->r10bio_pool);
247 }
248 
249 static void put_buf(struct r10bio *r10_bio)
250 {
251  struct r10conf *conf = r10_bio->mddev->private;
252 
253  mempool_free(r10_bio, conf->r10buf_pool);
254 
255  lower_barrier(conf);
256 }
257 
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260  unsigned long flags;
261  struct mddev *mddev = r10_bio->mddev;
262  struct r10conf *conf = mddev->private;
263 
264  spin_lock_irqsave(&conf->device_lock, flags);
265  list_add(&r10_bio->retry_list, &conf->retry_list);
266  conf->nr_queued ++;
267  spin_unlock_irqrestore(&conf->device_lock, flags);
268 
269  /* wake up frozen array... */
270  wake_up(&conf->wait_barrier);
271 
272  md_wakeup_thread(mddev->thread);
273 }
274 
275 /*
276  * raid_end_bio_io() is called when we have finished servicing a mirrored
277  * operation and are ready to return a success/failure code to the buffer
278  * cache layer.
279  */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282  struct bio *bio = r10_bio->master_bio;
283  int done;
284  struct r10conf *conf = r10_bio->mddev->private;
285 
286  if (bio->bi_phys_segments) {
287  unsigned long flags;
288  spin_lock_irqsave(&conf->device_lock, flags);
289  bio->bi_phys_segments--;
290  done = (bio->bi_phys_segments == 0);
291  spin_unlock_irqrestore(&conf->device_lock, flags);
292  } else
293  done = 1;
294  if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295  clear_bit(BIO_UPTODATE, &bio->bi_flags);
296  if (done) {
297  bio_endio(bio, 0);
298  /*
299  * Wake up any possible resync thread that waits for the device
300  * to go idle.
301  */
302  allow_barrier(conf);
303  }
304  free_r10bio(r10_bio);
305 }
306 
307 /*
308  * Update disk head position estimator based on IRQ completion info.
309  */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312  struct r10conf *conf = r10_bio->mddev->private;
313 
314  conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315  r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317 
318 /*
319  * Find the disk number which triggered given bio
320  */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322  struct bio *bio, int *slotp, int *replp)
323 {
324  int slot;
325  int repl = 0;
326 
327  for (slot = 0; slot < conf->copies; slot++) {
328  if (r10_bio->devs[slot].bio == bio)
329  break;
330  if (r10_bio->devs[slot].repl_bio == bio) {
331  repl = 1;
332  break;
333  }
334  }
335 
336  BUG_ON(slot == conf->copies);
337  update_head_pos(slot, r10_bio);
338 
339  if (slotp)
340  *slotp = slot;
341  if (replp)
342  *replp = repl;
343  return r10_bio->devs[slot].devnum;
344 }
345 
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348  int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349  struct r10bio *r10_bio = bio->bi_private;
350  int slot, dev;
351  struct md_rdev *rdev;
352  struct r10conf *conf = r10_bio->mddev->private;
353 
354 
355  slot = r10_bio->read_slot;
356  dev = r10_bio->devs[slot].devnum;
357  rdev = r10_bio->devs[slot].rdev;
358  /*
359  * this branch is our 'one mirror IO has finished' event handler:
360  */
361  update_head_pos(slot, r10_bio);
362 
363  if (uptodate) {
364  /*
365  * Set R10BIO_Uptodate in our master bio, so that
366  * we will return a good error code to the higher
367  * levels even if IO on some other mirrored buffer fails.
368  *
369  * The 'master' represents the composite IO operation to
370  * user-side. So if something waits for IO, then it will
371  * wait for the 'master' bio.
372  */
373  set_bit(R10BIO_Uptodate, &r10_bio->state);
374  } else {
375  /* If all other devices that store this block have
376  * failed, we want to return the error upwards rather
377  * than fail the last device. Here we redefine
378  * "uptodate" to mean "Don't want to retry"
379  */
380  unsigned long flags;
381  spin_lock_irqsave(&conf->device_lock, flags);
382  if (!enough(conf, rdev->raid_disk))
383  uptodate = 1;
384  spin_unlock_irqrestore(&conf->device_lock, flags);
385  }
386  if (uptodate) {
387  raid_end_bio_io(r10_bio);
388  rdev_dec_pending(rdev, conf->mddev);
389  } else {
390  /*
391  * oops, read error - keep the refcount on the rdev
392  */
393  char b[BDEVNAME_SIZE];
395  "md/raid10:%s: %s: rescheduling sector %llu\n",
396  mdname(conf->mddev),
397  bdevname(rdev->bdev, b),
398  (unsigned long long)r10_bio->sector);
399  set_bit(R10BIO_ReadError, &r10_bio->state);
400  reschedule_retry(r10_bio);
401  }
402 }
403 
404 static void close_write(struct r10bio *r10_bio)
405 {
406  /* clear the bitmap if all writes complete successfully */
407  bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408  r10_bio->sectors,
409  !test_bit(R10BIO_Degraded, &r10_bio->state),
410  0);
411  md_write_end(r10_bio->mddev);
412 }
413 
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416  if (atomic_dec_and_test(&r10_bio->remaining)) {
417  if (test_bit(R10BIO_WriteError, &r10_bio->state))
418  reschedule_retry(r10_bio);
419  else {
420  close_write(r10_bio);
421  if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422  reschedule_retry(r10_bio);
423  else
424  raid_end_bio_io(r10_bio);
425  }
426  }
427 }
428 
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431  int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432  struct r10bio *r10_bio = bio->bi_private;
433  int dev;
434  int dec_rdev = 1;
435  struct r10conf *conf = r10_bio->mddev->private;
436  int slot, repl;
437  struct md_rdev *rdev = NULL;
438 
439  dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440 
441  if (repl)
442  rdev = conf->mirrors[dev].replacement;
443  if (!rdev) {
444  smp_rmb();
445  repl = 0;
446  rdev = conf->mirrors[dev].rdev;
447  }
448  /*
449  * this branch is our 'one mirror IO has finished' event handler:
450  */
451  if (!uptodate) {
452  if (repl)
453  /* Never record new bad blocks to replacement,
454  * just fail it.
455  */
456  md_error(rdev->mddev, rdev);
457  else {
458  set_bit(WriteErrorSeen, &rdev->flags);
459  if (!test_and_set_bit(WantReplacement, &rdev->flags))
461  &rdev->mddev->recovery);
462  set_bit(R10BIO_WriteError, &r10_bio->state);
463  dec_rdev = 0;
464  }
465  } else {
466  /*
467  * Set R10BIO_Uptodate in our master bio, so that
468  * we will return a good error code for to the higher
469  * levels even if IO on some other mirrored buffer fails.
470  *
471  * The 'master' represents the composite IO operation to
472  * user-side. So if something waits for IO, then it will
473  * wait for the 'master' bio.
474  */
475  sector_t first_bad;
476  int bad_sectors;
477 
478  set_bit(R10BIO_Uptodate, &r10_bio->state);
479 
480  /* Maybe we can clear some bad blocks. */
481  if (is_badblock(rdev,
482  r10_bio->devs[slot].addr,
483  r10_bio->sectors,
484  &first_bad, &bad_sectors)) {
485  bio_put(bio);
486  if (repl)
487  r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488  else
489  r10_bio->devs[slot].bio = IO_MADE_GOOD;
490  dec_rdev = 0;
491  set_bit(R10BIO_MadeGood, &r10_bio->state);
492  }
493  }
494 
495  /*
496  *
497  * Let's see if all mirrored write operations have finished
498  * already.
499  */
500  one_write_done(r10_bio);
501  if (dec_rdev)
502  rdev_dec_pending(rdev, conf->mddev);
503 }
504 
505 /*
506  * RAID10 layout manager
507  * As well as the chunksize and raid_disks count, there are two
508  * parameters: near_copies and far_copies.
509  * near_copies * far_copies must be <= raid_disks.
510  * Normally one of these will be 1.
511  * If both are 1, we get raid0.
512  * If near_copies == raid_disks, we get raid1.
513  *
514  * Chunks are laid out in raid0 style with near_copies copies of the
515  * first chunk, followed by near_copies copies of the next chunk and
516  * so on.
517  * If far_copies > 1, then after 1/far_copies of the array has been assigned
518  * as described above, we start again with a device offset of near_copies.
519  * So we effectively have another copy of the whole array further down all
520  * the drives, but with blocks on different drives.
521  * With this layout, and block is never stored twice on the one device.
522  *
523  * raid10_find_phys finds the sector offset of a given virtual sector
524  * on each device that it is on.
525  *
526  * raid10_find_virt does the reverse mapping, from a device and a
527  * sector offset to a virtual address
528  */
529 
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532  int n,f;
534  sector_t chunk;
536  int dev;
537  int slot = 0;
538 
539  /* now calculate first sector/dev */
540  chunk = r10bio->sector >> geo->chunk_shift;
541  sector = r10bio->sector & geo->chunk_mask;
542 
543  chunk *= geo->near_copies;
544  stripe = chunk;
545  dev = sector_div(stripe, geo->raid_disks);
546  if (geo->far_offset)
547  stripe *= geo->far_copies;
548 
549  sector += stripe << geo->chunk_shift;
550 
551  /* and calculate all the others */
552  for (n = 0; n < geo->near_copies; n++) {
553  int d = dev;
554  sector_t s = sector;
555  r10bio->devs[slot].addr = sector;
556  r10bio->devs[slot].devnum = d;
557  slot++;
558 
559  for (f = 1; f < geo->far_copies; f++) {
560  d += geo->near_copies;
561  if (d >= geo->raid_disks)
562  d -= geo->raid_disks;
563  s += geo->stride;
564  r10bio->devs[slot].devnum = d;
565  r10bio->devs[slot].addr = s;
566  slot++;
567  }
568  dev++;
569  if (dev >= geo->raid_disks) {
570  dev = 0;
571  sector += (geo->chunk_mask + 1);
572  }
573  }
574 }
575 
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578  struct geom *geo = &conf->geo;
579 
580  if (conf->reshape_progress != MaxSector &&
581  ((r10bio->sector >= conf->reshape_progress) !=
582  conf->mddev->reshape_backwards)) {
583  set_bit(R10BIO_Previous, &r10bio->state);
584  geo = &conf->prev;
585  } else
586  clear_bit(R10BIO_Previous, &r10bio->state);
587 
588  __raid10_find_phys(geo, r10bio);
589 }
590 
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593  sector_t offset, chunk, vchunk;
594  /* Never use conf->prev as this is only called during resync
595  * or recovery, so reshape isn't happening
596  */
597  struct geom *geo = &conf->geo;
598 
599  offset = sector & geo->chunk_mask;
600  if (geo->far_offset) {
601  int fc;
602  chunk = sector >> geo->chunk_shift;
603  fc = sector_div(chunk, geo->far_copies);
604  dev -= fc * geo->near_copies;
605  if (dev < 0)
606  dev += geo->raid_disks;
607  } else {
608  while (sector >= geo->stride) {
609  sector -= geo->stride;
610  if (dev < geo->near_copies)
611  dev += geo->raid_disks - geo->near_copies;
612  else
613  dev -= geo->near_copies;
614  }
615  chunk = sector >> geo->chunk_shift;
616  }
617  vchunk = chunk * geo->raid_disks + dev;
618  sector_div(vchunk, geo->near_copies);
619  return (vchunk << geo->chunk_shift) + offset;
620 }
621 
632 static int raid10_mergeable_bvec(struct request_queue *q,
633  struct bvec_merge_data *bvm,
634  struct bio_vec *biovec)
635 {
636  struct mddev *mddev = q->queuedata;
637  struct r10conf *conf = mddev->private;
638  sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639  int max;
640  unsigned int chunk_sectors;
641  unsigned int bio_sectors = bvm->bi_size >> 9;
642  struct geom *geo = &conf->geo;
643 
644  chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645  if (conf->reshape_progress != MaxSector &&
646  ((sector >= conf->reshape_progress) !=
647  conf->mddev->reshape_backwards))
648  geo = &conf->prev;
649 
650  if (geo->near_copies < geo->raid_disks) {
651  max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652  + bio_sectors)) << 9;
653  if (max < 0)
654  /* bio_add cannot handle a negative return */
655  max = 0;
656  if (max <= biovec->bv_len && bio_sectors == 0)
657  return biovec->bv_len;
658  } else
659  max = biovec->bv_len;
660 
661  if (mddev->merge_check_needed) {
662  struct {
663  struct r10bio r10_bio;
664  struct r10dev devs[conf->copies];
665  } on_stack;
666  struct r10bio *r10_bio = &on_stack.r10_bio;
667  int s;
668  if (conf->reshape_progress != MaxSector) {
669  /* Cannot give any guidance during reshape */
670  if (max <= biovec->bv_len && bio_sectors == 0)
671  return biovec->bv_len;
672  return 0;
673  }
674  r10_bio->sector = sector;
675  raid10_find_phys(conf, r10_bio);
676  rcu_read_lock();
677  for (s = 0; s < conf->copies; s++) {
678  int disk = r10_bio->devs[s].devnum;
679  struct md_rdev *rdev = rcu_dereference(
680  conf->mirrors[disk].rdev);
681  if (rdev && !test_bit(Faulty, &rdev->flags)) {
682  struct request_queue *q =
683  bdev_get_queue(rdev->bdev);
684  if (q->merge_bvec_fn) {
685  bvm->bi_sector = r10_bio->devs[s].addr
686  + rdev->data_offset;
687  bvm->bi_bdev = rdev->bdev;
688  max = min(max, q->merge_bvec_fn(
689  q, bvm, biovec));
690  }
691  }
692  rdev = rcu_dereference(conf->mirrors[disk].replacement);
693  if (rdev && !test_bit(Faulty, &rdev->flags)) {
694  struct request_queue *q =
695  bdev_get_queue(rdev->bdev);
696  if (q->merge_bvec_fn) {
697  bvm->bi_sector = r10_bio->devs[s].addr
698  + rdev->data_offset;
699  bvm->bi_bdev = rdev->bdev;
700  max = min(max, q->merge_bvec_fn(
701  q, bvm, biovec));
702  }
703  }
704  }
705  rcu_read_unlock();
706  }
707  return max;
708 }
709 
710 /*
711  * This routine returns the disk from which the requested read should
712  * be done. There is a per-array 'next expected sequential IO' sector
713  * number - if this matches on the next IO then we use the last disk.
714  * There is also a per-disk 'last know head position' sector that is
715  * maintained from IRQ contexts, both the normal and the resync IO
716  * completion handlers update this position correctly. If there is no
717  * perfect sequential match then we pick the disk whose head is closest.
718  *
719  * If there are 2 mirrors in the same 2 devices, performance degrades
720  * because position is mirror, not device based.
721  *
722  * The rdev for the device selected will have nr_pending incremented.
723  */
724 
725 /*
726  * FIXME: possibly should rethink readbalancing and do it differently
727  * depending on near_copies / far_copies geometry.
728  */
729 static struct md_rdev *read_balance(struct r10conf *conf,
730  struct r10bio *r10_bio,
731  int *max_sectors)
732 {
733  const sector_t this_sector = r10_bio->sector;
734  int disk, slot;
735  int sectors = r10_bio->sectors;
736  int best_good_sectors;
737  sector_t new_distance, best_dist;
738  struct md_rdev *best_rdev, *rdev = NULL;
739  int do_balance;
740  int best_slot;
741  struct geom *geo = &conf->geo;
742 
743  raid10_find_phys(conf, r10_bio);
744  rcu_read_lock();
745 retry:
746  sectors = r10_bio->sectors;
747  best_slot = -1;
748  best_rdev = NULL;
749  best_dist = MaxSector;
750  best_good_sectors = 0;
751  do_balance = 1;
752  /*
753  * Check if we can balance. We can balance on the whole
754  * device if no resync is going on (recovery is ok), or below
755  * the resync window. We take the first readable disk when
756  * above the resync window.
757  */
758  if (conf->mddev->recovery_cp < MaxSector
759  && (this_sector + sectors >= conf->next_resync))
760  do_balance = 0;
761 
762  for (slot = 0; slot < conf->copies ; slot++) {
763  sector_t first_bad;
764  int bad_sectors;
765  sector_t dev_sector;
766 
767  if (r10_bio->devs[slot].bio == IO_BLOCKED)
768  continue;
769  disk = r10_bio->devs[slot].devnum;
770  rdev = rcu_dereference(conf->mirrors[disk].replacement);
771  if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772  test_bit(Unmerged, &rdev->flags) ||
773  r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774  rdev = rcu_dereference(conf->mirrors[disk].rdev);
775  if (rdev == NULL ||
776  test_bit(Faulty, &rdev->flags) ||
777  test_bit(Unmerged, &rdev->flags))
778  continue;
779  if (!test_bit(In_sync, &rdev->flags) &&
780  r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781  continue;
782 
783  dev_sector = r10_bio->devs[slot].addr;
784  if (is_badblock(rdev, dev_sector, sectors,
785  &first_bad, &bad_sectors)) {
786  if (best_dist < MaxSector)
787  /* Already have a better slot */
788  continue;
789  if (first_bad <= dev_sector) {
790  /* Cannot read here. If this is the
791  * 'primary' device, then we must not read
792  * beyond 'bad_sectors' from another device.
793  */
794  bad_sectors -= (dev_sector - first_bad);
795  if (!do_balance && sectors > bad_sectors)
796  sectors = bad_sectors;
797  if (best_good_sectors > sectors)
798  best_good_sectors = sectors;
799  } else {
800  sector_t good_sectors =
801  first_bad - dev_sector;
802  if (good_sectors > best_good_sectors) {
803  best_good_sectors = good_sectors;
804  best_slot = slot;
805  best_rdev = rdev;
806  }
807  if (!do_balance)
808  /* Must read from here */
809  break;
810  }
811  continue;
812  } else
813  best_good_sectors = sectors;
814 
815  if (!do_balance)
816  break;
817 
818  /* This optimisation is debatable, and completely destroys
819  * sequential read speed for 'far copies' arrays. So only
820  * keep it for 'near' arrays, and review those later.
821  */
822  if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823  break;
824 
825  /* for far > 1 always use the lowest address */
826  if (geo->far_copies > 1)
827  new_distance = r10_bio->devs[slot].addr;
828  else
829  new_distance = abs(r10_bio->devs[slot].addr -
830  conf->mirrors[disk].head_position);
831  if (new_distance < best_dist) {
832  best_dist = new_distance;
833  best_slot = slot;
834  best_rdev = rdev;
835  }
836  }
837  if (slot >= conf->copies) {
838  slot = best_slot;
839  rdev = best_rdev;
840  }
841 
842  if (slot >= 0) {
843  atomic_inc(&rdev->nr_pending);
844  if (test_bit(Faulty, &rdev->flags)) {
845  /* Cannot risk returning a device that failed
846  * before we inc'ed nr_pending
847  */
848  rdev_dec_pending(rdev, conf->mddev);
849  goto retry;
850  }
851  r10_bio->read_slot = slot;
852  } else
853  rdev = NULL;
854  rcu_read_unlock();
855  *max_sectors = best_good_sectors;
856 
857  return rdev;
858 }
859 
860 int md_raid10_congested(struct mddev *mddev, int bits)
861 {
862  struct r10conf *conf = mddev->private;
863  int i, ret = 0;
864 
865  if ((bits & (1 << BDI_async_congested)) &&
866  conf->pending_count >= max_queued_requests)
867  return 1;
868 
869  rcu_read_lock();
870  for (i = 0;
871  (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872  && ret == 0;
873  i++) {
874  struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875  if (rdev && !test_bit(Faulty, &rdev->flags)) {
876  struct request_queue *q = bdev_get_queue(rdev->bdev);
877 
878  ret |= bdi_congested(&q->backing_dev_info, bits);
879  }
880  }
881  rcu_read_unlock();
882  return ret;
883 }
885 
886 static int raid10_congested(void *data, int bits)
887 {
888  struct mddev *mddev = data;
889 
890  return mddev_congested(mddev, bits) ||
891  md_raid10_congested(mddev, bits);
892 }
893 
894 static void flush_pending_writes(struct r10conf *conf)
895 {
896  /* Any writes that have been queued but are awaiting
897  * bitmap updates get flushed here.
898  */
899  spin_lock_irq(&conf->device_lock);
900 
901  if (conf->pending_bio_list.head) {
902  struct bio *bio;
903  bio = bio_list_get(&conf->pending_bio_list);
904  conf->pending_count = 0;
905  spin_unlock_irq(&conf->device_lock);
906  /* flush any pending bitmap writes to disk
907  * before proceeding w/ I/O */
908  bitmap_unplug(conf->mddev->bitmap);
909  wake_up(&conf->wait_barrier);
910 
911  while (bio) { /* submit pending writes */
912  struct bio *next = bio->bi_next;
913  bio->bi_next = NULL;
914  if (unlikely((bio->bi_rw & REQ_DISCARD) &&
915  !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
916  /* Just ignore it */
917  bio_endio(bio, 0);
918  else
920  bio = next;
921  }
922  } else
923  spin_unlock_irq(&conf->device_lock);
924 }
925 
926 /* Barriers....
927  * Sometimes we need to suspend IO while we do something else,
928  * either some resync/recovery, or reconfigure the array.
929  * To do this we raise a 'barrier'.
930  * The 'barrier' is a counter that can be raised multiple times
931  * to count how many activities are happening which preclude
932  * normal IO.
933  * We can only raise the barrier if there is no pending IO.
934  * i.e. if nr_pending == 0.
935  * We choose only to raise the barrier if no-one is waiting for the
936  * barrier to go down. This means that as soon as an IO request
937  * is ready, no other operations which require a barrier will start
938  * until the IO request has had a chance.
939  *
940  * So: regular IO calls 'wait_barrier'. When that returns there
941  * is no backgroup IO happening, It must arrange to call
942  * allow_barrier when it has finished its IO.
943  * backgroup IO calls must call raise_barrier. Once that returns
944  * there is no normal IO happeing. It must arrange to call
945  * lower_barrier when the particular background IO completes.
946  */
947 
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950  BUG_ON(force && !conf->barrier);
951  spin_lock_irq(&conf->resync_lock);
952 
953  /* Wait until no block IO is waiting (unless 'force') */
954  wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
955  conf->resync_lock, );
956 
957  /* block any new IO from starting */
958  conf->barrier++;
959 
960  /* Now wait for all pending IO to complete */
962  !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
963  conf->resync_lock, );
964 
965  spin_unlock_irq(&conf->resync_lock);
966 }
967 
968 static void lower_barrier(struct r10conf *conf)
969 {
970  unsigned long flags;
971  spin_lock_irqsave(&conf->resync_lock, flags);
972  conf->barrier--;
973  spin_unlock_irqrestore(&conf->resync_lock, flags);
974  wake_up(&conf->wait_barrier);
975 }
976 
977 static void wait_barrier(struct r10conf *conf)
978 {
979  spin_lock_irq(&conf->resync_lock);
980  if (conf->barrier) {
981  conf->nr_waiting++;
982  /* Wait for the barrier to drop.
983  * However if there are already pending
984  * requests (preventing the barrier from
985  * rising completely), and the
986  * pre-process bio queue isn't empty,
987  * then don't wait, as we need to empty
988  * that queue to get the nr_pending
989  * count down.
990  */
992  !conf->barrier ||
993  (conf->nr_pending &&
994  current->bio_list &&
995  !bio_list_empty(current->bio_list)),
996  conf->resync_lock,
997  );
998  conf->nr_waiting--;
999  }
1000  conf->nr_pending++;
1001  spin_unlock_irq(&conf->resync_lock);
1002 }
1003 
1004 static void allow_barrier(struct r10conf *conf)
1005 {
1006  unsigned long flags;
1007  spin_lock_irqsave(&conf->resync_lock, flags);
1008  conf->nr_pending--;
1009  spin_unlock_irqrestore(&conf->resync_lock, flags);
1010  wake_up(&conf->wait_barrier);
1011 }
1012 
1013 static void freeze_array(struct r10conf *conf)
1014 {
1015  /* stop syncio and normal IO and wait for everything to
1016  * go quiet.
1017  * We increment barrier and nr_waiting, and then
1018  * wait until nr_pending match nr_queued+1
1019  * This is called in the context of one normal IO request
1020  * that has failed. Thus any sync request that might be pending
1021  * will be blocked by nr_pending, and we need to wait for
1022  * pending IO requests to complete or be queued for re-try.
1023  * Thus the number queued (nr_queued) plus this request (1)
1024  * must match the number of pending IOs (nr_pending) before
1025  * we continue.
1026  */
1027  spin_lock_irq(&conf->resync_lock);
1028  conf->barrier++;
1029  conf->nr_waiting++;
1031  conf->nr_pending == conf->nr_queued+1,
1032  conf->resync_lock,
1033  flush_pending_writes(conf));
1034 
1035  spin_unlock_irq(&conf->resync_lock);
1036 }
1037 
1038 static void unfreeze_array(struct r10conf *conf)
1039 {
1040  /* reverse the effect of the freeze */
1041  spin_lock_irq(&conf->resync_lock);
1042  conf->barrier--;
1043  conf->nr_waiting--;
1044  wake_up(&conf->wait_barrier);
1045  spin_unlock_irq(&conf->resync_lock);
1046 }
1047 
1048 static sector_t choose_data_offset(struct r10bio *r10_bio,
1049  struct md_rdev *rdev)
1050 {
1051  if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1052  test_bit(R10BIO_Previous, &r10_bio->state))
1053  return rdev->data_offset;
1054  else
1055  return rdev->new_data_offset;
1056 }
1057 
1059  struct blk_plug_cb cb;
1062 };
1063 
1064 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1065 {
1066  struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1067  cb);
1068  struct mddev *mddev = plug->cb.data;
1069  struct r10conf *conf = mddev->private;
1070  struct bio *bio;
1071 
1072  if (from_schedule || current->bio_list) {
1073  spin_lock_irq(&conf->device_lock);
1074  bio_list_merge(&conf->pending_bio_list, &plug->pending);
1075  conf->pending_count += plug->pending_cnt;
1076  spin_unlock_irq(&conf->device_lock);
1077  md_wakeup_thread(mddev->thread);
1078  kfree(plug);
1079  return;
1080  }
1081 
1082  /* we aren't scheduling, so we can do the write-out directly. */
1083  bio = bio_list_get(&plug->pending);
1084  bitmap_unplug(mddev->bitmap);
1085  wake_up(&conf->wait_barrier);
1086 
1087  while (bio) { /* submit pending writes */
1088  struct bio *next = bio->bi_next;
1089  bio->bi_next = NULL;
1090  generic_make_request(bio);
1091  bio = next;
1092  }
1093  kfree(plug);
1094 }
1095 
1096 static void make_request(struct mddev *mddev, struct bio * bio)
1097 {
1098  struct r10conf *conf = mddev->private;
1099  struct r10bio *r10_bio;
1100  struct bio *read_bio;
1101  int i;
1102  sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1103  int chunk_sects = chunk_mask + 1;
1104  const int rw = bio_data_dir(bio);
1105  const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1106  const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1107  const unsigned long do_discard = (bio->bi_rw
1108  & (REQ_DISCARD | REQ_SECURE));
1109  unsigned long flags;
1110  struct md_rdev *blocked_rdev;
1111  struct blk_plug_cb *cb;
1112  struct raid10_plug_cb *plug = NULL;
1113  int sectors_handled;
1114  int max_sectors;
1115  int sectors;
1116 
1117  if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1118  md_flush_request(mddev, bio);
1119  return;
1120  }
1121 
1122  /* If this request crosses a chunk boundary, we need to
1123  * split it. This will only happen for 1 PAGE (or less) requests.
1124  */
1125  if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1126  > chunk_sects
1127  && (conf->geo.near_copies < conf->geo.raid_disks
1128  || conf->prev.near_copies < conf->prev.raid_disks))) {
1129  struct bio_pair *bp;
1130  /* Sanity check -- queue functions should prevent this happening */
1131  if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1132  bio->bi_idx != 0)
1133  goto bad_map;
1134  /* This is a one page bio that upper layers
1135  * refuse to split for us, so we need to split it.
1136  */
1137  bp = bio_split(bio,
1138  chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1139 
1140  /* Each of these 'make_request' calls will call 'wait_barrier'.
1141  * If the first succeeds but the second blocks due to the resync
1142  * thread raising the barrier, we will deadlock because the
1143  * IO to the underlying device will be queued in generic_make_request
1144  * and will never complete, so will never reduce nr_pending.
1145  * So increment nr_waiting here so no new raise_barriers will
1146  * succeed, and so the second wait_barrier cannot block.
1147  */
1148  spin_lock_irq(&conf->resync_lock);
1149  conf->nr_waiting++;
1150  spin_unlock_irq(&conf->resync_lock);
1151 
1152  make_request(mddev, &bp->bio1);
1153  make_request(mddev, &bp->bio2);
1154 
1155  spin_lock_irq(&conf->resync_lock);
1156  conf->nr_waiting--;
1157  wake_up(&conf->wait_barrier);
1158  spin_unlock_irq(&conf->resync_lock);
1159 
1160  bio_pair_release(bp);
1161  return;
1162  bad_map:
1163  printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1164  " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1165  (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1166 
1167  bio_io_error(bio);
1168  return;
1169  }
1170 
1171  md_write_start(mddev, bio);
1172 
1173  /*
1174  * Register the new request and wait if the reconstruction
1175  * thread has put up a bar for new requests.
1176  * Continue immediately if no resync is active currently.
1177  */
1178  wait_barrier(conf);
1179 
1180  sectors = bio->bi_size >> 9;
1181  while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1182  bio->bi_sector < conf->reshape_progress &&
1183  bio->bi_sector + sectors > conf->reshape_progress) {
1184  /* IO spans the reshape position. Need to wait for
1185  * reshape to pass
1186  */
1187  allow_barrier(conf);
1188  wait_event(conf->wait_barrier,
1189  conf->reshape_progress <= bio->bi_sector ||
1190  conf->reshape_progress >= bio->bi_sector + sectors);
1191  wait_barrier(conf);
1192  }
1193  if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1194  bio_data_dir(bio) == WRITE &&
1195  (mddev->reshape_backwards
1196  ? (bio->bi_sector < conf->reshape_safe &&
1197  bio->bi_sector + sectors > conf->reshape_progress)
1198  : (bio->bi_sector + sectors > conf->reshape_safe &&
1199  bio->bi_sector < conf->reshape_progress))) {
1200  /* Need to update reshape_position in metadata */
1201  mddev->reshape_position = conf->reshape_progress;
1202  set_bit(MD_CHANGE_DEVS, &mddev->flags);
1203  set_bit(MD_CHANGE_PENDING, &mddev->flags);
1204  md_wakeup_thread(mddev->thread);
1205  wait_event(mddev->sb_wait,
1206  !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1207 
1208  conf->reshape_safe = mddev->reshape_position;
1209  }
1210 
1211  r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1212 
1213  r10_bio->master_bio = bio;
1214  r10_bio->sectors = sectors;
1215 
1216  r10_bio->mddev = mddev;
1217  r10_bio->sector = bio->bi_sector;
1218  r10_bio->state = 0;
1219 
1220  /* We might need to issue multiple reads to different
1221  * devices if there are bad blocks around, so we keep
1222  * track of the number of reads in bio->bi_phys_segments.
1223  * If this is 0, there is only one r10_bio and no locking
1224  * will be needed when the request completes. If it is
1225  * non-zero, then it is the number of not-completed requests.
1226  */
1227  bio->bi_phys_segments = 0;
1228  clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1229 
1230  if (rw == READ) {
1231  /*
1232  * read balancing logic:
1233  */
1234  struct md_rdev *rdev;
1235  int slot;
1236 
1237 read_again:
1238  rdev = read_balance(conf, r10_bio, &max_sectors);
1239  if (!rdev) {
1240  raid_end_bio_io(r10_bio);
1241  return;
1242  }
1243  slot = r10_bio->read_slot;
1244 
1245  read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1246  md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1247  max_sectors);
1248 
1249  r10_bio->devs[slot].bio = read_bio;
1250  r10_bio->devs[slot].rdev = rdev;
1251 
1252  read_bio->bi_sector = r10_bio->devs[slot].addr +
1253  choose_data_offset(r10_bio, rdev);
1254  read_bio->bi_bdev = rdev->bdev;
1255  read_bio->bi_end_io = raid10_end_read_request;
1256  read_bio->bi_rw = READ | do_sync;
1257  read_bio->bi_private = r10_bio;
1258 
1259  if (max_sectors < r10_bio->sectors) {
1260  /* Could not read all from this device, so we will
1261  * need another r10_bio.
1262  */
1263  sectors_handled = (r10_bio->sectors + max_sectors
1264  - bio->bi_sector);
1265  r10_bio->sectors = max_sectors;
1266  spin_lock_irq(&conf->device_lock);
1267  if (bio->bi_phys_segments == 0)
1268  bio->bi_phys_segments = 2;
1269  else
1270  bio->bi_phys_segments++;
1271  spin_unlock(&conf->device_lock);
1272  /* Cannot call generic_make_request directly
1273  * as that will be queued in __generic_make_request
1274  * and subsequent mempool_alloc might block
1275  * waiting for it. so hand bio over to raid10d.
1276  */
1277  reschedule_retry(r10_bio);
1278 
1279  r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1280 
1281  r10_bio->master_bio = bio;
1282  r10_bio->sectors = ((bio->bi_size >> 9)
1283  - sectors_handled);
1284  r10_bio->state = 0;
1285  r10_bio->mddev = mddev;
1286  r10_bio->sector = bio->bi_sector + sectors_handled;
1287  goto read_again;
1288  } else
1289  generic_make_request(read_bio);
1290  return;
1291  }
1292 
1293  /*
1294  * WRITE:
1295  */
1296  if (conf->pending_count >= max_queued_requests) {
1297  md_wakeup_thread(mddev->thread);
1298  wait_event(conf->wait_barrier,
1299  conf->pending_count < max_queued_requests);
1300  }
1301  /* first select target devices under rcu_lock and
1302  * inc refcount on their rdev. Record them by setting
1303  * bios[x] to bio
1304  * If there are known/acknowledged bad blocks on any device
1305  * on which we have seen a write error, we want to avoid
1306  * writing to those blocks. This potentially requires several
1307  * writes to write around the bad blocks. Each set of writes
1308  * gets its own r10_bio with a set of bios attached. The number
1309  * of r10_bios is recored in bio->bi_phys_segments just as with
1310  * the read case.
1311  */
1312 
1313  r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1314  raid10_find_phys(conf, r10_bio);
1315 retry_write:
1316  blocked_rdev = NULL;
1317  rcu_read_lock();
1318  max_sectors = r10_bio->sectors;
1319 
1320  for (i = 0; i < conf->copies; i++) {
1321  int d = r10_bio->devs[i].devnum;
1322  struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1323  struct md_rdev *rrdev = rcu_dereference(
1324  conf->mirrors[d].replacement);
1325  if (rdev == rrdev)
1326  rrdev = NULL;
1327  if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1328  atomic_inc(&rdev->nr_pending);
1329  blocked_rdev = rdev;
1330  break;
1331  }
1332  if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1333  atomic_inc(&rrdev->nr_pending);
1334  blocked_rdev = rrdev;
1335  break;
1336  }
1337  if (rdev && (test_bit(Faulty, &rdev->flags)
1338  || test_bit(Unmerged, &rdev->flags)))
1339  rdev = NULL;
1340  if (rrdev && (test_bit(Faulty, &rrdev->flags)
1341  || test_bit(Unmerged, &rrdev->flags)))
1342  rrdev = NULL;
1343 
1344  r10_bio->devs[i].bio = NULL;
1345  r10_bio->devs[i].repl_bio = NULL;
1346 
1347  if (!rdev && !rrdev) {
1348  set_bit(R10BIO_Degraded, &r10_bio->state);
1349  continue;
1350  }
1351  if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1352  sector_t first_bad;
1353  sector_t dev_sector = r10_bio->devs[i].addr;
1354  int bad_sectors;
1355  int is_bad;
1356 
1357  is_bad = is_badblock(rdev, dev_sector,
1358  max_sectors,
1359  &first_bad, &bad_sectors);
1360  if (is_bad < 0) {
1361  /* Mustn't write here until the bad block
1362  * is acknowledged
1363  */
1364  atomic_inc(&rdev->nr_pending);
1365  set_bit(BlockedBadBlocks, &rdev->flags);
1366  blocked_rdev = rdev;
1367  break;
1368  }
1369  if (is_bad && first_bad <= dev_sector) {
1370  /* Cannot write here at all */
1371  bad_sectors -= (dev_sector - first_bad);
1372  if (bad_sectors < max_sectors)
1373  /* Mustn't write more than bad_sectors
1374  * to other devices yet
1375  */
1376  max_sectors = bad_sectors;
1377  /* We don't set R10BIO_Degraded as that
1378  * only applies if the disk is missing,
1379  * so it might be re-added, and we want to
1380  * know to recover this chunk.
1381  * In this case the device is here, and the
1382  * fact that this chunk is not in-sync is
1383  * recorded in the bad block log.
1384  */
1385  continue;
1386  }
1387  if (is_bad) {
1388  int good_sectors = first_bad - dev_sector;
1389  if (good_sectors < max_sectors)
1390  max_sectors = good_sectors;
1391  }
1392  }
1393  if (rdev) {
1394  r10_bio->devs[i].bio = bio;
1395  atomic_inc(&rdev->nr_pending);
1396  }
1397  if (rrdev) {
1398  r10_bio->devs[i].repl_bio = bio;
1399  atomic_inc(&rrdev->nr_pending);
1400  }
1401  }
1402  rcu_read_unlock();
1403 
1404  if (unlikely(blocked_rdev)) {
1405  /* Have to wait for this device to get unblocked, then retry */
1406  int j;
1407  int d;
1408 
1409  for (j = 0; j < i; j++) {
1410  if (r10_bio->devs[j].bio) {
1411  d = r10_bio->devs[j].devnum;
1412  rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1413  }
1414  if (r10_bio->devs[j].repl_bio) {
1415  struct md_rdev *rdev;
1416  d = r10_bio->devs[j].devnum;
1417  rdev = conf->mirrors[d].replacement;
1418  if (!rdev) {
1419  /* Race with remove_disk */
1420  smp_mb();
1421  rdev = conf->mirrors[d].rdev;
1422  }
1423  rdev_dec_pending(rdev, mddev);
1424  }
1425  }
1426  allow_barrier(conf);
1427  md_wait_for_blocked_rdev(blocked_rdev, mddev);
1428  wait_barrier(conf);
1429  goto retry_write;
1430  }
1431 
1432  if (max_sectors < r10_bio->sectors) {
1433  /* We are splitting this into multiple parts, so
1434  * we need to prepare for allocating another r10_bio.
1435  */
1436  r10_bio->sectors = max_sectors;
1437  spin_lock_irq(&conf->device_lock);
1438  if (bio->bi_phys_segments == 0)
1439  bio->bi_phys_segments = 2;
1440  else
1441  bio->bi_phys_segments++;
1442  spin_unlock_irq(&conf->device_lock);
1443  }
1444  sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1445 
1446  atomic_set(&r10_bio->remaining, 1);
1447  bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1448 
1449  for (i = 0; i < conf->copies; i++) {
1450  struct bio *mbio;
1451  int d = r10_bio->devs[i].devnum;
1452  if (r10_bio->devs[i].bio) {
1453  struct md_rdev *rdev = conf->mirrors[d].rdev;
1454  mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1455  md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1456  max_sectors);
1457  r10_bio->devs[i].bio = mbio;
1458 
1459  mbio->bi_sector = (r10_bio->devs[i].addr+
1460  choose_data_offset(r10_bio,
1461  rdev));
1462  mbio->bi_bdev = rdev->bdev;
1463  mbio->bi_end_io = raid10_end_write_request;
1464  mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1465  mbio->bi_private = r10_bio;
1466 
1467  atomic_inc(&r10_bio->remaining);
1468 
1469  cb = blk_check_plugged(raid10_unplug, mddev,
1470  sizeof(*plug));
1471  if (cb)
1472  plug = container_of(cb, struct raid10_plug_cb,
1473  cb);
1474  else
1475  plug = NULL;
1476  spin_lock_irqsave(&conf->device_lock, flags);
1477  if (plug) {
1478  bio_list_add(&plug->pending, mbio);
1479  plug->pending_cnt++;
1480  } else {
1481  bio_list_add(&conf->pending_bio_list, mbio);
1482  conf->pending_count++;
1483  }
1484  spin_unlock_irqrestore(&conf->device_lock, flags);
1485  if (!plug)
1486  md_wakeup_thread(mddev->thread);
1487  }
1488 
1489  if (r10_bio->devs[i].repl_bio) {
1490  struct md_rdev *rdev = conf->mirrors[d].replacement;
1491  if (rdev == NULL) {
1492  /* Replacement just got moved to main 'rdev' */
1493  smp_mb();
1494  rdev = conf->mirrors[d].rdev;
1495  }
1496  mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1497  md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1498  max_sectors);
1499  r10_bio->devs[i].repl_bio = mbio;
1500 
1501  mbio->bi_sector = (r10_bio->devs[i].addr +
1502  choose_data_offset(
1503  r10_bio, rdev));
1504  mbio->bi_bdev = rdev->bdev;
1505  mbio->bi_end_io = raid10_end_write_request;
1506  mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1507  mbio->bi_private = r10_bio;
1508 
1509  atomic_inc(&r10_bio->remaining);
1510  spin_lock_irqsave(&conf->device_lock, flags);
1511  bio_list_add(&conf->pending_bio_list, mbio);
1512  conf->pending_count++;
1513  spin_unlock_irqrestore(&conf->device_lock, flags);
1514  if (!mddev_check_plugged(mddev))
1515  md_wakeup_thread(mddev->thread);
1516  }
1517  }
1518 
1519  /* Don't remove the bias on 'remaining' (one_write_done) until
1520  * after checking if we need to go around again.
1521  */
1522 
1523  if (sectors_handled < (bio->bi_size >> 9)) {
1524  one_write_done(r10_bio);
1525  /* We need another r10_bio. It has already been counted
1526  * in bio->bi_phys_segments.
1527  */
1528  r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1529 
1530  r10_bio->master_bio = bio;
1531  r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1532 
1533  r10_bio->mddev = mddev;
1534  r10_bio->sector = bio->bi_sector + sectors_handled;
1535  r10_bio->state = 0;
1536  goto retry_write;
1537  }
1538  one_write_done(r10_bio);
1539 
1540  /* In case raid10d snuck in to freeze_array */
1541  wake_up(&conf->wait_barrier);
1542 }
1543 
1544 static void status(struct seq_file *seq, struct mddev *mddev)
1545 {
1546  struct r10conf *conf = mddev->private;
1547  int i;
1548 
1549  if (conf->geo.near_copies < conf->geo.raid_disks)
1550  seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1551  if (conf->geo.near_copies > 1)
1552  seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1553  if (conf->geo.far_copies > 1) {
1554  if (conf->geo.far_offset)
1555  seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1556  else
1557  seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1558  }
1559  seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1560  conf->geo.raid_disks - mddev->degraded);
1561  for (i = 0; i < conf->geo.raid_disks; i++)
1562  seq_printf(seq, "%s",
1563  conf->mirrors[i].rdev &&
1564  test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1565  seq_printf(seq, "]");
1566 }
1567 
1568 /* check if there are enough drives for
1569  * every block to appear on atleast one.
1570  * Don't consider the device numbered 'ignore'
1571  * as we might be about to remove it.
1572  */
1573 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1574 {
1575  int first = 0;
1576 
1577  do {
1578  int n = conf->copies;
1579  int cnt = 0;
1580  int this = first;
1581  while (n--) {
1582  if (conf->mirrors[this].rdev &&
1583  this != ignore)
1584  cnt++;
1585  this = (this+1) % geo->raid_disks;
1586  }
1587  if (cnt == 0)
1588  return 0;
1589  first = (first + geo->near_copies) % geo->raid_disks;
1590  } while (first != 0);
1591  return 1;
1592 }
1593 
1594 static int enough(struct r10conf *conf, int ignore)
1595 {
1596  return _enough(conf, &conf->geo, ignore) &&
1597  _enough(conf, &conf->prev, ignore);
1598 }
1599 
1600 static void error(struct mddev *mddev, struct md_rdev *rdev)
1601 {
1602  char b[BDEVNAME_SIZE];
1603  struct r10conf *conf = mddev->private;
1604 
1605  /*
1606  * If it is not operational, then we have already marked it as dead
1607  * else if it is the last working disks, ignore the error, let the
1608  * next level up know.
1609  * else mark the drive as failed
1610  */
1611  if (test_bit(In_sync, &rdev->flags)
1612  && !enough(conf, rdev->raid_disk))
1613  /*
1614  * Don't fail the drive, just return an IO error.
1615  */
1616  return;
1617  if (test_and_clear_bit(In_sync, &rdev->flags)) {
1618  unsigned long flags;
1619  spin_lock_irqsave(&conf->device_lock, flags);
1620  mddev->degraded++;
1621  spin_unlock_irqrestore(&conf->device_lock, flags);
1622  /*
1623  * if recovery is running, make sure it aborts.
1624  */
1625  set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1626  }
1627  set_bit(Blocked, &rdev->flags);
1628  set_bit(Faulty, &rdev->flags);
1629  set_bit(MD_CHANGE_DEVS, &mddev->flags);
1631  "md/raid10:%s: Disk failure on %s, disabling device.\n"
1632  "md/raid10:%s: Operation continuing on %d devices.\n",
1633  mdname(mddev), bdevname(rdev->bdev, b),
1634  mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1635 }
1636 
1637 static void print_conf(struct r10conf *conf)
1638 {
1639  int i;
1640  struct raid10_info *tmp;
1641 
1642  printk(KERN_DEBUG "RAID10 conf printout:\n");
1643  if (!conf) {
1644  printk(KERN_DEBUG "(!conf)\n");
1645  return;
1646  }
1647  printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1648  conf->geo.raid_disks);
1649 
1650  for (i = 0; i < conf->geo.raid_disks; i++) {
1651  char b[BDEVNAME_SIZE];
1652  tmp = conf->mirrors + i;
1653  if (tmp->rdev)
1654  printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1655  i, !test_bit(In_sync, &tmp->rdev->flags),
1656  !test_bit(Faulty, &tmp->rdev->flags),
1657  bdevname(tmp->rdev->bdev,b));
1658  }
1659 }
1660 
1661 static void close_sync(struct r10conf *conf)
1662 {
1663  wait_barrier(conf);
1664  allow_barrier(conf);
1665 
1667  conf->r10buf_pool = NULL;
1668 }
1669 
1670 static int raid10_spare_active(struct mddev *mddev)
1671 {
1672  int i;
1673  struct r10conf *conf = mddev->private;
1674  struct raid10_info *tmp;
1675  int count = 0;
1676  unsigned long flags;
1677 
1678  /*
1679  * Find all non-in_sync disks within the RAID10 configuration
1680  * and mark them in_sync
1681  */
1682  for (i = 0; i < conf->geo.raid_disks; i++) {
1683  tmp = conf->mirrors + i;
1684  if (tmp->replacement
1685  && tmp->replacement->recovery_offset == MaxSector
1686  && !test_bit(Faulty, &tmp->replacement->flags)
1687  && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1688  /* Replacement has just become active */
1689  if (!tmp->rdev
1690  || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1691  count++;
1692  if (tmp->rdev) {
1693  /* Replaced device not technically faulty,
1694  * but we need to be sure it gets removed
1695  * and never re-added.
1696  */
1697  set_bit(Faulty, &tmp->rdev->flags);
1698  sysfs_notify_dirent_safe(
1699  tmp->rdev->sysfs_state);
1700  }
1701  sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1702  } else if (tmp->rdev
1703  && !test_bit(Faulty, &tmp->rdev->flags)
1704  && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1705  count++;
1706  sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1707  }
1708  }
1709  spin_lock_irqsave(&conf->device_lock, flags);
1710  mddev->degraded -= count;
1711  spin_unlock_irqrestore(&conf->device_lock, flags);
1712 
1713  print_conf(conf);
1714  return count;
1715 }
1716 
1717 
1718 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1719 {
1720  struct r10conf *conf = mddev->private;
1721  int err = -EEXIST;
1722  int mirror;
1723  int first = 0;
1724  int last = conf->geo.raid_disks - 1;
1725  struct request_queue *q = bdev_get_queue(rdev->bdev);
1726 
1727  if (mddev->recovery_cp < MaxSector)
1728  /* only hot-add to in-sync arrays, as recovery is
1729  * very different from resync
1730  */
1731  return -EBUSY;
1732  if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1733  return -EINVAL;
1734 
1735  if (rdev->raid_disk >= 0)
1736  first = last = rdev->raid_disk;
1737 
1738  if (q->merge_bvec_fn) {
1739  set_bit(Unmerged, &rdev->flags);
1740  mddev->merge_check_needed = 1;
1741  }
1742 
1743  if (rdev->saved_raid_disk >= first &&
1744  conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1745  mirror = rdev->saved_raid_disk;
1746  else
1747  mirror = first;
1748  for ( ; mirror <= last ; mirror++) {
1749  struct raid10_info *p = &conf->mirrors[mirror];
1750  if (p->recovery_disabled == mddev->recovery_disabled)
1751  continue;
1752  if (p->rdev) {
1753  if (!test_bit(WantReplacement, &p->rdev->flags) ||
1754  p->replacement != NULL)
1755  continue;
1756  clear_bit(In_sync, &rdev->flags);
1757  set_bit(Replacement, &rdev->flags);
1758  rdev->raid_disk = mirror;
1759  err = 0;
1760  disk_stack_limits(mddev->gendisk, rdev->bdev,
1761  rdev->data_offset << 9);
1762  conf->fullsync = 1;
1763  rcu_assign_pointer(p->replacement, rdev);
1764  break;
1765  }
1766 
1767  disk_stack_limits(mddev->gendisk, rdev->bdev,
1768  rdev->data_offset << 9);
1769 
1770  p->head_position = 0;
1771  p->recovery_disabled = mddev->recovery_disabled - 1;
1772  rdev->raid_disk = mirror;
1773  err = 0;
1774  if (rdev->saved_raid_disk != mirror)
1775  conf->fullsync = 1;
1776  rcu_assign_pointer(p->rdev, rdev);
1777  break;
1778  }
1779  if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1780  /* Some requests might not have seen this new
1781  * merge_bvec_fn. We must wait for them to complete
1782  * before merging the device fully.
1783  * First we make sure any code which has tested
1784  * our function has submitted the request, then
1785  * we wait for all outstanding requests to complete.
1786  */
1788  raise_barrier(conf, 0);
1789  lower_barrier(conf);
1790  clear_bit(Unmerged, &rdev->flags);
1791  }
1792  md_integrity_add_rdev(rdev, mddev);
1793  if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1794  queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1795 
1796  print_conf(conf);
1797  return err;
1798 }
1799 
1800 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1801 {
1802  struct r10conf *conf = mddev->private;
1803  int err = 0;
1804  int number = rdev->raid_disk;
1805  struct md_rdev **rdevp;
1806  struct raid10_info *p = conf->mirrors + number;
1807 
1808  print_conf(conf);
1809  if (rdev == p->rdev)
1810  rdevp = &p->rdev;
1811  else if (rdev == p->replacement)
1812  rdevp = &p->replacement;
1813  else
1814  return 0;
1815 
1816  if (test_bit(In_sync, &rdev->flags) ||
1817  atomic_read(&rdev->nr_pending)) {
1818  err = -EBUSY;
1819  goto abort;
1820  }
1821  /* Only remove faulty devices if recovery
1822  * is not possible.
1823  */
1824  if (!test_bit(Faulty, &rdev->flags) &&
1825  mddev->recovery_disabled != p->recovery_disabled &&
1826  (!p->replacement || p->replacement == rdev) &&
1827  number < conf->geo.raid_disks &&
1828  enough(conf, -1)) {
1829  err = -EBUSY;
1830  goto abort;
1831  }
1832  *rdevp = NULL;
1833  synchronize_rcu();
1834  if (atomic_read(&rdev->nr_pending)) {
1835  /* lost the race, try later */
1836  err = -EBUSY;
1837  *rdevp = rdev;
1838  goto abort;
1839  } else if (p->replacement) {
1840  /* We must have just cleared 'rdev' */
1841  p->rdev = p->replacement;
1842  clear_bit(Replacement, &p->replacement->flags);
1843  smp_mb(); /* Make sure other CPUs may see both as identical
1844  * but will never see neither -- if they are careful.
1845  */
1846  p->replacement = NULL;
1847  clear_bit(WantReplacement, &rdev->flags);
1848  } else
1849  /* We might have just remove the Replacement as faulty
1850  * Clear the flag just in case
1851  */
1852  clear_bit(WantReplacement, &rdev->flags);
1853 
1854  err = md_integrity_register(mddev);
1855 
1856 abort:
1857 
1858  print_conf(conf);
1859  return err;
1860 }
1861 
1862 
1863 static void end_sync_read(struct bio *bio, int error)
1864 {
1865  struct r10bio *r10_bio = bio->bi_private;
1866  struct r10conf *conf = r10_bio->mddev->private;
1867  int d;
1868 
1869  if (bio == r10_bio->master_bio) {
1870  /* this is a reshape read */
1871  d = r10_bio->read_slot; /* really the read dev */
1872  } else
1873  d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1874 
1875  if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1876  set_bit(R10BIO_Uptodate, &r10_bio->state);
1877  else
1878  /* The write handler will notice the lack of
1879  * R10BIO_Uptodate and record any errors etc
1880  */
1881  atomic_add(r10_bio->sectors,
1882  &conf->mirrors[d].rdev->corrected_errors);
1883 
1884  /* for reconstruct, we always reschedule after a read.
1885  * for resync, only after all reads
1886  */
1887  rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1888  if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1889  atomic_dec_and_test(&r10_bio->remaining)) {
1890  /* we have read all the blocks,
1891  * do the comparison in process context in raid10d
1892  */
1893  reschedule_retry(r10_bio);
1894  }
1895 }
1896 
1897 static void end_sync_request(struct r10bio *r10_bio)
1898 {
1899  struct mddev *mddev = r10_bio->mddev;
1900 
1901  while (atomic_dec_and_test(&r10_bio->remaining)) {
1902  if (r10_bio->master_bio == NULL) {
1903  /* the primary of several recovery bios */
1904  sector_t s = r10_bio->sectors;
1905  if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1906  test_bit(R10BIO_WriteError, &r10_bio->state))
1907  reschedule_retry(r10_bio);
1908  else
1909  put_buf(r10_bio);
1910  md_done_sync(mddev, s, 1);
1911  break;
1912  } else {
1913  struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1914  if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1915  test_bit(R10BIO_WriteError, &r10_bio->state))
1916  reschedule_retry(r10_bio);
1917  else
1918  put_buf(r10_bio);
1919  r10_bio = r10_bio2;
1920  }
1921  }
1922 }
1923 
1924 static void end_sync_write(struct bio *bio, int error)
1925 {
1926  int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1927  struct r10bio *r10_bio = bio->bi_private;
1928  struct mddev *mddev = r10_bio->mddev;
1929  struct r10conf *conf = mddev->private;
1930  int d;
1931  sector_t first_bad;
1932  int bad_sectors;
1933  int slot;
1934  int repl;
1935  struct md_rdev *rdev = NULL;
1936 
1937  d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1938  if (repl)
1939  rdev = conf->mirrors[d].replacement;
1940  else
1941  rdev = conf->mirrors[d].rdev;
1942 
1943  if (!uptodate) {
1944  if (repl)
1945  md_error(mddev, rdev);
1946  else {
1947  set_bit(WriteErrorSeen, &rdev->flags);
1948  if (!test_and_set_bit(WantReplacement, &rdev->flags))
1950  &rdev->mddev->recovery);
1951  set_bit(R10BIO_WriteError, &r10_bio->state);
1952  }
1953  } else if (is_badblock(rdev,
1954  r10_bio->devs[slot].addr,
1955  r10_bio->sectors,
1956  &first_bad, &bad_sectors))
1957  set_bit(R10BIO_MadeGood, &r10_bio->state);
1958 
1959  rdev_dec_pending(rdev, mddev);
1960 
1961  end_sync_request(r10_bio);
1962 }
1963 
1964 /*
1965  * Note: sync and recover and handled very differently for raid10
1966  * This code is for resync.
1967  * For resync, we read through virtual addresses and read all blocks.
1968  * If there is any error, we schedule a write. The lowest numbered
1969  * drive is authoritative.
1970  * However requests come for physical address, so we need to map.
1971  * For every physical address there are raid_disks/copies virtual addresses,
1972  * which is always are least one, but is not necessarly an integer.
1973  * This means that a physical address can span multiple chunks, so we may
1974  * have to submit multiple io requests for a single sync request.
1975  */
1976 /*
1977  * We check if all blocks are in-sync and only write to blocks that
1978  * aren't in sync
1979  */
1980 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1981 {
1982  struct r10conf *conf = mddev->private;
1983  int i, first;
1984  struct bio *tbio, *fbio;
1985  int vcnt;
1986 
1987  atomic_set(&r10_bio->remaining, 1);
1988 
1989  /* find the first device with a block */
1990  for (i=0; i<conf->copies; i++)
1991  if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1992  break;
1993 
1994  if (i == conf->copies)
1995  goto done;
1996 
1997  first = i;
1998  fbio = r10_bio->devs[i].bio;
1999 
2000  vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2001  /* now find blocks with errors */
2002  for (i=0 ; i < conf->copies ; i++) {
2003  int j, d;
2004 
2005  tbio = r10_bio->devs[i].bio;
2006 
2007  if (tbio->bi_end_io != end_sync_read)
2008  continue;
2009  if (i == first)
2010  continue;
2011  if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2012  /* We know that the bi_io_vec layout is the same for
2013  * both 'first' and 'i', so we just compare them.
2014  * All vec entries are PAGE_SIZE;
2015  */
2016  for (j = 0; j < vcnt; j++)
2017  if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2018  page_address(tbio->bi_io_vec[j].bv_page),
2019  fbio->bi_io_vec[j].bv_len))
2020  break;
2021  if (j == vcnt)
2022  continue;
2023  atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2024  if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2025  /* Don't fix anything. */
2026  continue;
2027  }
2028  /* Ok, we need to write this bio, either to correct an
2029  * inconsistency or to correct an unreadable block.
2030  * First we need to fixup bv_offset, bv_len and
2031  * bi_vecs, as the read request might have corrupted these
2032  */
2033  tbio->bi_vcnt = vcnt;
2034  tbio->bi_size = r10_bio->sectors << 9;
2035  tbio->bi_idx = 0;
2036  tbio->bi_phys_segments = 0;
2037  tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2038  tbio->bi_flags |= 1 << BIO_UPTODATE;
2039  tbio->bi_next = NULL;
2040  tbio->bi_rw = WRITE;
2041  tbio->bi_private = r10_bio;
2042  tbio->bi_sector = r10_bio->devs[i].addr;
2043 
2044  for (j=0; j < vcnt ; j++) {
2045  tbio->bi_io_vec[j].bv_offset = 0;
2046  tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2047 
2048  memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2049  page_address(fbio->bi_io_vec[j].bv_page),
2050  PAGE_SIZE);
2051  }
2052  tbio->bi_end_io = end_sync_write;
2053 
2054  d = r10_bio->devs[i].devnum;
2055  atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2056  atomic_inc(&r10_bio->remaining);
2057  md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2058 
2059  tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2060  tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2061  generic_make_request(tbio);
2062  }
2063 
2064  /* Now write out to any replacement devices
2065  * that are active
2066  */
2067  for (i = 0; i < conf->copies; i++) {
2068  int j, d;
2069 
2070  tbio = r10_bio->devs[i].repl_bio;
2071  if (!tbio || !tbio->bi_end_io)
2072  continue;
2073  if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2074  && r10_bio->devs[i].bio != fbio)
2075  for (j = 0; j < vcnt; j++)
2076  memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2077  page_address(fbio->bi_io_vec[j].bv_page),
2078  PAGE_SIZE);
2079  d = r10_bio->devs[i].devnum;
2080  atomic_inc(&r10_bio->remaining);
2081  md_sync_acct(conf->mirrors[d].replacement->bdev,
2082  tbio->bi_size >> 9);
2083  generic_make_request(tbio);
2084  }
2085 
2086 done:
2087  if (atomic_dec_and_test(&r10_bio->remaining)) {
2088  md_done_sync(mddev, r10_bio->sectors, 1);
2089  put_buf(r10_bio);
2090  }
2091 }
2092 
2093 /*
2094  * Now for the recovery code.
2095  * Recovery happens across physical sectors.
2096  * We recover all non-is_sync drives by finding the virtual address of
2097  * each, and then choose a working drive that also has that virt address.
2098  * There is a separate r10_bio for each non-in_sync drive.
2099  * Only the first two slots are in use. The first for reading,
2100  * The second for writing.
2101  *
2102  */
2103 static void fix_recovery_read_error(struct r10bio *r10_bio)
2104 {
2105  /* We got a read error during recovery.
2106  * We repeat the read in smaller page-sized sections.
2107  * If a read succeeds, write it to the new device or record
2108  * a bad block if we cannot.
2109  * If a read fails, record a bad block on both old and
2110  * new devices.
2111  */
2112  struct mddev *mddev = r10_bio->mddev;
2113  struct r10conf *conf = mddev->private;
2114  struct bio *bio = r10_bio->devs[0].bio;
2115  sector_t sect = 0;
2116  int sectors = r10_bio->sectors;
2117  int idx = 0;
2118  int dr = r10_bio->devs[0].devnum;
2119  int dw = r10_bio->devs[1].devnum;
2120 
2121  while (sectors) {
2122  int s = sectors;
2123  struct md_rdev *rdev;
2124  sector_t addr;
2125  int ok;
2126 
2127  if (s > (PAGE_SIZE>>9))
2128  s = PAGE_SIZE >> 9;
2129 
2130  rdev = conf->mirrors[dr].rdev;
2131  addr = r10_bio->devs[0].addr + sect,
2132  ok = sync_page_io(rdev,
2133  addr,
2134  s << 9,
2135  bio->bi_io_vec[idx].bv_page,
2136  READ, false);
2137  if (ok) {
2138  rdev = conf->mirrors[dw].rdev;
2139  addr = r10_bio->devs[1].addr + sect;
2140  ok = sync_page_io(rdev,
2141  addr,
2142  s << 9,
2143  bio->bi_io_vec[idx].bv_page,
2144  WRITE, false);
2145  if (!ok) {
2146  set_bit(WriteErrorSeen, &rdev->flags);
2148  &rdev->flags))
2150  &rdev->mddev->recovery);
2151  }
2152  }
2153  if (!ok) {
2154  /* We don't worry if we cannot set a bad block -
2155  * it really is bad so there is no loss in not
2156  * recording it yet
2157  */
2158  rdev_set_badblocks(rdev, addr, s, 0);
2159 
2160  if (rdev != conf->mirrors[dw].rdev) {
2161  /* need bad block on destination too */
2162  struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2163  addr = r10_bio->devs[1].addr + sect;
2164  ok = rdev_set_badblocks(rdev2, addr, s, 0);
2165  if (!ok) {
2166  /* just abort the recovery */
2168  "md/raid10:%s: recovery aborted"
2169  " due to read error\n",
2170  mdname(mddev));
2171 
2172  conf->mirrors[dw].recovery_disabled
2173  = mddev->recovery_disabled;
2175  &mddev->recovery);
2176  break;
2177  }
2178  }
2179  }
2180 
2181  sectors -= s;
2182  sect += s;
2183  idx++;
2184  }
2185 }
2186 
2187 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2188 {
2189  struct r10conf *conf = mddev->private;
2190  int d;
2191  struct bio *wbio, *wbio2;
2192 
2193  if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2194  fix_recovery_read_error(r10_bio);
2195  end_sync_request(r10_bio);
2196  return;
2197  }
2198 
2199  /*
2200  * share the pages with the first bio
2201  * and submit the write request
2202  */
2203  d = r10_bio->devs[1].devnum;
2204  wbio = r10_bio->devs[1].bio;
2205  wbio2 = r10_bio->devs[1].repl_bio;
2206  if (wbio->bi_end_io) {
2207  atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2208  md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2209  generic_make_request(wbio);
2210  }
2211  if (wbio2 && wbio2->bi_end_io) {
2212  atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2213  md_sync_acct(conf->mirrors[d].replacement->bdev,
2214  wbio2->bi_size >> 9);
2215  generic_make_request(wbio2);
2216  }
2217 }
2218 
2219 
2220 /*
2221  * Used by fix_read_error() to decay the per rdev read_errors.
2222  * We halve the read error count for every hour that has elapsed
2223  * since the last recorded read error.
2224  *
2225  */
2226 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2227 {
2228  struct timespec cur_time_mon;
2229  unsigned long hours_since_last;
2230  unsigned int read_errors = atomic_read(&rdev->read_errors);
2231 
2232  ktime_get_ts(&cur_time_mon);
2233 
2234  if (rdev->last_read_error.tv_sec == 0 &&
2235  rdev->last_read_error.tv_nsec == 0) {
2236  /* first time we've seen a read error */
2237  rdev->last_read_error = cur_time_mon;
2238  return;
2239  }
2240 
2241  hours_since_last = (cur_time_mon.tv_sec -
2242  rdev->last_read_error.tv_sec) / 3600;
2243 
2244  rdev->last_read_error = cur_time_mon;
2245 
2246  /*
2247  * if hours_since_last is > the number of bits in read_errors
2248  * just set read errors to 0. We do this to avoid
2249  * overflowing the shift of read_errors by hours_since_last.
2250  */
2251  if (hours_since_last >= 8 * sizeof(read_errors))
2252  atomic_set(&rdev->read_errors, 0);
2253  else
2254  atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2255 }
2256 
2257 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2258  int sectors, struct page *page, int rw)
2259 {
2260  sector_t first_bad;
2261  int bad_sectors;
2262 
2263  if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2264  && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2265  return -1;
2266  if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2267  /* success */
2268  return 1;
2269  if (rw == WRITE) {
2270  set_bit(WriteErrorSeen, &rdev->flags);
2271  if (!test_and_set_bit(WantReplacement, &rdev->flags))
2273  &rdev->mddev->recovery);
2274  }
2275  /* need to record an error - either for the block or the device */
2276  if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2277  md_error(rdev->mddev, rdev);
2278  return 0;
2279 }
2280 
2281 /*
2282  * This is a kernel thread which:
2283  *
2284  * 1. Retries failed read operations on working mirrors.
2285  * 2. Updates the raid superblock when problems encounter.
2286  * 3. Performs writes following reads for array synchronising.
2287  */
2288 
2289 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2290 {
2291  int sect = 0; /* Offset from r10_bio->sector */
2292  int sectors = r10_bio->sectors;
2293  struct md_rdev*rdev;
2294  int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2295  int d = r10_bio->devs[r10_bio->read_slot].devnum;
2296 
2297  /* still own a reference to this rdev, so it cannot
2298  * have been cleared recently.
2299  */
2300  rdev = conf->mirrors[d].rdev;
2301 
2302  if (test_bit(Faulty, &rdev->flags))
2303  /* drive has already been failed, just ignore any
2304  more fix_read_error() attempts */
2305  return;
2306 
2307  check_decay_read_errors(mddev, rdev);
2308  atomic_inc(&rdev->read_errors);
2309  if (atomic_read(&rdev->read_errors) > max_read_errors) {
2310  char b[BDEVNAME_SIZE];
2311  bdevname(rdev->bdev, b);
2312 
2314  "md/raid10:%s: %s: Raid device exceeded "
2315  "read_error threshold [cur %d:max %d]\n",
2316  mdname(mddev), b,
2317  atomic_read(&rdev->read_errors), max_read_errors);
2319  "md/raid10:%s: %s: Failing raid device\n",
2320  mdname(mddev), b);
2321  md_error(mddev, conf->mirrors[d].rdev);
2322  r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2323  return;
2324  }
2325 
2326  while(sectors) {
2327  int s = sectors;
2328  int sl = r10_bio->read_slot;
2329  int success = 0;
2330  int start;
2331 
2332  if (s > (PAGE_SIZE>>9))
2333  s = PAGE_SIZE >> 9;
2334 
2335  rcu_read_lock();
2336  do {
2337  sector_t first_bad;
2338  int bad_sectors;
2339 
2340  d = r10_bio->devs[sl].devnum;
2341  rdev = rcu_dereference(conf->mirrors[d].rdev);
2342  if (rdev &&
2343  !test_bit(Unmerged, &rdev->flags) &&
2344  test_bit(In_sync, &rdev->flags) &&
2345  is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2346  &first_bad, &bad_sectors) == 0) {
2347  atomic_inc(&rdev->nr_pending);
2348  rcu_read_unlock();
2349  success = sync_page_io(rdev,
2350  r10_bio->devs[sl].addr +
2351  sect,
2352  s<<9,
2353  conf->tmppage, READ, false);
2354  rdev_dec_pending(rdev, mddev);
2355  rcu_read_lock();
2356  if (success)
2357  break;
2358  }
2359  sl++;
2360  if (sl == conf->copies)
2361  sl = 0;
2362  } while (!success && sl != r10_bio->read_slot);
2363  rcu_read_unlock();
2364 
2365  if (!success) {
2366  /* Cannot read from anywhere, just mark the block
2367  * as bad on the first device to discourage future
2368  * reads.
2369  */
2370  int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2371  rdev = conf->mirrors[dn].rdev;
2372 
2373  if (!rdev_set_badblocks(
2374  rdev,
2375  r10_bio->devs[r10_bio->read_slot].addr
2376  + sect,
2377  s, 0)) {
2378  md_error(mddev, rdev);
2379  r10_bio->devs[r10_bio->read_slot].bio
2380  = IO_BLOCKED;
2381  }
2382  break;
2383  }
2384 
2385  start = sl;
2386  /* write it back and re-read */
2387  rcu_read_lock();
2388  while (sl != r10_bio->read_slot) {
2389  char b[BDEVNAME_SIZE];
2390 
2391  if (sl==0)
2392  sl = conf->copies;
2393  sl--;
2394  d = r10_bio->devs[sl].devnum;
2395  rdev = rcu_dereference(conf->mirrors[d].rdev);
2396  if (!rdev ||
2397  test_bit(Unmerged, &rdev->flags) ||
2398  !test_bit(In_sync, &rdev->flags))
2399  continue;
2400 
2401  atomic_inc(&rdev->nr_pending);
2402  rcu_read_unlock();
2403  if (r10_sync_page_io(rdev,
2404  r10_bio->devs[sl].addr +
2405  sect,
2406  s, conf->tmppage, WRITE)
2407  == 0) {
2408  /* Well, this device is dead */
2410  "md/raid10:%s: read correction "
2411  "write failed"
2412  " (%d sectors at %llu on %s)\n",
2413  mdname(mddev), s,
2414  (unsigned long long)(
2415  sect +
2416  choose_data_offset(r10_bio,
2417  rdev)),
2418  bdevname(rdev->bdev, b));
2419  printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2420  "drive\n",
2421  mdname(mddev),
2422  bdevname(rdev->bdev, b));
2423  }
2424  rdev_dec_pending(rdev, mddev);
2425  rcu_read_lock();
2426  }
2427  sl = start;
2428  while (sl != r10_bio->read_slot) {
2429  char b[BDEVNAME_SIZE];
2430 
2431  if (sl==0)
2432  sl = conf->copies;
2433  sl--;
2434  d = r10_bio->devs[sl].devnum;
2435  rdev = rcu_dereference(conf->mirrors[d].rdev);
2436  if (!rdev ||
2437  !test_bit(In_sync, &rdev->flags))
2438  continue;
2439 
2440  atomic_inc(&rdev->nr_pending);
2441  rcu_read_unlock();
2442  switch (r10_sync_page_io(rdev,
2443  r10_bio->devs[sl].addr +
2444  sect,
2445  s, conf->tmppage,
2446  READ)) {
2447  case 0:
2448  /* Well, this device is dead */
2450  "md/raid10:%s: unable to read back "
2451  "corrected sectors"
2452  " (%d sectors at %llu on %s)\n",
2453  mdname(mddev), s,
2454  (unsigned long long)(
2455  sect +
2456  choose_data_offset(r10_bio, rdev)),
2457  bdevname(rdev->bdev, b));
2458  printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2459  "drive\n",
2460  mdname(mddev),
2461  bdevname(rdev->bdev, b));
2462  break;
2463  case 1:
2465  "md/raid10:%s: read error corrected"
2466  " (%d sectors at %llu on %s)\n",
2467  mdname(mddev), s,
2468  (unsigned long long)(
2469  sect +
2470  choose_data_offset(r10_bio, rdev)),
2471  bdevname(rdev->bdev, b));
2472  atomic_add(s, &rdev->corrected_errors);
2473  }
2474 
2475  rdev_dec_pending(rdev, mddev);
2476  rcu_read_lock();
2477  }
2478  rcu_read_unlock();
2479 
2480  sectors -= s;
2481  sect += s;
2482  }
2483 }
2484 
2485 static void bi_complete(struct bio *bio, int error)
2486 {
2487  complete((struct completion *)bio->bi_private);
2488 }
2489 
2490 static int submit_bio_wait(int rw, struct bio *bio)
2491 {
2492  struct completion event;
2493  rw |= REQ_SYNC;
2494 
2495  init_completion(&event);
2496  bio->bi_private = &event;
2497  bio->bi_end_io = bi_complete;
2498  submit_bio(rw, bio);
2500 
2501  return test_bit(BIO_UPTODATE, &bio->bi_flags);
2502 }
2503 
2504 static int narrow_write_error(struct r10bio *r10_bio, int i)
2505 {
2506  struct bio *bio = r10_bio->master_bio;
2507  struct mddev *mddev = r10_bio->mddev;
2508  struct r10conf *conf = mddev->private;
2509  struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2510  /* bio has the data to be written to slot 'i' where
2511  * we just recently had a write error.
2512  * We repeatedly clone the bio and trim down to one block,
2513  * then try the write. Where the write fails we record
2514  * a bad block.
2515  * It is conceivable that the bio doesn't exactly align with
2516  * blocks. We must handle this.
2517  *
2518  * We currently own a reference to the rdev.
2519  */
2520 
2521  int block_sectors;
2522  sector_t sector;
2523  int sectors;
2524  int sect_to_write = r10_bio->sectors;
2525  int ok = 1;
2526 
2527  if (rdev->badblocks.shift < 0)
2528  return 0;
2529 
2530  block_sectors = 1 << rdev->badblocks.shift;
2531  sector = r10_bio->sector;
2532  sectors = ((r10_bio->sector + block_sectors)
2533  & ~(sector_t)(block_sectors - 1))
2534  - sector;
2535 
2536  while (sect_to_write) {
2537  struct bio *wbio;
2538  if (sectors > sect_to_write)
2539  sectors = sect_to_write;
2540  /* Write at 'sector' for 'sectors' */
2541  wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2542  md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2543  wbio->bi_sector = (r10_bio->devs[i].addr+
2544  choose_data_offset(r10_bio, rdev) +
2545  (sector - r10_bio->sector));
2546  wbio->bi_bdev = rdev->bdev;
2547  if (submit_bio_wait(WRITE, wbio) == 0)
2548  /* Failure! */
2549  ok = rdev_set_badblocks(rdev, sector,
2550  sectors, 0)
2551  && ok;
2552 
2553  bio_put(wbio);
2554  sect_to_write -= sectors;
2555  sector += sectors;
2556  sectors = block_sectors;
2557  }
2558  return ok;
2559 }
2560 
2561 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2562 {
2563  int slot = r10_bio->read_slot;
2564  struct bio *bio;
2565  struct r10conf *conf = mddev->private;
2566  struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2567  char b[BDEVNAME_SIZE];
2568  unsigned long do_sync;
2569  int max_sectors;
2570 
2571  /* we got a read error. Maybe the drive is bad. Maybe just
2572  * the block and we can fix it.
2573  * We freeze all other IO, and try reading the block from
2574  * other devices. When we find one, we re-write
2575  * and check it that fixes the read error.
2576  * This is all done synchronously while the array is
2577  * frozen.
2578  */
2579  bio = r10_bio->devs[slot].bio;
2580  bdevname(bio->bi_bdev, b);
2581  bio_put(bio);
2582  r10_bio->devs[slot].bio = NULL;
2583 
2584  if (mddev->ro == 0) {
2585  freeze_array(conf);
2586  fix_read_error(conf, mddev, r10_bio);
2587  unfreeze_array(conf);
2588  } else
2589  r10_bio->devs[slot].bio = IO_BLOCKED;
2590 
2591  rdev_dec_pending(rdev, mddev);
2592 
2593 read_more:
2594  rdev = read_balance(conf, r10_bio, &max_sectors);
2595  if (rdev == NULL) {
2596  printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2597  " read error for block %llu\n",
2598  mdname(mddev), b,
2599  (unsigned long long)r10_bio->sector);
2600  raid_end_bio_io(r10_bio);
2601  return;
2602  }
2603 
2604  do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2605  slot = r10_bio->read_slot;
2607  KERN_ERR
2608  "md/raid10:%s: %s: redirecting "
2609  "sector %llu to another mirror\n",
2610  mdname(mddev),
2611  bdevname(rdev->bdev, b),
2612  (unsigned long long)r10_bio->sector);
2613  bio = bio_clone_mddev(r10_bio->master_bio,
2614  GFP_NOIO, mddev);
2615  md_trim_bio(bio,
2616  r10_bio->sector - bio->bi_sector,
2617  max_sectors);
2618  r10_bio->devs[slot].bio = bio;
2619  r10_bio->devs[slot].rdev = rdev;
2620  bio->bi_sector = r10_bio->devs[slot].addr
2621  + choose_data_offset(r10_bio, rdev);
2622  bio->bi_bdev = rdev->bdev;
2623  bio->bi_rw = READ | do_sync;
2624  bio->bi_private = r10_bio;
2625  bio->bi_end_io = raid10_end_read_request;
2626  if (max_sectors < r10_bio->sectors) {
2627  /* Drat - have to split this up more */
2628  struct bio *mbio = r10_bio->master_bio;
2629  int sectors_handled =
2630  r10_bio->sector + max_sectors
2631  - mbio->bi_sector;
2632  r10_bio->sectors = max_sectors;
2633  spin_lock_irq(&conf->device_lock);
2634  if (mbio->bi_phys_segments == 0)
2635  mbio->bi_phys_segments = 2;
2636  else
2637  mbio->bi_phys_segments++;
2638  spin_unlock_irq(&conf->device_lock);
2639  generic_make_request(bio);
2640 
2641  r10_bio = mempool_alloc(conf->r10bio_pool,
2642  GFP_NOIO);
2643  r10_bio->master_bio = mbio;
2644  r10_bio->sectors = (mbio->bi_size >> 9)
2645  - sectors_handled;
2646  r10_bio->state = 0;
2648  &r10_bio->state);
2649  r10_bio->mddev = mddev;
2650  r10_bio->sector = mbio->bi_sector
2651  + sectors_handled;
2652 
2653  goto read_more;
2654  } else
2655  generic_make_request(bio);
2656 }
2657 
2658 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2659 {
2660  /* Some sort of write request has finished and it
2661  * succeeded in writing where we thought there was a
2662  * bad block. So forget the bad block.
2663  * Or possibly if failed and we need to record
2664  * a bad block.
2665  */
2666  int m;
2667  struct md_rdev *rdev;
2668 
2669  if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2670  test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2671  for (m = 0; m < conf->copies; m++) {
2672  int dev = r10_bio->devs[m].devnum;
2673  rdev = conf->mirrors[dev].rdev;
2674  if (r10_bio->devs[m].bio == NULL)
2675  continue;
2676  if (test_bit(BIO_UPTODATE,
2677  &r10_bio->devs[m].bio->bi_flags)) {
2679  rdev,
2680  r10_bio->devs[m].addr,
2681  r10_bio->sectors, 0);
2682  } else {
2683  if (!rdev_set_badblocks(
2684  rdev,
2685  r10_bio->devs[m].addr,
2686  r10_bio->sectors, 0))
2687  md_error(conf->mddev, rdev);
2688  }
2689  rdev = conf->mirrors[dev].replacement;
2690  if (r10_bio->devs[m].repl_bio == NULL)
2691  continue;
2692  if (test_bit(BIO_UPTODATE,
2693  &r10_bio->devs[m].repl_bio->bi_flags)) {
2695  rdev,
2696  r10_bio->devs[m].addr,
2697  r10_bio->sectors, 0);
2698  } else {
2699  if (!rdev_set_badblocks(
2700  rdev,
2701  r10_bio->devs[m].addr,
2702  r10_bio->sectors, 0))
2703  md_error(conf->mddev, rdev);
2704  }
2705  }
2706  put_buf(r10_bio);
2707  } else {
2708  for (m = 0; m < conf->copies; m++) {
2709  int dev = r10_bio->devs[m].devnum;
2710  struct bio *bio = r10_bio->devs[m].bio;
2711  rdev = conf->mirrors[dev].rdev;
2712  if (bio == IO_MADE_GOOD) {
2714  rdev,
2715  r10_bio->devs[m].addr,
2716  r10_bio->sectors, 0);
2717  rdev_dec_pending(rdev, conf->mddev);
2718  } else if (bio != NULL &&
2719  !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2720  if (!narrow_write_error(r10_bio, m)) {
2721  md_error(conf->mddev, rdev);
2723  &r10_bio->state);
2724  }
2725  rdev_dec_pending(rdev, conf->mddev);
2726  }
2727  bio = r10_bio->devs[m].repl_bio;
2728  rdev = conf->mirrors[dev].replacement;
2729  if (rdev && bio == IO_MADE_GOOD) {
2731  rdev,
2732  r10_bio->devs[m].addr,
2733  r10_bio->sectors, 0);
2734  rdev_dec_pending(rdev, conf->mddev);
2735  }
2736  }
2738  &r10_bio->state))
2739  close_write(r10_bio);
2740  raid_end_bio_io(r10_bio);
2741  }
2742 }
2743 
2744 static void raid10d(struct md_thread *thread)
2745 {
2746  struct mddev *mddev = thread->mddev;
2747  struct r10bio *r10_bio;
2748  unsigned long flags;
2749  struct r10conf *conf = mddev->private;
2750  struct list_head *head = &conf->retry_list;
2751  struct blk_plug plug;
2752 
2753  md_check_recovery(mddev);
2754 
2755  blk_start_plug(&plug);
2756  for (;;) {
2757 
2758  flush_pending_writes(conf);
2759 
2760  spin_lock_irqsave(&conf->device_lock, flags);
2761  if (list_empty(head)) {
2762  spin_unlock_irqrestore(&conf->device_lock, flags);
2763  break;
2764  }
2765  r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2766  list_del(head->prev);
2767  conf->nr_queued--;
2768  spin_unlock_irqrestore(&conf->device_lock, flags);
2769 
2770  mddev = r10_bio->mddev;
2771  conf = mddev->private;
2772  if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2773  test_bit(R10BIO_WriteError, &r10_bio->state))
2774  handle_write_completed(conf, r10_bio);
2775  else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2776  reshape_request_write(mddev, r10_bio);
2777  else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2778  sync_request_write(mddev, r10_bio);
2779  else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2780  recovery_request_write(mddev, r10_bio);
2781  else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2782  handle_read_error(mddev, r10_bio);
2783  else {
2784  /* just a partial read to be scheduled from a
2785  * separate context
2786  */
2787  int slot = r10_bio->read_slot;
2788  generic_make_request(r10_bio->devs[slot].bio);
2789  }
2790 
2791  cond_resched();
2792  if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2793  md_check_recovery(mddev);
2794  }
2795  blk_finish_plug(&plug);
2796 }
2797 
2798 
2799 static int init_resync(struct r10conf *conf)
2800 {
2801  int buffs;
2802  int i;
2803 
2804  buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2805  BUG_ON(conf->r10buf_pool);
2806  conf->have_replacement = 0;
2807  for (i = 0; i < conf->geo.raid_disks; i++)
2808  if (conf->mirrors[i].replacement)
2809  conf->have_replacement = 1;
2810  conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2811  if (!conf->r10buf_pool)
2812  return -ENOMEM;
2813  conf->next_resync = 0;
2814  return 0;
2815 }
2816 
2817 /*
2818  * perform a "sync" on one "block"
2819  *
2820  * We need to make sure that no normal I/O request - particularly write
2821  * requests - conflict with active sync requests.
2822  *
2823  * This is achieved by tracking pending requests and a 'barrier' concept
2824  * that can be installed to exclude normal IO requests.
2825  *
2826  * Resync and recovery are handled very differently.
2827  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2828  *
2829  * For resync, we iterate over virtual addresses, read all copies,
2830  * and update if there are differences. If only one copy is live,
2831  * skip it.
2832  * For recovery, we iterate over physical addresses, read a good
2833  * value for each non-in_sync drive, and over-write.
2834  *
2835  * So, for recovery we may have several outstanding complex requests for a
2836  * given address, one for each out-of-sync device. We model this by allocating
2837  * a number of r10_bio structures, one for each out-of-sync device.
2838  * As we setup these structures, we collect all bio's together into a list
2839  * which we then process collectively to add pages, and then process again
2840  * to pass to generic_make_request.
2841  *
2842  * The r10_bio structures are linked using a borrowed master_bio pointer.
2843  * This link is counted in ->remaining. When the r10_bio that points to NULL
2844  * has its remaining count decremented to 0, the whole complex operation
2845  * is complete.
2846  *
2847  */
2848 
2849 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2850  int *skipped, int go_faster)
2851 {
2852  struct r10conf *conf = mddev->private;
2853  struct r10bio *r10_bio;
2854  struct bio *biolist = NULL, *bio;
2855  sector_t max_sector, nr_sectors;
2856  int i;
2857  int max_sync;
2858  sector_t sync_blocks;
2859  sector_t sectors_skipped = 0;
2860  int chunks_skipped = 0;
2861  sector_t chunk_mask = conf->geo.chunk_mask;
2862 
2863  if (!conf->r10buf_pool)
2864  if (init_resync(conf))
2865  return 0;
2866 
2867  skipped:
2868  max_sector = mddev->dev_sectors;
2869  if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2871  max_sector = mddev->resync_max_sectors;
2872  if (sector_nr >= max_sector) {
2873  /* If we aborted, we need to abort the
2874  * sync on the 'current' bitmap chucks (there can
2875  * be several when recovering multiple devices).
2876  * as we may have started syncing it but not finished.
2877  * We can find the current address in
2878  * mddev->curr_resync, but for recovery,
2879  * we need to convert that to several
2880  * virtual addresses.
2881  */
2882  if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2883  end_reshape(conf);
2884  return 0;
2885  }
2886 
2887  if (mddev->curr_resync < max_sector) { /* aborted */
2888  if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2889  bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2890  &sync_blocks, 1);
2891  else for (i = 0; i < conf->geo.raid_disks; i++) {
2892  sector_t sect =
2893  raid10_find_virt(conf, mddev->curr_resync, i);
2894  bitmap_end_sync(mddev->bitmap, sect,
2895  &sync_blocks, 1);
2896  }
2897  } else {
2898  /* completed sync */
2899  if ((!mddev->bitmap || conf->fullsync)
2900  && conf->have_replacement
2901  && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2902  /* Completed a full sync so the replacements
2903  * are now fully recovered.
2904  */
2905  for (i = 0; i < conf->geo.raid_disks; i++)
2906  if (conf->mirrors[i].replacement)
2907  conf->mirrors[i].replacement
2908  ->recovery_offset
2909  = MaxSector;
2910  }
2911  conf->fullsync = 0;
2912  }
2913  bitmap_close_sync(mddev->bitmap);
2914  close_sync(conf);
2915  *skipped = 1;
2916  return sectors_skipped;
2917  }
2918 
2919  if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2920  return reshape_request(mddev, sector_nr, skipped);
2921 
2922  if (chunks_skipped >= conf->geo.raid_disks) {
2923  /* if there has been nothing to do on any drive,
2924  * then there is nothing to do at all..
2925  */
2926  *skipped = 1;
2927  return (max_sector - sector_nr) + sectors_skipped;
2928  }
2929 
2930  if (max_sector > mddev->resync_max)
2931  max_sector = mddev->resync_max; /* Don't do IO beyond here */
2932 
2933  /* make sure whole request will fit in a chunk - if chunks
2934  * are meaningful
2935  */
2936  if (conf->geo.near_copies < conf->geo.raid_disks &&
2937  max_sector > (sector_nr | chunk_mask))
2938  max_sector = (sector_nr | chunk_mask) + 1;
2939  /*
2940  * If there is non-resync activity waiting for us then
2941  * put in a delay to throttle resync.
2942  */
2943  if (!go_faster && conf->nr_waiting)
2944  msleep_interruptible(1000);
2945 
2946  /* Again, very different code for resync and recovery.
2947  * Both must result in an r10bio with a list of bios that
2948  * have bi_end_io, bi_sector, bi_bdev set,
2949  * and bi_private set to the r10bio.
2950  * For recovery, we may actually create several r10bios
2951  * with 2 bios in each, that correspond to the bios in the main one.
2952  * In this case, the subordinate r10bios link back through a
2953  * borrowed master_bio pointer, and the counter in the master
2954  * includes a ref from each subordinate.
2955  */
2956  /* First, we decide what to do and set ->bi_end_io
2957  * To end_sync_read if we want to read, and
2958  * end_sync_write if we will want to write.
2959  */
2960 
2961  max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2962  if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2963  /* recovery... the complicated one */
2964  int j;
2965  r10_bio = NULL;
2966 
2967  for (i = 0 ; i < conf->geo.raid_disks; i++) {
2968  int still_degraded;
2969  struct r10bio *rb2;
2970  sector_t sect;
2971  int must_sync;
2972  int any_working;
2973  struct raid10_info *mirror = &conf->mirrors[i];
2974 
2975  if ((mirror->rdev == NULL ||
2976  test_bit(In_sync, &mirror->rdev->flags))
2977  &&
2978  (mirror->replacement == NULL ||
2979  test_bit(Faulty,
2980  &mirror->replacement->flags)))
2981  continue;
2982 
2983  still_degraded = 0;
2984  /* want to reconstruct this device */
2985  rb2 = r10_bio;
2986  sect = raid10_find_virt(conf, sector_nr, i);
2987  if (sect >= mddev->resync_max_sectors) {
2988  /* last stripe is not complete - don't
2989  * try to recover this sector.
2990  */
2991  continue;
2992  }
2993  /* Unless we are doing a full sync, or a replacement
2994  * we only need to recover the block if it is set in
2995  * the bitmap
2996  */
2997  must_sync = bitmap_start_sync(mddev->bitmap, sect,
2998  &sync_blocks, 1);
2999  if (sync_blocks < max_sync)
3000  max_sync = sync_blocks;
3001  if (!must_sync &&
3002  mirror->replacement == NULL &&
3003  !conf->fullsync) {
3004  /* yep, skip the sync_blocks here, but don't assume
3005  * that there will never be anything to do here
3006  */
3007  chunks_skipped = -1;
3008  continue;
3009  }
3010 
3011  r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3012  raise_barrier(conf, rb2 != NULL);
3013  atomic_set(&r10_bio->remaining, 0);
3014 
3015  r10_bio->master_bio = (struct bio*)rb2;
3016  if (rb2)
3017  atomic_inc(&rb2->remaining);
3018  r10_bio->mddev = mddev;
3019  set_bit(R10BIO_IsRecover, &r10_bio->state);
3020  r10_bio->sector = sect;
3021 
3022  raid10_find_phys(conf, r10_bio);
3023 
3024  /* Need to check if the array will still be
3025  * degraded
3026  */
3027  for (j = 0; j < conf->geo.raid_disks; j++)
3028  if (conf->mirrors[j].rdev == NULL ||
3029  test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3030  still_degraded = 1;
3031  break;
3032  }
3033 
3034  must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035  &sync_blocks, still_degraded);
3036 
3037  any_working = 0;
3038  for (j=0; j<conf->copies;j++) {
3039  int k;
3040  int d = r10_bio->devs[j].devnum;
3041  sector_t from_addr, to_addr;
3042  struct md_rdev *rdev;
3043  sector_t sector, first_bad;
3044  int bad_sectors;
3045  if (!conf->mirrors[d].rdev ||
3046  !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3047  continue;
3048  /* This is where we read from */
3049  any_working = 1;
3050  rdev = conf->mirrors[d].rdev;
3051  sector = r10_bio->devs[j].addr;
3052 
3053  if (is_badblock(rdev, sector, max_sync,
3054  &first_bad, &bad_sectors)) {
3055  if (first_bad > sector)
3056  max_sync = first_bad - sector;
3057  else {
3058  bad_sectors -= (sector
3059  - first_bad);
3060  if (max_sync > bad_sectors)
3061  max_sync = bad_sectors;
3062  continue;
3063  }
3064  }
3065  bio = r10_bio->devs[0].bio;
3066  bio->bi_next = biolist;
3067  biolist = bio;
3068  bio->bi_private = r10_bio;
3069  bio->bi_end_io = end_sync_read;
3070  bio->bi_rw = READ;
3071  from_addr = r10_bio->devs[j].addr;
3072  bio->bi_sector = from_addr + rdev->data_offset;
3073  bio->bi_bdev = rdev->bdev;
3074  atomic_inc(&rdev->nr_pending);
3075  /* and we write to 'i' (if not in_sync) */
3076 
3077  for (k=0; k<conf->copies; k++)
3078  if (r10_bio->devs[k].devnum == i)
3079  break;
3080  BUG_ON(k == conf->copies);
3081  to_addr = r10_bio->devs[k].addr;
3082  r10_bio->devs[0].devnum = d;
3083  r10_bio->devs[0].addr = from_addr;
3084  r10_bio->devs[1].devnum = i;
3085  r10_bio->devs[1].addr = to_addr;
3086 
3087  rdev = mirror->rdev;
3088  if (!test_bit(In_sync, &rdev->flags)) {
3089  bio = r10_bio->devs[1].bio;
3090  bio->bi_next = biolist;
3091  biolist = bio;
3092  bio->bi_private = r10_bio;
3093  bio->bi_end_io = end_sync_write;
3094  bio->bi_rw = WRITE;
3095  bio->bi_sector = to_addr
3096  + rdev->data_offset;
3097  bio->bi_bdev = rdev->bdev;
3098  atomic_inc(&r10_bio->remaining);
3099  } else
3100  r10_bio->devs[1].bio->bi_end_io = NULL;
3101 
3102  /* and maybe write to replacement */
3103  bio = r10_bio->devs[1].repl_bio;
3104  if (bio)
3105  bio->bi_end_io = NULL;
3106  rdev = mirror->replacement;
3107  /* Note: if rdev != NULL, then bio
3108  * cannot be NULL as r10buf_pool_alloc will
3109  * have allocated it.
3110  * So the second test here is pointless.
3111  * But it keeps semantic-checkers happy, and
3112  * this comment keeps human reviewers
3113  * happy.
3114  */
3115  if (rdev == NULL || bio == NULL ||
3116  test_bit(Faulty, &rdev->flags))
3117  break;
3118  bio->bi_next = biolist;
3119  biolist = bio;
3120  bio->bi_private = r10_bio;
3121  bio->bi_end_io = end_sync_write;
3122  bio->bi_rw = WRITE;
3123  bio->bi_sector = to_addr + rdev->data_offset;
3124  bio->bi_bdev = rdev->bdev;
3125  atomic_inc(&r10_bio->remaining);
3126  break;
3127  }
3128  if (j == conf->copies) {
3129  /* Cannot recover, so abort the recovery or
3130  * record a bad block */
3131  put_buf(r10_bio);
3132  if (rb2)
3133  atomic_dec(&rb2->remaining);
3134  r10_bio = rb2;
3135  if (any_working) {
3136  /* problem is that there are bad blocks
3137  * on other device(s)
3138  */
3139  int k;
3140  for (k = 0; k < conf->copies; k++)
3141  if (r10_bio->devs[k].devnum == i)
3142  break;
3143  if (!test_bit(In_sync,
3144  &mirror->rdev->flags)
3145  && !rdev_set_badblocks(
3146  mirror->rdev,
3147  r10_bio->devs[k].addr,
3148  max_sync, 0))
3149  any_working = 0;
3150  if (mirror->replacement &&
3152  mirror->replacement,
3153  r10_bio->devs[k].addr,
3154  max_sync, 0))
3155  any_working = 0;
3156  }
3157  if (!any_working) {
3159  &mddev->recovery))
3160  printk(KERN_INFO "md/raid10:%s: insufficient "
3161  "working devices for recovery.\n",
3162  mdname(mddev));
3163  mirror->recovery_disabled
3164  = mddev->recovery_disabled;
3165  }
3166  break;
3167  }
3168  }
3169  if (biolist == NULL) {
3170  while (r10_bio) {
3171  struct r10bio *rb2 = r10_bio;
3172  r10_bio = (struct r10bio*) rb2->master_bio;
3173  rb2->master_bio = NULL;
3174  put_buf(rb2);
3175  }
3176  goto giveup;
3177  }
3178  } else {
3179  /* resync. Schedule a read for every block at this virt offset */
3180  int count = 0;
3181 
3182  bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3183 
3184  if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3185  &sync_blocks, mddev->degraded) &&
3187  &mddev->recovery)) {
3188  /* We can skip this block */
3189  *skipped = 1;
3190  return sync_blocks + sectors_skipped;
3191  }
3192  if (sync_blocks < max_sync)
3193  max_sync = sync_blocks;
3194  r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3195 
3196  r10_bio->mddev = mddev;
3197  atomic_set(&r10_bio->remaining, 0);
3198  raise_barrier(conf, 0);
3199  conf->next_resync = sector_nr;
3200 
3201  r10_bio->master_bio = NULL;
3202  r10_bio->sector = sector_nr;
3203  set_bit(R10BIO_IsSync, &r10_bio->state);
3204  raid10_find_phys(conf, r10_bio);
3205  r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3206 
3207  for (i = 0; i < conf->copies; i++) {
3208  int d = r10_bio->devs[i].devnum;
3209  sector_t first_bad, sector;
3210  int bad_sectors;
3211 
3212  if (r10_bio->devs[i].repl_bio)
3213  r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3214 
3215  bio = r10_bio->devs[i].bio;
3216  bio->bi_end_io = NULL;
3217  clear_bit(BIO_UPTODATE, &bio->bi_flags);
3218  if (conf->mirrors[d].rdev == NULL ||
3219  test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3220  continue;
3221  sector = r10_bio->devs[i].addr;
3222  if (is_badblock(conf->mirrors[d].rdev,
3223  sector, max_sync,
3224  &first_bad, &bad_sectors)) {
3225  if (first_bad > sector)
3226  max_sync = first_bad - sector;
3227  else {
3228  bad_sectors -= (sector - first_bad);
3229  if (max_sync > bad_sectors)
3230  max_sync = bad_sectors;
3231  continue;
3232  }
3233  }
3234  atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3235  atomic_inc(&r10_bio->remaining);
3236  bio->bi_next = biolist;
3237  biolist = bio;
3238  bio->bi_private = r10_bio;
3239  bio->bi_end_io = end_sync_read;
3240  bio->bi_rw = READ;
3241  bio->bi_sector = sector +
3242  conf->mirrors[d].rdev->data_offset;
3243  bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3244  count++;
3245 
3246  if (conf->mirrors[d].replacement == NULL ||
3247  test_bit(Faulty,
3248  &conf->mirrors[d].replacement->flags))
3249  continue;
3250 
3251  /* Need to set up for writing to the replacement */
3252  bio = r10_bio->devs[i].repl_bio;
3253  clear_bit(BIO_UPTODATE, &bio->bi_flags);
3254 
3255  sector = r10_bio->devs[i].addr;
3256  atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3257  bio->bi_next = biolist;
3258  biolist = bio;
3259  bio->bi_private = r10_bio;
3260  bio->bi_end_io = end_sync_write;
3261  bio->bi_rw = WRITE;
3262  bio->bi_sector = sector +
3263  conf->mirrors[d].replacement->data_offset;
3264  bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3265  count++;
3266  }
3267 
3268  if (count < 2) {
3269  for (i=0; i<conf->copies; i++) {
3270  int d = r10_bio->devs[i].devnum;
3271  if (r10_bio->devs[i].bio->bi_end_io)
3272  rdev_dec_pending(conf->mirrors[d].rdev,
3273  mddev);
3274  if (r10_bio->devs[i].repl_bio &&
3275  r10_bio->devs[i].repl_bio->bi_end_io)
3276  rdev_dec_pending(
3277  conf->mirrors[d].replacement,
3278  mddev);
3279  }
3280  put_buf(r10_bio);
3281  biolist = NULL;
3282  goto giveup;
3283  }
3284  }
3285 
3286  for (bio = biolist; bio ; bio=bio->bi_next) {
3287 
3288  bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3289  if (bio->bi_end_io)
3290  bio->bi_flags |= 1 << BIO_UPTODATE;
3291  bio->bi_vcnt = 0;
3292  bio->bi_idx = 0;
3293  bio->bi_phys_segments = 0;
3294  bio->bi_size = 0;
3295  }
3296 
3297  nr_sectors = 0;
3298  if (sector_nr + max_sync < max_sector)
3299  max_sector = sector_nr + max_sync;
3300  do {
3301  struct page *page;
3302  int len = PAGE_SIZE;
3303  if (sector_nr + (len>>9) > max_sector)
3304  len = (max_sector - sector_nr) << 9;
3305  if (len == 0)
3306  break;
3307  for (bio= biolist ; bio ; bio=bio->bi_next) {
3308  struct bio *bio2;
3309  page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3310  if (bio_add_page(bio, page, len, 0))
3311  continue;
3312 
3313  /* stop here */
3314  bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3315  for (bio2 = biolist;
3316  bio2 && bio2 != bio;
3317  bio2 = bio2->bi_next) {
3318  /* remove last page from this bio */
3319  bio2->bi_vcnt--;
3320  bio2->bi_size -= len;
3321  bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3322  }
3323  goto bio_full;
3324  }
3325  nr_sectors += len>>9;
3326  sector_nr += len>>9;
3327  } while (biolist->bi_vcnt < RESYNC_PAGES);
3328  bio_full:
3329  r10_bio->sectors = nr_sectors;
3330 
3331  while (biolist) {
3332  bio = biolist;
3333  biolist = biolist->bi_next;
3334 
3335  bio->bi_next = NULL;
3336  r10_bio = bio->bi_private;
3337  r10_bio->sectors = nr_sectors;
3338 
3339  if (bio->bi_end_io == end_sync_read) {
3340  md_sync_acct(bio->bi_bdev, nr_sectors);
3341  generic_make_request(bio);
3342  }
3343  }
3344 
3345  if (sectors_skipped)
3346  /* pretend they weren't skipped, it makes
3347  * no important difference in this case
3348  */
3349  md_done_sync(mddev, sectors_skipped, 1);
3350 
3351  return sectors_skipped + nr_sectors;
3352  giveup:
3353  /* There is nowhere to write, so all non-sync
3354  * drives must be failed or in resync, all drives
3355  * have a bad block, so try the next chunk...
3356  */
3357  if (sector_nr + max_sync < max_sector)
3358  max_sector = sector_nr + max_sync;
3359 
3360  sectors_skipped += (max_sector - sector_nr);
3361  chunks_skipped ++;
3362  sector_nr = max_sector;
3363  goto skipped;
3364 }
3365 
3366 static sector_t
3367 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3368 {
3369  sector_t size;
3370  struct r10conf *conf = mddev->private;
3371 
3372  if (!raid_disks)
3373  raid_disks = min(conf->geo.raid_disks,
3374  conf->prev.raid_disks);
3375  if (!sectors)
3376  sectors = conf->dev_sectors;
3377 
3378  size = sectors >> conf->geo.chunk_shift;
3379  sector_div(size, conf->geo.far_copies);
3380  size = size * raid_disks;
3381  sector_div(size, conf->geo.near_copies);
3382 
3383  return size << conf->geo.chunk_shift;
3384 }
3385 
3386 static void calc_sectors(struct r10conf *conf, sector_t size)
3387 {
3388  /* Calculate the number of sectors-per-device that will
3389  * actually be used, and set conf->dev_sectors and
3390  * conf->stride
3391  */
3392 
3393  size = size >> conf->geo.chunk_shift;
3394  sector_div(size, conf->geo.far_copies);
3395  size = size * conf->geo.raid_disks;
3396  sector_div(size, conf->geo.near_copies);
3397  /* 'size' is now the number of chunks in the array */
3398  /* calculate "used chunks per device" */
3399  size = size * conf->copies;
3400 
3401  /* We need to round up when dividing by raid_disks to
3402  * get the stride size.
3403  */
3404  size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3405 
3406  conf->dev_sectors = size << conf->geo.chunk_shift;
3407 
3408  if (conf->geo.far_offset)
3409  conf->geo.stride = 1 << conf->geo.chunk_shift;
3410  else {
3411  sector_div(size, conf->geo.far_copies);
3412  conf->geo.stride = size << conf->geo.chunk_shift;
3413  }
3414 }
3415 
3417 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3418 {
3419  int nc, fc, fo;
3420  int layout, chunk, disks;
3421  switch (new) {
3422  case geo_old:
3423  layout = mddev->layout;
3424  chunk = mddev->chunk_sectors;
3425  disks = mddev->raid_disks - mddev->delta_disks;
3426  break;
3427  case geo_new:
3428  layout = mddev->new_layout;
3429  chunk = mddev->new_chunk_sectors;
3430  disks = mddev->raid_disks;
3431  break;
3432  default: /* avoid 'may be unused' warnings */
3433  case geo_start: /* new when starting reshape - raid_disks not
3434  * updated yet. */
3435  layout = mddev->new_layout;
3436  chunk = mddev->new_chunk_sectors;
3437  disks = mddev->raid_disks + mddev->delta_disks;
3438  break;
3439  }
3440  if (layout >> 17)
3441  return -1;
3442  if (chunk < (PAGE_SIZE >> 9) ||
3443  !is_power_of_2(chunk))
3444  return -2;
3445  nc = layout & 255;
3446  fc = (layout >> 8) & 255;
3447  fo = layout & (1<<16);
3448  geo->raid_disks = disks;
3449  geo->near_copies = nc;
3450  geo->far_copies = fc;
3451  geo->far_offset = fo;
3452  geo->chunk_mask = chunk - 1;
3453  geo->chunk_shift = ffz(~chunk);
3454  return nc*fc;
3455 }
3456 
3457 static struct r10conf *setup_conf(struct mddev *mddev)
3458 {
3459  struct r10conf *conf = NULL;
3460  int err = -EINVAL;
3461  struct geom geo;
3462  int copies;
3463 
3464  copies = setup_geo(&geo, mddev, geo_new);
3465 
3466  if (copies == -2) {
3467  printk(KERN_ERR "md/raid10:%s: chunk size must be "
3468  "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3469  mdname(mddev), PAGE_SIZE);
3470  goto out;
3471  }
3472 
3473  if (copies < 2 || copies > mddev->raid_disks) {
3474  printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3475  mdname(mddev), mddev->new_layout);
3476  goto out;
3477  }
3478 
3479  err = -ENOMEM;
3480  conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3481  if (!conf)
3482  goto out;
3483 
3484  /* FIXME calc properly */
3485  conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3486  max(0,mddev->delta_disks)),
3487  GFP_KERNEL);
3488  if (!conf->mirrors)
3489  goto out;
3490 
3491  conf->tmppage = alloc_page(GFP_KERNEL);
3492  if (!conf->tmppage)
3493  goto out;
3494 
3495  conf->geo = geo;
3496  conf->copies = copies;
3497  conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3498  r10bio_pool_free, conf);
3499  if (!conf->r10bio_pool)
3500  goto out;
3501 
3502  calc_sectors(conf, mddev->dev_sectors);
3503  if (mddev->reshape_position == MaxSector) {
3504  conf->prev = conf->geo;
3505  conf->reshape_progress = MaxSector;
3506  } else {
3507  if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3508  err = -EINVAL;
3509  goto out;
3510  }
3511  conf->reshape_progress = mddev->reshape_position;
3512  if (conf->prev.far_offset)
3513  conf->prev.stride = 1 << conf->prev.chunk_shift;
3514  else
3515  /* far_copies must be 1 */
3516  conf->prev.stride = conf->dev_sectors;
3517  }
3518  spin_lock_init(&conf->device_lock);
3519  INIT_LIST_HEAD(&conf->retry_list);
3520 
3521  spin_lock_init(&conf->resync_lock);
3523 
3524  conf->thread = md_register_thread(raid10d, mddev, "raid10");
3525  if (!conf->thread)
3526  goto out;
3527 
3528  conf->mddev = mddev;
3529  return conf;
3530 
3531  out:
3532  if (err == -ENOMEM)
3533  printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3534  mdname(mddev));
3535  if (conf) {
3536  if (conf->r10bio_pool)
3538  kfree(conf->mirrors);
3539  safe_put_page(conf->tmppage);
3540  kfree(conf);
3541  }
3542  return ERR_PTR(err);
3543 }
3544 
3545 static int run(struct mddev *mddev)
3546 {
3547  struct r10conf *conf;
3548  int i, disk_idx, chunk_size;
3549  struct raid10_info *disk;
3550  struct md_rdev *rdev;
3551  sector_t size;
3552  sector_t min_offset_diff = 0;
3553  int first = 1;
3554  bool discard_supported = false;
3555 
3556  if (mddev->private == NULL) {
3557  conf = setup_conf(mddev);
3558  if (IS_ERR(conf))
3559  return PTR_ERR(conf);
3560  mddev->private = conf;
3561  }
3562  conf = mddev->private;
3563  if (!conf)
3564  goto out;
3565 
3566  mddev->thread = conf->thread;
3567  conf->thread = NULL;
3568 
3569  chunk_size = mddev->chunk_sectors << 9;
3570  if (mddev->queue) {
3572  mddev->chunk_sectors);
3573  blk_queue_io_min(mddev->queue, chunk_size);
3574  if (conf->geo.raid_disks % conf->geo.near_copies)
3575  blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3576  else
3577  blk_queue_io_opt(mddev->queue, chunk_size *
3578  (conf->geo.raid_disks / conf->geo.near_copies));
3579  }
3580 
3581  rdev_for_each(rdev, mddev) {
3582  long long diff;
3583  struct request_queue *q;
3584 
3585  disk_idx = rdev->raid_disk;
3586  if (disk_idx < 0)
3587  continue;
3588  if (disk_idx >= conf->geo.raid_disks &&
3589  disk_idx >= conf->prev.raid_disks)
3590  continue;
3591  disk = conf->mirrors + disk_idx;
3592 
3593  if (test_bit(Replacement, &rdev->flags)) {
3594  if (disk->replacement)
3595  goto out_free_conf;
3596  disk->replacement = rdev;
3597  } else {
3598  if (disk->rdev)
3599  goto out_free_conf;
3600  disk->rdev = rdev;
3601  }
3602  q = bdev_get_queue(rdev->bdev);
3603  if (q->merge_bvec_fn)
3604  mddev->merge_check_needed = 1;
3605  diff = (rdev->new_data_offset - rdev->data_offset);
3606  if (!mddev->reshape_backwards)
3607  diff = -diff;
3608  if (diff < 0)
3609  diff = 0;
3610  if (first || diff < min_offset_diff)
3611  min_offset_diff = diff;
3612 
3613  if (mddev->gendisk)
3614  disk_stack_limits(mddev->gendisk, rdev->bdev,
3615  rdev->data_offset << 9);
3616 
3617  disk->head_position = 0;
3618 
3619  if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3620  discard_supported = true;
3621  }
3622 
3623  if (mddev->queue) {
3624  if (discard_supported)
3625  queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3626  mddev->queue);
3627  else
3628  queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3629  mddev->queue);
3630  }
3631  /* need to check that every block has at least one working mirror */
3632  if (!enough(conf, -1)) {
3633  printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3634  mdname(mddev));
3635  goto out_free_conf;
3636  }
3637 
3638  if (conf->reshape_progress != MaxSector) {
3639  /* must ensure that shape change is supported */
3640  if (conf->geo.far_copies != 1 &&
3641  conf->geo.far_offset == 0)
3642  goto out_free_conf;
3643  if (conf->prev.far_copies != 1 &&
3644  conf->geo.far_offset == 0)
3645  goto out_free_conf;
3646  }
3647 
3648  mddev->degraded = 0;
3649  for (i = 0;
3650  i < conf->geo.raid_disks
3651  || i < conf->prev.raid_disks;
3652  i++) {
3653 
3654  disk = conf->mirrors + i;
3655 
3656  if (!disk->rdev && disk->replacement) {
3657  /* The replacement is all we have - use it */
3658  disk->rdev = disk->replacement;
3659  disk->replacement = NULL;
3660  clear_bit(Replacement, &disk->rdev->flags);
3661  }
3662 
3663  if (!disk->rdev ||
3664  !test_bit(In_sync, &disk->rdev->flags)) {
3665  disk->head_position = 0;
3666  mddev->degraded++;
3667  if (disk->rdev)
3668  conf->fullsync = 1;
3669  }
3670  disk->recovery_disabled = mddev->recovery_disabled - 1;
3671  }
3672 
3673  if (mddev->recovery_cp != MaxSector)
3674  printk(KERN_NOTICE "md/raid10:%s: not clean"
3675  " -- starting background reconstruction\n",
3676  mdname(mddev));
3678  "md/raid10:%s: active with %d out of %d devices\n",
3679  mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3680  conf->geo.raid_disks);
3681  /*
3682  * Ok, everything is just fine now
3683  */
3684  mddev->dev_sectors = conf->dev_sectors;
3685  size = raid10_size(mddev, 0, 0);
3686  md_set_array_sectors(mddev, size);
3687  mddev->resync_max_sectors = size;
3688 
3689  if (mddev->queue) {
3690  int stripe = conf->geo.raid_disks *
3691  ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3692  mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3693  mddev->queue->backing_dev_info.congested_data = mddev;
3694 
3695  /* Calculate max read-ahead size.
3696  * We need to readahead at least twice a whole stripe....
3697  * maybe...
3698  */
3699  stripe /= conf->geo.near_copies;
3700  if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3701  mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3702  blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3703  }
3704 
3705 
3706  if (md_integrity_register(mddev))
3707  goto out_free_conf;
3708 
3709  if (conf->reshape_progress != MaxSector) {
3710  unsigned long before_length, after_length;
3711 
3712  before_length = ((1 << conf->prev.chunk_shift) *
3713  conf->prev.far_copies);
3714  after_length = ((1 << conf->geo.chunk_shift) *
3715  conf->geo.far_copies);
3716 
3717  if (max(before_length, after_length) > min_offset_diff) {
3718  /* This cannot work */
3719  printk("md/raid10: offset difference not enough to continue reshape\n");
3720  goto out_free_conf;
3721  }
3722  conf->offset_diff = min_offset_diff;
3723 
3724  conf->reshape_safe = conf->reshape_progress;
3729  mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3730  "reshape");
3731  }
3732 
3733  return 0;
3734 
3735 out_free_conf:
3736  md_unregister_thread(&mddev->thread);
3737  if (conf->r10bio_pool)
3739  safe_put_page(conf->tmppage);
3740  kfree(conf->mirrors);
3741  kfree(conf);
3742  mddev->private = NULL;
3743 out:
3744  return -EIO;
3745 }
3746 
3747 static int stop(struct mddev *mddev)
3748 {
3749  struct r10conf *conf = mddev->private;
3750 
3751  raise_barrier(conf, 0);
3752  lower_barrier(conf);
3753 
3754  md_unregister_thread(&mddev->thread);
3755  if (mddev->queue)
3756  /* the unplug fn references 'conf'*/
3757  blk_sync_queue(mddev->queue);
3758 
3759  if (conf->r10bio_pool)
3761  kfree(conf->mirrors);
3762  kfree(conf);
3763  mddev->private = NULL;
3764  return 0;
3765 }
3766 
3767 static void raid10_quiesce(struct mddev *mddev, int state)
3768 {
3769  struct r10conf *conf = mddev->private;
3770 
3771  switch(state) {
3772  case 1:
3773  raise_barrier(conf, 0);
3774  break;
3775  case 0:
3776  lower_barrier(conf);
3777  break;
3778  }
3779 }
3780 
3781 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3782 {
3783  /* Resize of 'far' arrays is not supported.
3784  * For 'near' and 'offset' arrays we can set the
3785  * number of sectors used to be an appropriate multiple
3786  * of the chunk size.
3787  * For 'offset', this is far_copies*chunksize.
3788  * For 'near' the multiplier is the LCM of
3789  * near_copies and raid_disks.
3790  * So if far_copies > 1 && !far_offset, fail.
3791  * Else find LCM(raid_disks, near_copy)*far_copies and
3792  * multiply by chunk_size. Then round to this number.
3793  * This is mostly done by raid10_size()
3794  */
3795  struct r10conf *conf = mddev->private;
3796  sector_t oldsize, size;
3797 
3798  if (mddev->reshape_position != MaxSector)
3799  return -EBUSY;
3800 
3801  if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3802  return -EINVAL;
3803 
3804  oldsize = raid10_size(mddev, 0, 0);
3805  size = raid10_size(mddev, sectors, 0);
3806  if (mddev->external_size &&
3807  mddev->array_sectors > size)
3808  return -EINVAL;
3809  if (mddev->bitmap) {
3810  int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3811  if (ret)
3812  return ret;
3813  }
3814  md_set_array_sectors(mddev, size);
3815  set_capacity(mddev->gendisk, mddev->array_sectors);
3816  revalidate_disk(mddev->gendisk);
3817  if (sectors > mddev->dev_sectors &&
3818  mddev->recovery_cp > oldsize) {
3819  mddev->recovery_cp = oldsize;
3821  }
3822  calc_sectors(conf, sectors);
3823  mddev->dev_sectors = conf->dev_sectors;
3824  mddev->resync_max_sectors = size;
3825  return 0;
3826 }
3827 
3828 static void *raid10_takeover_raid0(struct mddev *mddev)
3829 {
3830  struct md_rdev *rdev;
3831  struct r10conf *conf;
3832 
3833  if (mddev->degraded > 0) {
3834  printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3835  mdname(mddev));
3836  return ERR_PTR(-EINVAL);
3837  }
3838 
3839  /* Set new parameters */
3840  mddev->new_level = 10;
3841  /* new layout: far_copies = 1, near_copies = 2 */
3842  mddev->new_layout = (1<<8) + 2;
3843  mddev->new_chunk_sectors = mddev->chunk_sectors;
3844  mddev->delta_disks = mddev->raid_disks;
3845  mddev->raid_disks *= 2;
3846  /* make sure it will be not marked as dirty */
3847  mddev->recovery_cp = MaxSector;
3848 
3849  conf = setup_conf(mddev);
3850  if (!IS_ERR(conf)) {
3851  rdev_for_each(rdev, mddev)
3852  if (rdev->raid_disk >= 0)
3853  rdev->new_raid_disk = rdev->raid_disk * 2;
3854  conf->barrier = 1;
3855  }
3856 
3857  return conf;
3858 }
3859 
3860 static void *raid10_takeover(struct mddev *mddev)
3861 {
3862  struct r0conf *raid0_conf;
3863 
3864  /* raid10 can take over:
3865  * raid0 - providing it has only two drives
3866  */
3867  if (mddev->level == 0) {
3868  /* for raid0 takeover only one zone is supported */
3869  raid0_conf = mddev->private;
3870  if (raid0_conf->nr_strip_zones > 1) {
3871  printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3872  " with more than one zone.\n",
3873  mdname(mddev));
3874  return ERR_PTR(-EINVAL);
3875  }
3876  return raid10_takeover_raid0(mddev);
3877  }
3878  return ERR_PTR(-EINVAL);
3879 }
3880 
3881 static int raid10_check_reshape(struct mddev *mddev)
3882 {
3883  /* Called when there is a request to change
3884  * - layout (to ->new_layout)
3885  * - chunk size (to ->new_chunk_sectors)
3886  * - raid_disks (by delta_disks)
3887  * or when trying to restart a reshape that was ongoing.
3888  *
3889  * We need to validate the request and possibly allocate
3890  * space if that might be an issue later.
3891  *
3892  * Currently we reject any reshape of a 'far' mode array,
3893  * allow chunk size to change if new is generally acceptable,
3894  * allow raid_disks to increase, and allow
3895  * a switch between 'near' mode and 'offset' mode.
3896  */
3897  struct r10conf *conf = mddev->private;
3898  struct geom geo;
3899 
3900  if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3901  return -EINVAL;
3902 
3903  if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3904  /* mustn't change number of copies */
3905  return -EINVAL;
3906  if (geo.far_copies > 1 && !geo.far_offset)
3907  /* Cannot switch to 'far' mode */
3908  return -EINVAL;
3909 
3910  if (mddev->array_sectors & geo.chunk_mask)
3911  /* not factor of array size */
3912  return -EINVAL;
3913 
3914  if (!enough(conf, -1))
3915  return -EINVAL;
3916 
3917  kfree(conf->mirrors_new);
3918  conf->mirrors_new = NULL;
3919  if (mddev->delta_disks > 0) {
3920  /* allocate new 'mirrors' list */
3921  conf->mirrors_new = kzalloc(
3922  sizeof(struct raid10_info)
3923  *(mddev->raid_disks +
3924  mddev->delta_disks),
3925  GFP_KERNEL);
3926  if (!conf->mirrors_new)
3927  return -ENOMEM;
3928  }
3929  return 0;
3930 }
3931 
3932 /*
3933  * Need to check if array has failed when deciding whether to:
3934  * - start an array
3935  * - remove non-faulty devices
3936  * - add a spare
3937  * - allow a reshape
3938  * This determination is simple when no reshape is happening.
3939  * However if there is a reshape, we need to carefully check
3940  * both the before and after sections.
3941  * This is because some failed devices may only affect one
3942  * of the two sections, and some non-in_sync devices may
3943  * be insync in the section most affected by failed devices.
3944  */
3945 static int calc_degraded(struct r10conf *conf)
3946 {
3947  int degraded, degraded2;
3948  int i;
3949 
3950  rcu_read_lock();
3951  degraded = 0;
3952  /* 'prev' section first */
3953  for (i = 0; i < conf->prev.raid_disks; i++) {
3954  struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3955  if (!rdev || test_bit(Faulty, &rdev->flags))
3956  degraded++;
3957  else if (!test_bit(In_sync, &rdev->flags))
3958  /* When we can reduce the number of devices in
3959  * an array, this might not contribute to
3960  * 'degraded'. It does now.
3961  */
3962  degraded++;
3963  }
3964  rcu_read_unlock();
3965  if (conf->geo.raid_disks == conf->prev.raid_disks)
3966  return degraded;
3967  rcu_read_lock();
3968  degraded2 = 0;
3969  for (i = 0; i < conf->geo.raid_disks; i++) {
3970  struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3971  if (!rdev || test_bit(Faulty, &rdev->flags))
3972  degraded2++;
3973  else if (!test_bit(In_sync, &rdev->flags)) {
3974  /* If reshape is increasing the number of devices,
3975  * this section has already been recovered, so
3976  * it doesn't contribute to degraded.
3977  * else it does.
3978  */
3979  if (conf->geo.raid_disks <= conf->prev.raid_disks)
3980  degraded2++;
3981  }
3982  }
3983  rcu_read_unlock();
3984  if (degraded2 > degraded)
3985  return degraded2;
3986  return degraded;
3987 }
3988 
3989 static int raid10_start_reshape(struct mddev *mddev)
3990 {
3991  /* A 'reshape' has been requested. This commits
3992  * the various 'new' fields and sets MD_RECOVER_RESHAPE
3993  * This also checks if there are enough spares and adds them
3994  * to the array.
3995  * We currently require enough spares to make the final
3996  * array non-degraded. We also require that the difference
3997  * between old and new data_offset - on each device - is
3998  * enough that we never risk over-writing.
3999  */
4000 
4001  unsigned long before_length, after_length;
4002  sector_t min_offset_diff = 0;
4003  int first = 1;
4004  struct geom new;
4005  struct r10conf *conf = mddev->private;
4006  struct md_rdev *rdev;
4007  int spares = 0;
4008  int ret;
4009 
4010  if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4011  return -EBUSY;
4012 
4013  if (setup_geo(&new, mddev, geo_start) != conf->copies)
4014  return -EINVAL;
4015 
4016  before_length = ((1 << conf->prev.chunk_shift) *
4017  conf->prev.far_copies);
4018  after_length = ((1 << conf->geo.chunk_shift) *
4019  conf->geo.far_copies);
4020 
4021  rdev_for_each(rdev, mddev) {
4022  if (!test_bit(In_sync, &rdev->flags)
4023  && !test_bit(Faulty, &rdev->flags))
4024  spares++;
4025  if (rdev->raid_disk >= 0) {
4026  long long diff = (rdev->new_data_offset
4027  - rdev->data_offset);
4028  if (!mddev->reshape_backwards)
4029  diff = -diff;
4030  if (diff < 0)
4031  diff = 0;
4032  if (first || diff < min_offset_diff)
4033  min_offset_diff = diff;
4034  }
4035  }
4036 
4037  if (max(before_length, after_length) > min_offset_diff)
4038  return -EINVAL;
4039 
4040  if (spares < mddev->delta_disks)
4041  return -EINVAL;
4042 
4043  conf->offset_diff = min_offset_diff;
4044  spin_lock_irq(&conf->device_lock);
4045  if (conf->mirrors_new) {
4046  memcpy(conf->mirrors_new, conf->mirrors,
4047  sizeof(struct raid10_info)*conf->prev.raid_disks);
4048  smp_mb();
4049  kfree(conf->mirrors_old); /* FIXME and elsewhere */
4050  conf->mirrors_old = conf->mirrors;
4051  conf->mirrors = conf->mirrors_new;
4052  conf->mirrors_new = NULL;
4053  }
4054  setup_geo(&conf->geo, mddev, geo_start);
4055  smp_mb();
4056  if (mddev->reshape_backwards) {
4057  sector_t size = raid10_size(mddev, 0, 0);
4058  if (size < mddev->array_sectors) {
4059  spin_unlock_irq(&conf->device_lock);
4060  printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4061  mdname(mddev));
4062  return -EINVAL;
4063  }
4064  mddev->resync_max_sectors = size;
4065  conf->reshape_progress = size;
4066  } else
4067  conf->reshape_progress = 0;
4068  spin_unlock_irq(&conf->device_lock);
4069 
4070  if (mddev->delta_disks && mddev->bitmap) {
4071  ret = bitmap_resize(mddev->bitmap,
4072  raid10_size(mddev, 0,
4073  conf->geo.raid_disks),
4074  0, 0);
4075  if (ret)
4076  goto abort;
4077  }
4078  if (mddev->delta_disks > 0) {
4079  rdev_for_each(rdev, mddev)
4080  if (rdev->raid_disk < 0 &&
4081  !test_bit(Faulty, &rdev->flags)) {
4082  if (raid10_add_disk(mddev, rdev) == 0) {
4083  if (rdev->raid_disk >=
4084  conf->prev.raid_disks)
4085  set_bit(In_sync, &rdev->flags);
4086  else
4087  rdev->recovery_offset = 0;
4088 
4089  if (sysfs_link_rdev(mddev, rdev))
4090  /* Failure here is OK */;
4091  }
4092  } else if (rdev->raid_disk >= conf->prev.raid_disks
4093  && !test_bit(Faulty, &rdev->flags)) {
4094  /* This is a spare that was manually added */
4095  set_bit(In_sync, &rdev->flags);
4096  }
4097  }
4098  /* When a reshape changes the number of devices,
4099  * ->degraded is measured against the larger of the
4100  * pre and post numbers.
4101  */
4102  spin_lock_irq(&conf->device_lock);
4103  mddev->degraded = calc_degraded(conf);
4104  spin_unlock_irq(&conf->device_lock);
4105  mddev->raid_disks = conf->geo.raid_disks;
4106  mddev->reshape_position = conf->reshape_progress;
4107  set_bit(MD_CHANGE_DEVS, &mddev->flags);
4108 
4113 
4114  mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4115  "reshape");
4116  if (!mddev->sync_thread) {
4117  ret = -EAGAIN;
4118  goto abort;
4119  }
4120  conf->reshape_checkpoint = jiffies;
4121  md_wakeup_thread(mddev->sync_thread);
4122  md_new_event(mddev);
4123  return 0;
4124 
4125 abort:
4126  mddev->recovery = 0;
4127  spin_lock_irq(&conf->device_lock);
4128  conf->geo = conf->prev;
4129  mddev->raid_disks = conf->geo.raid_disks;
4130  rdev_for_each(rdev, mddev)
4131  rdev->new_data_offset = rdev->data_offset;
4132  smp_wmb();
4133  conf->reshape_progress = MaxSector;
4134  mddev->reshape_position = MaxSector;
4135  spin_unlock_irq(&conf->device_lock);
4136  return ret;
4137 }
4138 
4139 /* Calculate the last device-address that could contain
4140  * any block from the chunk that includes the array-address 's'
4141  * and report the next address.
4142  * i.e. the address returned will be chunk-aligned and after
4143  * any data that is in the chunk containing 's'.
4144  */
4145 static sector_t last_dev_address(sector_t s, struct geom *geo)
4146 {
4147  s = (s | geo->chunk_mask) + 1;
4148  s >>= geo->chunk_shift;
4149  s *= geo->near_copies;
4150  s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4151  s *= geo->far_copies;
4152  s <<= geo->chunk_shift;
4153  return s;
4154 }
4155 
4156 /* Calculate the first device-address that could contain
4157  * any block from the chunk that includes the array-address 's'.
4158  * This too will be the start of a chunk
4159  */
4160 static sector_t first_dev_address(sector_t s, struct geom *geo)
4161 {
4162  s >>= geo->chunk_shift;
4163  s *= geo->near_copies;
4164  sector_div(s, geo->raid_disks);
4165  s *= geo->far_copies;
4166  s <<= geo->chunk_shift;
4167  return s;
4168 }
4169 
4170 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4171  int *skipped)
4172 {
4173  /* We simply copy at most one chunk (smallest of old and new)
4174  * at a time, possibly less if that exceeds RESYNC_PAGES,
4175  * or we hit a bad block or something.
4176  * This might mean we pause for normal IO in the middle of
4177  * a chunk, but that is not a problem was mddev->reshape_position
4178  * can record any location.
4179  *
4180  * If we will want to write to a location that isn't
4181  * yet recorded as 'safe' (i.e. in metadata on disk) then
4182  * we need to flush all reshape requests and update the metadata.
4183  *
4184  * When reshaping forwards (e.g. to more devices), we interpret
4185  * 'safe' as the earliest block which might not have been copied
4186  * down yet. We divide this by previous stripe size and multiply
4187  * by previous stripe length to get lowest device offset that we
4188  * cannot write to yet.
4189  * We interpret 'sector_nr' as an address that we want to write to.
4190  * From this we use last_device_address() to find where we might
4191  * write to, and first_device_address on the 'safe' position.
4192  * If this 'next' write position is after the 'safe' position,
4193  * we must update the metadata to increase the 'safe' position.
4194  *
4195  * When reshaping backwards, we round in the opposite direction
4196  * and perform the reverse test: next write position must not be
4197  * less than current safe position.
4198  *
4199  * In all this the minimum difference in data offsets
4200  * (conf->offset_diff - always positive) allows a bit of slack,
4201  * so next can be after 'safe', but not by more than offset_disk
4202  *
4203  * We need to prepare all the bios here before we start any IO
4204  * to ensure the size we choose is acceptable to all devices.
4205  * The means one for each copy for write-out and an extra one for
4206  * read-in.
4207  * We store the read-in bio in ->master_bio and the others in
4208  * ->devs[x].bio and ->devs[x].repl_bio.
4209  */
4210  struct r10conf *conf = mddev->private;
4211  struct r10bio *r10_bio;
4212  sector_t next, safe, last;
4213  int max_sectors;
4214  int nr_sectors;
4215  int s;
4216  struct md_rdev *rdev;
4217  int need_flush = 0;
4218  struct bio *blist;
4219  struct bio *bio, *read_bio;
4220  int sectors_done = 0;
4221 
4222  if (sector_nr == 0) {
4223  /* If restarting in the middle, skip the initial sectors */
4224  if (mddev->reshape_backwards &&
4225  conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4226  sector_nr = (raid10_size(mddev, 0, 0)
4227  - conf->reshape_progress);
4228  } else if (!mddev->reshape_backwards &&
4229  conf->reshape_progress > 0)
4230  sector_nr = conf->reshape_progress;
4231  if (sector_nr) {
4232  mddev->curr_resync_completed = sector_nr;
4233  sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4234  *skipped = 1;
4235  return sector_nr;
4236  }
4237  }
4238 
4239  /* We don't use sector_nr to track where we are up to
4240  * as that doesn't work well for ->reshape_backwards.
4241  * So just use ->reshape_progress.
4242  */
4243  if (mddev->reshape_backwards) {
4244  /* 'next' is the earliest device address that we might
4245  * write to for this chunk in the new layout
4246  */
4247  next = first_dev_address(conf->reshape_progress - 1,
4248  &conf->geo);
4249 
4250  /* 'safe' is the last device address that we might read from
4251  * in the old layout after a restart
4252  */
4253  safe = last_dev_address(conf->reshape_safe - 1,
4254  &conf->prev);
4255 
4256  if (next + conf->offset_diff < safe)
4257  need_flush = 1;
4258 
4259  last = conf->reshape_progress - 1;
4260  sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4261  & conf->prev.chunk_mask);
4262  if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4263  sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4264  } else {
4265  /* 'next' is after the last device address that we
4266  * might write to for this chunk in the new layout
4267  */
4268  next = last_dev_address(conf->reshape_progress, &conf->geo);
4269 
4270  /* 'safe' is the earliest device address that we might
4271  * read from in the old layout after a restart
4272  */
4273  safe = first_dev_address(conf->reshape_safe, &conf->prev);
4274 
4275  /* Need to update metadata if 'next' might be beyond 'safe'
4276  * as that would possibly corrupt data
4277  */
4278  if (next > safe + conf->offset_diff)
4279  need_flush = 1;
4280 
4281  sector_nr = conf->reshape_progress;
4282  last = sector_nr | (conf->geo.chunk_mask
4283  & conf->prev.chunk_mask);
4284 
4285  if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4286  last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4287  }
4288 
4289  if (need_flush ||
4290  time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4291  /* Need to update reshape_position in metadata */
4292  wait_barrier(conf);
4293  mddev->reshape_position = conf->reshape_progress;
4294  if (mddev->reshape_backwards)
4295  mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4296  - conf->reshape_progress;
4297  else
4298  mddev->curr_resync_completed = conf->reshape_progress;
4299  conf->reshape_checkpoint = jiffies;
4300  set_bit(MD_CHANGE_DEVS, &mddev->flags);
4301  md_wakeup_thread(mddev->thread);
4302  wait_event(mddev->sb_wait, mddev->flags == 0 ||
4304  conf->reshape_safe = mddev->reshape_position;
4305  allow_barrier(conf);
4306  }
4307 
4308 read_more:
4309  /* Now schedule reads for blocks from sector_nr to last */
4310  r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4311  raise_barrier(conf, sectors_done != 0);
4312  atomic_set(&r10_bio->remaining, 0);
4313  r10_bio->mddev = mddev;
4314  r10_bio->sector = sector_nr;
4315  set_bit(R10BIO_IsReshape, &r10_bio->state);
4316  r10_bio->sectors = last - sector_nr + 1;
4317  rdev = read_balance(conf, r10_bio, &max_sectors);
4318  BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4319 
4320  if (!rdev) {
4321  /* Cannot read from here, so need to record bad blocks
4322  * on all the target devices.
4323  */
4324  // FIXME
4325  set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4326  return sectors_done;
4327  }
4328 
4329  read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4330 
4331  read_bio->bi_bdev = rdev->bdev;
4332  read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4333  + rdev->data_offset);
4334  read_bio->bi_private = r10_bio;
4335  read_bio->bi_end_io = end_sync_read;
4336  read_bio->bi_rw = READ;
4337  read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4338  read_bio->bi_flags |= 1 << BIO_UPTODATE;
4339  read_bio->bi_vcnt = 0;
4340  read_bio->bi_idx = 0;
4341  read_bio->bi_size = 0;
4342  r10_bio->master_bio = read_bio;
4343  r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4344 
4345  /* Now find the locations in the new layout */
4346  __raid10_find_phys(&conf->geo, r10_bio);
4347 
4348  blist = read_bio;
4349  read_bio->bi_next = NULL;
4350 
4351  for (s = 0; s < conf->copies*2; s++) {
4352  struct bio *b;
4353  int d = r10_bio->devs[s/2].devnum;
4354  struct md_rdev *rdev2;
4355  if (s&1) {
4356  rdev2 = conf->mirrors[d].replacement;
4357  b = r10_bio->devs[s/2].repl_bio;
4358  } else {
4359  rdev2 = conf->mirrors[d].rdev;
4360  b = r10_bio->devs[s/2].bio;
4361  }
4362  if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4363  continue;
4364  b->bi_bdev = rdev2->bdev;
4365  b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4366  b->bi_private = r10_bio;
4367  b->bi_end_io = end_reshape_write;
4368  b->bi_rw = WRITE;
4369  b->bi_flags &= ~(BIO_POOL_MASK - 1);
4370  b->bi_flags |= 1 << BIO_UPTODATE;
4371  b->bi_next = blist;
4372  b->bi_vcnt = 0;
4373  b->bi_idx = 0;
4374  b->bi_size = 0;
4375  blist = b;
4376  }
4377 
4378  /* Now add as many pages as possible to all of these bios. */
4379 
4380  nr_sectors = 0;
4381  for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4382  struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4383  int len = (max_sectors - s) << 9;
4384  if (len > PAGE_SIZE)
4385  len = PAGE_SIZE;
4386  for (bio = blist; bio ; bio = bio->bi_next) {
4387  struct bio *bio2;
4388  if (bio_add_page(bio, page, len, 0))
4389  continue;
4390 
4391  /* Didn't fit, must stop */
4392  for (bio2 = blist;
4393  bio2 && bio2 != bio;
4394  bio2 = bio2->bi_next) {
4395  /* Remove last page from this bio */
4396  bio2->bi_vcnt--;
4397  bio2->bi_size -= len;
4398  bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4399  }
4400  goto bio_full;
4401  }
4402  sector_nr += len >> 9;
4403  nr_sectors += len >> 9;
4404  }
4405 bio_full:
4406  r10_bio->sectors = nr_sectors;
4407 
4408  /* Now submit the read */
4409  md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4410  atomic_inc(&r10_bio->remaining);
4411  read_bio->bi_next = NULL;
4412  generic_make_request(read_bio);
4413  sector_nr += nr_sectors;
4414  sectors_done += nr_sectors;
4415  if (sector_nr <= last)
4416  goto read_more;
4417 
4418  /* Now that we have done the whole section we can
4419  * update reshape_progress
4420  */
4421  if (mddev->reshape_backwards)
4422  conf->reshape_progress -= sectors_done;
4423  else
4424  conf->reshape_progress += sectors_done;
4425 
4426  return sectors_done;
4427 }
4428 
4429 static void end_reshape_request(struct r10bio *r10_bio);
4430 static int handle_reshape_read_error(struct mddev *mddev,
4431  struct r10bio *r10_bio);
4432 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4433 {
4434  /* Reshape read completed. Hopefully we have a block
4435  * to write out.
4436  * If we got a read error then we do sync 1-page reads from
4437  * elsewhere until we find the data - or give up.
4438  */
4439  struct r10conf *conf = mddev->private;
4440  int s;
4441 
4442  if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4443  if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4444  /* Reshape has been aborted */
4445  md_done_sync(mddev, r10_bio->sectors, 0);
4446  return;
4447  }
4448 
4449  /* We definitely have the data in the pages, schedule the
4450  * writes.
4451  */
4452  atomic_set(&r10_bio->remaining, 1);
4453  for (s = 0; s < conf->copies*2; s++) {
4454  struct bio *b;
4455  int d = r10_bio->devs[s/2].devnum;
4456  struct md_rdev *rdev;
4457  if (s&1) {
4458  rdev = conf->mirrors[d].replacement;
4459  b = r10_bio->devs[s/2].repl_bio;
4460  } else {
4461  rdev = conf->mirrors[d].rdev;
4462  b = r10_bio->devs[s/2].bio;
4463  }
4464  if (!rdev || test_bit(Faulty, &rdev->flags))
4465  continue;
4466  atomic_inc(&rdev->nr_pending);
4467  md_sync_acct(b->bi_bdev, r10_bio->sectors);
4468  atomic_inc(&r10_bio->remaining);
4469  b->bi_next = NULL;
4471  }
4472  end_reshape_request(r10_bio);
4473 }
4474 
4475 static void end_reshape(struct r10conf *conf)
4476 {
4477  if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4478  return;
4479 
4480  spin_lock_irq(&conf->device_lock);
4481  conf->prev = conf->geo;
4482  md_finish_reshape(conf->mddev);
4483  smp_wmb();
4484  conf->reshape_progress = MaxSector;
4485  spin_unlock_irq(&conf->device_lock);
4486 
4487  /* read-ahead size must cover two whole stripes, which is
4488  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4489  */
4490  if (conf->mddev->queue) {
4491  int stripe = conf->geo.raid_disks *
4492  ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4493  stripe /= conf->geo.near_copies;
4494  if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4495  conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4496  }
4497  conf->fullsync = 0;
4498 }
4499 
4500 
4501 static int handle_reshape_read_error(struct mddev *mddev,
4502  struct r10bio *r10_bio)
4503 {
4504  /* Use sync reads to get the blocks from somewhere else */
4505  int sectors = r10_bio->sectors;
4506  struct r10conf *conf = mddev->private;
4507  struct {
4508  struct r10bio r10_bio;
4509  struct r10dev devs[conf->copies];
4510  } on_stack;
4511  struct r10bio *r10b = &on_stack.r10_bio;
4512  int slot = 0;
4513  int idx = 0;
4514  struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4515 
4516  r10b->sector = r10_bio->sector;
4517  __raid10_find_phys(&conf->prev, r10b);
4518 
4519  while (sectors) {
4520  int s = sectors;
4521  int success = 0;
4522  int first_slot = slot;
4523 
4524  if (s > (PAGE_SIZE >> 9))
4525  s = PAGE_SIZE >> 9;
4526 
4527  while (!success) {
4528  int d = r10b->devs[slot].devnum;
4529  struct md_rdev *rdev = conf->mirrors[d].rdev;
4530  sector_t addr;
4531  if (rdev == NULL ||
4532  test_bit(Faulty, &rdev->flags) ||
4533  !test_bit(In_sync, &rdev->flags))
4534  goto failed;
4535 
4536  addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4537  success = sync_page_io(rdev,
4538  addr,
4539  s << 9,
4540  bvec[idx].bv_page,
4541  READ, false);
4542  if (success)
4543  break;
4544  failed:
4545  slot++;
4546  if (slot >= conf->copies)
4547  slot = 0;
4548  if (slot == first_slot)
4549  break;
4550  }
4551  if (!success) {
4552  /* couldn't read this block, must give up */
4554  &mddev->recovery);
4555  return -EIO;
4556  }
4557  sectors -= s;
4558  idx++;
4559  }
4560  return 0;
4561 }
4562 
4563 static void end_reshape_write(struct bio *bio, int error)
4564 {
4565  int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4566  struct r10bio *r10_bio = bio->bi_private;
4567  struct mddev *mddev = r10_bio->mddev;
4568  struct r10conf *conf = mddev->private;
4569  int d;
4570  int slot;
4571  int repl;
4572  struct md_rdev *rdev = NULL;
4573 
4574  d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4575  if (repl)
4576  rdev = conf->mirrors[d].replacement;
4577  if (!rdev) {
4578  smp_mb();
4579  rdev = conf->mirrors[d].rdev;
4580  }
4581 
4582  if (!uptodate) {
4583  /* FIXME should record badblock */
4584  md_error(mddev, rdev);
4585  }
4586 
4587  rdev_dec_pending(rdev, mddev);
4588  end_reshape_request(r10_bio);
4589 }
4590 
4591 static void end_reshape_request(struct r10bio *r10_bio)
4592 {
4593  if (!atomic_dec_and_test(&r10_bio->remaining))
4594  return;
4595  md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4596  bio_put(r10_bio->master_bio);
4597  put_buf(r10_bio);
4598 }
4599 
4600 static void raid10_finish_reshape(struct mddev *mddev)
4601 {
4602  struct r10conf *conf = mddev->private;
4603 
4604  if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4605  return;
4606 
4607  if (mddev->delta_disks > 0) {
4608  sector_t size = raid10_size(mddev, 0, 0);
4609  md_set_array_sectors(mddev, size);
4610  if (mddev->recovery_cp > mddev->resync_max_sectors) {
4611  mddev->recovery_cp = mddev->resync_max_sectors;
4613  }
4614  mddev->resync_max_sectors = size;
4615  set_capacity(mddev->gendisk, mddev->array_sectors);
4616  revalidate_disk(mddev->gendisk);
4617  } else {
4618  int d;
4619  for (d = conf->geo.raid_disks ;
4620  d < conf->geo.raid_disks - mddev->delta_disks;
4621  d++) {
4622  struct md_rdev *rdev = conf->mirrors[d].rdev;
4623  if (rdev)
4624  clear_bit(In_sync, &rdev->flags);
4625  rdev = conf->mirrors[d].replacement;
4626  if (rdev)
4627  clear_bit(In_sync, &rdev->flags);
4628  }
4629  }
4630  mddev->layout = mddev->new_layout;
4631  mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4632  mddev->reshape_position = MaxSector;
4633  mddev->delta_disks = 0;
4634  mddev->reshape_backwards = 0;
4635 }
4636 
4637 static struct md_personality raid10_personality =
4638 {
4639  .name = "raid10",
4640  .level = 10,
4641  .owner = THIS_MODULE,
4642  .make_request = make_request,
4643  .run = run,
4644  .stop = stop,
4645  .status = status,
4646  .error_handler = error,
4647  .hot_add_disk = raid10_add_disk,
4648  .hot_remove_disk= raid10_remove_disk,
4649  .spare_active = raid10_spare_active,
4650  .sync_request = sync_request,
4651  .quiesce = raid10_quiesce,
4652  .size = raid10_size,
4653  .resize = raid10_resize,
4654  .takeover = raid10_takeover,
4655  .check_reshape = raid10_check_reshape,
4656  .start_reshape = raid10_start_reshape,
4657  .finish_reshape = raid10_finish_reshape,
4658 };
4659 
4660 static int __init raid_init(void)
4661 {
4662  return register_md_personality(&raid10_personality);
4663 }
4664 
4665 static void raid_exit(void)
4666 {
4667  unregister_md_personality(&raid10_personality);
4668 }
4669 
4670 module_init(raid_init);
4671 module_exit(raid_exit);
4672 MODULE_LICENSE("GPL");
4673 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4674 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4675 MODULE_ALIAS("md-raid10");
4676 MODULE_ALIAS("md-level-10");
4677 
4678 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);