Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtc-mxc.c
Go to the documentation of this file.
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 
20 #include <mach/hardware.h>
21 
22 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
25 
26 #define RTC_SW_BIT (1 << 0)
27 #define RTC_ALM_BIT (1 << 2)
28 #define RTC_1HZ_BIT (1 << 4)
29 #define RTC_2HZ_BIT (1 << 7)
30 #define RTC_SAM0_BIT (1 << 8)
31 #define RTC_SAM1_BIT (1 << 9)
32 #define RTC_SAM2_BIT (1 << 10)
33 #define RTC_SAM3_BIT (1 << 11)
34 #define RTC_SAM4_BIT (1 << 12)
35 #define RTC_SAM5_BIT (1 << 13)
36 #define RTC_SAM6_BIT (1 << 14)
37 #define RTC_SAM7_BIT (1 << 15)
38 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39  RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40  RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41 
42 #define RTC_ENABLE_BIT (1 << 7)
43 
44 #define MAX_PIE_NUM 9
45 #define MAX_PIE_FREQ 512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47  { 2, RTC_2HZ_BIT },
48  { 4, RTC_SAM0_BIT },
49  { 8, RTC_SAM1_BIT },
50  { 16, RTC_SAM2_BIT },
51  { 32, RTC_SAM3_BIT },
52  { 64, RTC_SAM4_BIT },
53  { 128, RTC_SAM5_BIT },
54  { 256, RTC_SAM6_BIT },
56 };
57 
58 #define MXC_RTC_TIME 0
59 #define MXC_RTC_ALARM 1
60 
61 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
62 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
66 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
67 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
68 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
69 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
70 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
71 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
72 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
73 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
74 
75 struct rtc_plat_data {
76  struct rtc_device *rtc;
77  void __iomem *ioaddr;
78  int irq;
79  struct clk *clk;
81 };
82 
83 /*
84  * This function is used to obtain the RTC time or the alarm value in
85  * second.
86  */
87 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
88 {
90  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
91  void __iomem *ioaddr = pdata->ioaddr;
92  u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93 
94  switch (time_alarm) {
95  case MXC_RTC_TIME:
96  day = readw(ioaddr + RTC_DAYR);
97  hr_min = readw(ioaddr + RTC_HOURMIN);
98  sec = readw(ioaddr + RTC_SECOND);
99  break;
100  case MXC_RTC_ALARM:
101  day = readw(ioaddr + RTC_DAYALARM);
102  hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103  sec = readw(ioaddr + RTC_ALRM_SEC);
104  break;
105  }
106 
107  hr = hr_min >> 8;
108  min = hr_min & 0xff;
109 
110  return (((day * 24 + hr) * 60) + min) * 60 + sec;
111 }
112 
113 /*
114  * This function sets the RTC alarm value or the time value.
115  */
116 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117 {
118  u32 day, hr, min, sec, temp;
119  struct platform_device *pdev = to_platform_device(dev);
120  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121  void __iomem *ioaddr = pdata->ioaddr;
122 
123  day = time / 86400;
124  time -= day * 86400;
125 
126  /* time is within a day now */
127  hr = time / 3600;
128  time -= hr * 3600;
129 
130  /* time is within an hour now */
131  min = time / 60;
132  sec = time - min * 60;
133 
134  temp = (hr << 8) + min;
135 
136  switch (time_alarm) {
137  case MXC_RTC_TIME:
138  writew(day, ioaddr + RTC_DAYR);
139  writew(sec, ioaddr + RTC_SECOND);
140  writew(temp, ioaddr + RTC_HOURMIN);
141  break;
142  case MXC_RTC_ALARM:
143  writew(day, ioaddr + RTC_DAYALARM);
144  writew(sec, ioaddr + RTC_ALRM_SEC);
145  writew(temp, ioaddr + RTC_ALRM_HM);
146  break;
147  }
148 }
149 
150 /*
151  * This function updates the RTC alarm registers and then clears all the
152  * interrupt status bits.
153  */
154 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155 {
156  struct rtc_time alarm_tm, now_tm;
157  unsigned long now, time;
158  struct platform_device *pdev = to_platform_device(dev);
159  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
160  void __iomem *ioaddr = pdata->ioaddr;
161 
162  now = get_alarm_or_time(dev, MXC_RTC_TIME);
163  rtc_time_to_tm(now, &now_tm);
164  alarm_tm.tm_year = now_tm.tm_year;
165  alarm_tm.tm_mon = now_tm.tm_mon;
166  alarm_tm.tm_mday = now_tm.tm_mday;
167  alarm_tm.tm_hour = alrm->tm_hour;
168  alarm_tm.tm_min = alrm->tm_min;
169  alarm_tm.tm_sec = alrm->tm_sec;
170  rtc_tm_to_time(&alarm_tm, &time);
171 
172  /* clear all the interrupt status bits */
173  writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
174  set_alarm_or_time(dev, MXC_RTC_ALARM, time);
175 
176  return 0;
177 }
178 
179 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
180  unsigned int enabled)
181 {
182  struct platform_device *pdev = to_platform_device(dev);
183  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
184  void __iomem *ioaddr = pdata->ioaddr;
185  u32 reg;
186 
187  spin_lock_irq(&pdata->rtc->irq_lock);
188  reg = readw(ioaddr + RTC_RTCIENR);
189 
190  if (enabled)
191  reg |= bit;
192  else
193  reg &= ~bit;
194 
195  writew(reg, ioaddr + RTC_RTCIENR);
196  spin_unlock_irq(&pdata->rtc->irq_lock);
197 }
198 
199 /* This function is the RTC interrupt service routine. */
200 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
201 {
202  struct platform_device *pdev = dev_id;
203  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
204  void __iomem *ioaddr = pdata->ioaddr;
205  unsigned long flags;
206  u32 status;
207  u32 events = 0;
208 
209  spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
210  status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
211  /* clear interrupt sources */
212  writew(status, ioaddr + RTC_RTCISR);
213 
214  /* update irq data & counter */
215  if (status & RTC_ALM_BIT) {
216  events |= (RTC_AF | RTC_IRQF);
217  /* RTC alarm should be one-shot */
218  mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
219  }
220 
221  if (status & RTC_1HZ_BIT)
222  events |= (RTC_UF | RTC_IRQF);
223 
224  if (status & PIT_ALL_ON)
225  events |= (RTC_PF | RTC_IRQF);
226 
227  rtc_update_irq(pdata->rtc, 1, events);
228  spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
229 
230  return IRQ_HANDLED;
231 }
232 
233 /*
234  * Clear all interrupts and release the IRQ
235  */
236 static void mxc_rtc_release(struct device *dev)
237 {
238  struct platform_device *pdev = to_platform_device(dev);
239  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
240  void __iomem *ioaddr = pdata->ioaddr;
241 
242  spin_lock_irq(&pdata->rtc->irq_lock);
243 
244  /* Disable all rtc interrupts */
245  writew(0, ioaddr + RTC_RTCIENR);
246 
247  /* Clear all interrupt status */
248  writew(0xffffffff, ioaddr + RTC_RTCISR);
249 
250  spin_unlock_irq(&pdata->rtc->irq_lock);
251 }
252 
253 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
254 {
255  mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
256  return 0;
257 }
258 
259 /*
260  * This function reads the current RTC time into tm in Gregorian date.
261  */
262 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
263 {
264  u32 val;
265 
266  /* Avoid roll-over from reading the different registers */
267  do {
268  val = get_alarm_or_time(dev, MXC_RTC_TIME);
269  } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
270 
271  rtc_time_to_tm(val, tm);
272 
273  return 0;
274 }
275 
276 /*
277  * This function sets the internal RTC time based on tm in Gregorian date.
278  */
279 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
280 {
281  /*
282  * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
283  */
284  if (cpu_is_mx1()) {
285  struct rtc_time tm;
286 
287  rtc_time_to_tm(time, &tm);
288  tm.tm_year = 70;
289  rtc_tm_to_time(&tm, &time);
290  }
291 
292  /* Avoid roll-over from reading the different registers */
293  do {
294  set_alarm_or_time(dev, MXC_RTC_TIME, time);
295  } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
296 
297  return 0;
298 }
299 
300 /*
301  * This function reads the current alarm value into the passed in 'alrm'
302  * argument. It updates the alrm's pending field value based on the whether
303  * an alarm interrupt occurs or not.
304  */
305 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
306 {
307  struct platform_device *pdev = to_platform_device(dev);
308  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
309  void __iomem *ioaddr = pdata->ioaddr;
310 
311  rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
312  alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
313 
314  return 0;
315 }
316 
317 /*
318  * This function sets the RTC alarm based on passed in alrm.
319  */
320 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
321 {
322  struct platform_device *pdev = to_platform_device(dev);
323  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
324  int ret;
325 
326  ret = rtc_update_alarm(dev, &alrm->time);
327  if (ret)
328  return ret;
329 
330  memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
331  mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
332 
333  return 0;
334 }
335 
336 /* RTC layer */
337 static struct rtc_class_ops mxc_rtc_ops = {
338  .release = mxc_rtc_release,
339  .read_time = mxc_rtc_read_time,
340  .set_mmss = mxc_rtc_set_mmss,
341  .read_alarm = mxc_rtc_read_alarm,
342  .set_alarm = mxc_rtc_set_alarm,
343  .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
344 };
345 
346 static int __devinit mxc_rtc_probe(struct platform_device *pdev)
347 {
348  struct resource *res;
349  struct rtc_device *rtc;
350  struct rtc_plat_data *pdata = NULL;
351  u32 reg;
352  unsigned long rate;
353  int ret;
354 
355  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
356  if (!res)
357  return -ENODEV;
358 
359  pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
360  if (!pdata)
361  return -ENOMEM;
362 
363  if (!devm_request_mem_region(&pdev->dev, res->start,
364  resource_size(res), pdev->name))
365  return -EBUSY;
366 
367  pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
368  resource_size(res));
369 
370  pdata->clk = devm_clk_get(&pdev->dev, NULL);
371  if (IS_ERR(pdata->clk)) {
372  dev_err(&pdev->dev, "unable to get clock!\n");
373  ret = PTR_ERR(pdata->clk);
374  goto exit_free_pdata;
375  }
376 
377  clk_prepare_enable(pdata->clk);
378  rate = clk_get_rate(pdata->clk);
379 
380  if (rate == 32768)
381  reg = RTC_INPUT_CLK_32768HZ;
382  else if (rate == 32000)
383  reg = RTC_INPUT_CLK_32000HZ;
384  else if (rate == 38400)
385  reg = RTC_INPUT_CLK_38400HZ;
386  else {
387  dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
388  ret = -EINVAL;
389  goto exit_put_clk;
390  }
391 
392  reg |= RTC_ENABLE_BIT;
393  writew(reg, (pdata->ioaddr + RTC_RTCCTL));
394  if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
395  dev_err(&pdev->dev, "hardware module can't be enabled!\n");
396  ret = -EIO;
397  goto exit_put_clk;
398  }
399 
400  platform_set_drvdata(pdev, pdata);
401 
402  /* Configure and enable the RTC */
403  pdata->irq = platform_get_irq(pdev, 0);
404 
405  if (pdata->irq >= 0 &&
406  devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
407  IRQF_SHARED, pdev->name, pdev) < 0) {
408  dev_warn(&pdev->dev, "interrupt not available.\n");
409  pdata->irq = -1;
410  }
411 
412  if (pdata->irq >=0)
413  device_init_wakeup(&pdev->dev, 1);
414 
415  rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
416  THIS_MODULE);
417  if (IS_ERR(rtc)) {
418  ret = PTR_ERR(rtc);
419  goto exit_clr_drvdata;
420  }
421 
422  pdata->rtc = rtc;
423 
424  return 0;
425 
426 exit_clr_drvdata:
427  platform_set_drvdata(pdev, NULL);
428 exit_put_clk:
429  clk_disable_unprepare(pdata->clk);
430 
431 exit_free_pdata:
432 
433  return ret;
434 }
435 
436 static int __devexit mxc_rtc_remove(struct platform_device *pdev)
437 {
438  struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
439 
440  rtc_device_unregister(pdata->rtc);
441 
442  clk_disable_unprepare(pdata->clk);
443  platform_set_drvdata(pdev, NULL);
444 
445  return 0;
446 }
447 
448 #ifdef CONFIG_PM
449 static int mxc_rtc_suspend(struct device *dev)
450 {
451  struct rtc_plat_data *pdata = dev_get_drvdata(dev);
452 
453  if (device_may_wakeup(dev))
454  enable_irq_wake(pdata->irq);
455 
456  return 0;
457 }
458 
459 static int mxc_rtc_resume(struct device *dev)
460 {
461  struct rtc_plat_data *pdata = dev_get_drvdata(dev);
462 
463  if (device_may_wakeup(dev))
464  disable_irq_wake(pdata->irq);
465 
466  return 0;
467 }
468 
469 static struct dev_pm_ops mxc_rtc_pm_ops = {
470  .suspend = mxc_rtc_suspend,
471  .resume = mxc_rtc_resume,
472 };
473 #endif
474 
475 static struct platform_driver mxc_rtc_driver = {
476  .driver = {
477  .name = "mxc_rtc",
478 #ifdef CONFIG_PM
479  .pm = &mxc_rtc_pm_ops,
480 #endif
481  .owner = THIS_MODULE,
482  },
483  .probe = mxc_rtc_probe,
484  .remove = __devexit_p(mxc_rtc_remove),
485 };
486 
487 module_platform_driver(mxc_rtc_driver)
488 
489 MODULE_AUTHOR("Daniel Mack <[email protected]>");
490 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
491 MODULE_LICENSE("GPL");
492