Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sa11x0-dma.c
Go to the documentation of this file.
1 /*
2  * SA11x0 DMAengine support
3  *
4  * Copyright (C) 2012 Russell King
5  * Derived in part from arch/arm/mach-sa1100/dma.c,
6  * Copyright (C) 2000, 2001 by Nicolas Pitre
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/sched.h>
13 #include <linux/device.h>
14 #include <linux/dmaengine.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/sa11x0-dma.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 
24 #include "virt-dma.h"
25 
26 #define NR_PHY_CHAN 6
27 #define DMA_ALIGN 3
28 #define DMA_MAX_SIZE 0x1fff
29 #define DMA_CHUNK_SIZE 0x1000
30 
31 #define DMA_DDAR 0x00
32 #define DMA_DCSR_S 0x04
33 #define DMA_DCSR_C 0x08
34 #define DMA_DCSR_R 0x0c
35 #define DMA_DBSA 0x10
36 #define DMA_DBTA 0x14
37 #define DMA_DBSB 0x18
38 #define DMA_DBTB 0x1c
39 #define DMA_SIZE 0x20
40 
41 #define DCSR_RUN (1 << 0)
42 #define DCSR_IE (1 << 1)
43 #define DCSR_ERROR (1 << 2)
44 #define DCSR_DONEA (1 << 3)
45 #define DCSR_STRTA (1 << 4)
46 #define DCSR_DONEB (1 << 5)
47 #define DCSR_STRTB (1 << 6)
48 #define DCSR_BIU (1 << 7)
49 
50 #define DDAR_RW (1 << 0) /* 0 = W, 1 = R */
51 #define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */
52 #define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */
53 #define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */
54 #define DDAR_Ser0UDCTr (0x0 << 4)
55 #define DDAR_Ser0UDCRc (0x1 << 4)
56 #define DDAR_Ser1SDLCTr (0x2 << 4)
57 #define DDAR_Ser1SDLCRc (0x3 << 4)
58 #define DDAR_Ser1UARTTr (0x4 << 4)
59 #define DDAR_Ser1UARTRc (0x5 << 4)
60 #define DDAR_Ser2ICPTr (0x6 << 4)
61 #define DDAR_Ser2ICPRc (0x7 << 4)
62 #define DDAR_Ser3UARTTr (0x8 << 4)
63 #define DDAR_Ser3UARTRc (0x9 << 4)
64 #define DDAR_Ser4MCP0Tr (0xa << 4)
65 #define DDAR_Ser4MCP0Rc (0xb << 4)
66 #define DDAR_Ser4MCP1Tr (0xc << 4)
67 #define DDAR_Ser4MCP1Rc (0xd << 4)
68 #define DDAR_Ser4SSPTr (0xe << 4)
69 #define DDAR_Ser4SSPRc (0xf << 4)
70 
71 struct sa11x0_dma_sg {
74 };
75 
77  struct virt_dma_desc vd;
78 
80  size_t size;
81  unsigned period;
82  bool cyclic;
83 
84  unsigned sglen;
85  struct sa11x0_dma_sg sg[0];
86 };
87 
88 struct sa11x0_dma_phy;
89 
91  struct virt_dma_chan vc;
92 
93  /* protected by c->vc.lock */
96 
97  /* protected by d->lock */
98  struct list_head node;
99 
101  const char *name;
102 };
103 
105  void __iomem *base;
107  unsigned num;
108 
110 
111  /* Protected by c->vc.lock */
112  unsigned sg_load;
114  unsigned sg_done;
116 #ifdef CONFIG_PM_SLEEP
117  u32 dbs[2];
118  u32 dbt[2];
119  u32 dcsr;
120 #endif
121 };
122 
125  void __iomem *base;
130 };
131 
132 static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
133 {
134  return container_of(chan, struct sa11x0_dma_chan, vc.chan);
135 }
136 
137 static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
138 {
139  return container_of(dmadev, struct sa11x0_dma_dev, slave);
140 }
141 
142 static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
143 {
144  struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
145 
146  return vd ? container_of(vd, struct sa11x0_dma_desc, vd) : NULL;
147 }
148 
149 static void sa11x0_dma_free_desc(struct virt_dma_desc *vd)
150 {
151  kfree(container_of(vd, struct sa11x0_dma_desc, vd));
152 }
153 
154 static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
155 {
156  list_del(&txd->vd.node);
157  p->txd_load = txd;
158  p->sg_load = 0;
159 
160  dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
161  p->num, &txd->vd, txd->vd.tx.cookie, txd->ddar);
162 }
163 
164 static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
165  struct sa11x0_dma_chan *c)
166 {
167  struct sa11x0_dma_desc *txd = p->txd_load;
168  struct sa11x0_dma_sg *sg;
169  void __iomem *base = p->base;
170  unsigned dbsx, dbtx;
171  u32 dcsr;
172 
173  if (!txd)
174  return;
175 
176  dcsr = readl_relaxed(base + DMA_DCSR_R);
177 
178  /* Don't try to load the next transfer if both buffers are started */
179  if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
180  return;
181 
182  if (p->sg_load == txd->sglen) {
183  if (!txd->cyclic) {
184  struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
185 
186  /*
187  * We have reached the end of the current descriptor.
188  * Peek at the next descriptor, and if compatible with
189  * the current, start processing it.
190  */
191  if (txn && txn->ddar == txd->ddar) {
192  txd = txn;
193  sa11x0_dma_start_desc(p, txn);
194  } else {
195  p->txd_load = NULL;
196  return;
197  }
198  } else {
199  /* Cyclic: reset back to beginning */
200  p->sg_load = 0;
201  }
202  }
203 
204  sg = &txd->sg[p->sg_load++];
205 
206  /* Select buffer to load according to channel status */
207  if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
208  ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
209  dbsx = DMA_DBSA;
210  dbtx = DMA_DBTA;
211  dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
212  } else {
213  dbsx = DMA_DBSB;
214  dbtx = DMA_DBTB;
215  dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
216  }
217 
218  writel_relaxed(sg->addr, base + dbsx);
219  writel_relaxed(sg->len, base + dbtx);
220  writel(dcsr, base + DMA_DCSR_S);
221 
222  dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
223  p->num, dcsr,
224  'A' + (dbsx == DMA_DBSB), sg->addr,
225  'A' + (dbtx == DMA_DBTB), sg->len);
226 }
227 
228 static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
229  struct sa11x0_dma_chan *c)
230 {
231  struct sa11x0_dma_desc *txd = p->txd_done;
232 
233  if (++p->sg_done == txd->sglen) {
234  if (!txd->cyclic) {
235  vchan_cookie_complete(&txd->vd);
236 
237  p->sg_done = 0;
238  p->txd_done = p->txd_load;
239 
240  if (!p->txd_done)
241  tasklet_schedule(&p->dev->task);
242  } else {
243  if ((p->sg_done % txd->period) == 0)
244  vchan_cyclic_callback(&txd->vd);
245 
246  /* Cyclic: reset back to beginning */
247  p->sg_done = 0;
248  }
249  }
250 
251  sa11x0_dma_start_sg(p, c);
252 }
253 
254 static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
255 {
256  struct sa11x0_dma_phy *p = dev_id;
257  struct sa11x0_dma_dev *d = p->dev;
258  struct sa11x0_dma_chan *c;
259  u32 dcsr;
260 
261  dcsr = readl_relaxed(p->base + DMA_DCSR_R);
262  if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
263  return IRQ_NONE;
264 
265  /* Clear reported status bits */
266  writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
267  p->base + DMA_DCSR_C);
268 
269  dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
270 
271  if (dcsr & DCSR_ERROR) {
272  dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
273  p->num, dcsr,
278  readl_relaxed(p->base + DMA_DBTB));
279  }
280 
281  c = p->vchan;
282  if (c) {
283  unsigned long flags;
284 
285  spin_lock_irqsave(&c->vc.lock, flags);
286  /*
287  * Now that we're holding the lock, check that the vchan
288  * really is associated with this pchan before touching the
289  * hardware. This should always succeed, because we won't
290  * change p->vchan or c->phy while the channel is actively
291  * transferring.
292  */
293  if (c->phy == p) {
294  if (dcsr & DCSR_DONEA)
295  sa11x0_dma_complete(p, c);
296  if (dcsr & DCSR_DONEB)
297  sa11x0_dma_complete(p, c);
298  }
299  spin_unlock_irqrestore(&c->vc.lock, flags);
300  }
301 
302  return IRQ_HANDLED;
303 }
304 
305 static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
306 {
307  struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
308 
309  /* If the issued list is empty, we have no further txds to process */
310  if (txd) {
311  struct sa11x0_dma_phy *p = c->phy;
312 
313  sa11x0_dma_start_desc(p, txd);
314  p->txd_done = txd;
315  p->sg_done = 0;
316 
317  /* The channel should not have any transfers started */
319  (DCSR_STRTA | DCSR_STRTB));
320 
321  /* Clear the run and start bits before changing DDAR */
322  writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
323  p->base + DMA_DCSR_C);
324  writel_relaxed(txd->ddar, p->base + DMA_DDAR);
325 
326  /* Try to start both buffers */
327  sa11x0_dma_start_sg(p, c);
328  sa11x0_dma_start_sg(p, c);
329  }
330 }
331 
332 static void sa11x0_dma_tasklet(unsigned long arg)
333 {
334  struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
335  struct sa11x0_dma_phy *p;
336  struct sa11x0_dma_chan *c;
337  unsigned pch, pch_alloc = 0;
338 
339  dev_dbg(d->slave.dev, "tasklet enter\n");
340 
341  list_for_each_entry(c, &d->slave.channels, vc.chan.device_node) {
342  spin_lock_irq(&c->vc.lock);
343  p = c->phy;
344  if (p && !p->txd_done) {
345  sa11x0_dma_start_txd(c);
346  if (!p->txd_done) {
347  /* No current txd associated with this channel */
348  dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
349 
350  /* Mark this channel free */
351  c->phy = NULL;
352  p->vchan = NULL;
353  }
354  }
355  spin_unlock_irq(&c->vc.lock);
356  }
357 
358  spin_lock_irq(&d->lock);
359  for (pch = 0; pch < NR_PHY_CHAN; pch++) {
360  p = &d->phy[pch];
361 
362  if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
364  struct sa11x0_dma_chan, node);
365  list_del_init(&c->node);
366 
367  pch_alloc |= 1 << pch;
368 
369  /* Mark this channel allocated */
370  p->vchan = c;
371 
372  dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
373  }
374  }
375  spin_unlock_irq(&d->lock);
376 
377  for (pch = 0; pch < NR_PHY_CHAN; pch++) {
378  if (pch_alloc & (1 << pch)) {
379  p = &d->phy[pch];
380  c = p->vchan;
381 
382  spin_lock_irq(&c->vc.lock);
383  c->phy = p;
384 
385  sa11x0_dma_start_txd(c);
386  spin_unlock_irq(&c->vc.lock);
387  }
388  }
389 
390  dev_dbg(d->slave.dev, "tasklet exit\n");
391 }
392 
393 
394 static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
395 {
396  return 0;
397 }
398 
399 static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
400 {
401  struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
402  struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
403  unsigned long flags;
404 
405  spin_lock_irqsave(&d->lock, flags);
406  list_del_init(&c->node);
407  spin_unlock_irqrestore(&d->lock, flags);
408 
409  vchan_free_chan_resources(&c->vc);
410 }
411 
412 static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
413 {
414  unsigned reg;
415  u32 dcsr;
416 
417  dcsr = readl_relaxed(p->base + DMA_DCSR_R);
418 
419  if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
420  (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
421  reg = DMA_DBSA;
422  else
423  reg = DMA_DBSB;
424 
425  return readl_relaxed(p->base + reg);
426 }
427 
428 static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
430 {
431  struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
432  struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
433  struct sa11x0_dma_phy *p;
434  struct virt_dma_desc *vd;
435  unsigned long flags;
436  enum dma_status ret;
437 
438  ret = dma_cookie_status(&c->vc.chan, cookie, state);
439  if (ret == DMA_SUCCESS)
440  return ret;
441 
442  if (!state)
443  return c->status;
444 
445  spin_lock_irqsave(&c->vc.lock, flags);
446  p = c->phy;
447 
448  /*
449  * If the cookie is on our issue queue, then the residue is
450  * its total size.
451  */
452  vd = vchan_find_desc(&c->vc, cookie);
453  if (vd) {
454  state->residue = container_of(vd, struct sa11x0_dma_desc, vd)->size;
455  } else if (!p) {
456  state->residue = 0;
457  } else {
458  struct sa11x0_dma_desc *txd;
459  size_t bytes = 0;
460 
461  if (p->txd_done && p->txd_done->vd.tx.cookie == cookie)
462  txd = p->txd_done;
463  else if (p->txd_load && p->txd_load->vd.tx.cookie == cookie)
464  txd = p->txd_load;
465  else
466  txd = NULL;
467 
468  ret = c->status;
469  if (txd) {
470  dma_addr_t addr = sa11x0_dma_pos(p);
471  unsigned i;
472 
473  dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
474 
475  for (i = 0; i < txd->sglen; i++) {
476  dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
477  i, txd->sg[i].addr, txd->sg[i].len);
478  if (addr >= txd->sg[i].addr &&
479  addr < txd->sg[i].addr + txd->sg[i].len) {
480  unsigned len;
481 
482  len = txd->sg[i].len -
483  (addr - txd->sg[i].addr);
484  dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
485  i, len);
486  bytes += len;
487  i++;
488  break;
489  }
490  }
491  for (; i < txd->sglen; i++) {
492  dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
493  i, txd->sg[i].addr, txd->sg[i].len);
494  bytes += txd->sg[i].len;
495  }
496  }
497  state->residue = bytes;
498  }
499  spin_unlock_irqrestore(&c->vc.lock, flags);
500 
501  dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", state->residue);
502 
503  return ret;
504 }
505 
506 /*
507  * Move pending txds to the issued list, and re-init pending list.
508  * If not already pending, add this channel to the list of pending
509  * channels and trigger the tasklet to run.
510  */
511 static void sa11x0_dma_issue_pending(struct dma_chan *chan)
512 {
513  struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
514  struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
515  unsigned long flags;
516 
517  spin_lock_irqsave(&c->vc.lock, flags);
518  if (vchan_issue_pending(&c->vc)) {
519  if (!c->phy) {
520  spin_lock(&d->lock);
521  if (list_empty(&c->node)) {
522  list_add_tail(&c->node, &d->chan_pending);
523  tasklet_schedule(&d->task);
524  dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
525  }
526  spin_unlock(&d->lock);
527  }
528  } else
529  dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
530  spin_unlock_irqrestore(&c->vc.lock, flags);
531 }
532 
533 static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
534  struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
535  enum dma_transfer_direction dir, unsigned long flags, void *context)
536 {
537  struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
538  struct sa11x0_dma_desc *txd;
539  struct scatterlist *sgent;
540  unsigned i, j = sglen;
541  size_t size = 0;
542 
543  /* SA11x0 channels can only operate in their native direction */
544  if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
545  dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
546  &c->vc, c->ddar, dir);
547  return NULL;
548  }
549 
550  /* Do not allow zero-sized txds */
551  if (sglen == 0)
552  return NULL;
553 
554  for_each_sg(sg, sgent, sglen, i) {
555  dma_addr_t addr = sg_dma_address(sgent);
556  unsigned int len = sg_dma_len(sgent);
557 
558  if (len > DMA_MAX_SIZE)
559  j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
560  if (addr & DMA_ALIGN) {
561  dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
562  &c->vc, addr);
563  return NULL;
564  }
565  }
566 
567  txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
568  if (!txd) {
569  dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
570  return NULL;
571  }
572 
573  j = 0;
574  for_each_sg(sg, sgent, sglen, i) {
575  dma_addr_t addr = sg_dma_address(sgent);
576  unsigned len = sg_dma_len(sgent);
577 
578  size += len;
579 
580  do {
581  unsigned tlen = len;
582 
583  /*
584  * Check whether the transfer will fit. If not, try
585  * to split the transfer up such that we end up with
586  * equal chunks - but make sure that we preserve the
587  * alignment. This avoids small segments.
588  */
589  if (tlen > DMA_MAX_SIZE) {
590  unsigned mult = DIV_ROUND_UP(tlen,
592 
593  tlen = (tlen / mult) & ~DMA_ALIGN;
594  }
595 
596  txd->sg[j].addr = addr;
597  txd->sg[j].len = tlen;
598 
599  addr += tlen;
600  len -= tlen;
601  j++;
602  } while (len);
603  }
604 
605  txd->ddar = c->ddar;
606  txd->size = size;
607  txd->sglen = j;
608 
609  dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
610  &c->vc, &txd->vd, txd->size, txd->sglen);
611 
612  return vchan_tx_prep(&c->vc, &txd->vd, flags);
613 }
614 
615 static struct dma_async_tx_descriptor *sa11x0_dma_prep_dma_cyclic(
616  struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
617  enum dma_transfer_direction dir, unsigned long flags, void *context)
618 {
619  struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
620  struct sa11x0_dma_desc *txd;
621  unsigned i, j, k, sglen, sgperiod;
622 
623  /* SA11x0 channels can only operate in their native direction */
624  if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
625  dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
626  &c->vc, c->ddar, dir);
627  return NULL;
628  }
629 
630  sgperiod = DIV_ROUND_UP(period, DMA_MAX_SIZE & ~DMA_ALIGN);
631  sglen = size * sgperiod / period;
632 
633  /* Do not allow zero-sized txds */
634  if (sglen == 0)
635  return NULL;
636 
637  txd = kzalloc(sizeof(*txd) + sglen * sizeof(txd->sg[0]), GFP_ATOMIC);
638  if (!txd) {
639  dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
640  return NULL;
641  }
642 
643  for (i = k = 0; i < size / period; i++) {
644  size_t tlen, len = period;
645 
646  for (j = 0; j < sgperiod; j++, k++) {
647  tlen = len;
648 
649  if (tlen > DMA_MAX_SIZE) {
650  unsigned mult = DIV_ROUND_UP(tlen, DMA_MAX_SIZE & ~DMA_ALIGN);
651  tlen = (tlen / mult) & ~DMA_ALIGN;
652  }
653 
654  txd->sg[k].addr = addr;
655  txd->sg[k].len = tlen;
656  addr += tlen;
657  len -= tlen;
658  }
659 
660  WARN_ON(len != 0);
661  }
662 
663  WARN_ON(k != sglen);
664 
665  txd->ddar = c->ddar;
666  txd->size = size;
667  txd->sglen = sglen;
668  txd->cyclic = 1;
669  txd->period = sgperiod;
670 
671  return vchan_tx_prep(&c->vc, &txd->vd, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
672 }
673 
674 static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
675 {
676  u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
679  u32 maxburst;
680 
681  if (ddar & DDAR_RW) {
682  addr = cfg->src_addr;
683  width = cfg->src_addr_width;
684  maxburst = cfg->src_maxburst;
685  } else {
686  addr = cfg->dst_addr;
687  width = cfg->dst_addr_width;
688  maxburst = cfg->dst_maxburst;
689  }
690 
691  if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
692  width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
693  (maxburst != 4 && maxburst != 8))
694  return -EINVAL;
695 
696  if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
697  ddar |= DDAR_DW;
698  if (maxburst == 8)
699  ddar |= DDAR_BS;
700 
701  dev_dbg(c->vc.chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
702  &c->vc, addr, width, maxburst);
703 
704  c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
705 
706  return 0;
707 }
708 
709 static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
710  unsigned long arg)
711 {
712  struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
713  struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
714  struct sa11x0_dma_phy *p;
715  LIST_HEAD(head);
716  unsigned long flags;
717  int ret;
718 
719  switch (cmd) {
720  case DMA_SLAVE_CONFIG:
721  return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
722 
723  case DMA_TERMINATE_ALL:
724  dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
725  /* Clear the tx descriptor lists */
726  spin_lock_irqsave(&c->vc.lock, flags);
727  vchan_get_all_descriptors(&c->vc, &head);
728 
729  p = c->phy;
730  if (p) {
731  dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
732  /* vchan is assigned to a pchan - stop the channel */
736  p->base + DMA_DCSR_C);
737 
738  if (p->txd_load) {
739  if (p->txd_load != p->txd_done)
740  list_add_tail(&p->txd_load->vd.node, &head);
741  p->txd_load = NULL;
742  }
743  if (p->txd_done) {
744  list_add_tail(&p->txd_done->vd.node, &head);
745  p->txd_done = NULL;
746  }
747  c->phy = NULL;
748  spin_lock(&d->lock);
749  p->vchan = NULL;
750  spin_unlock(&d->lock);
751  tasklet_schedule(&d->task);
752  }
753  spin_unlock_irqrestore(&c->vc.lock, flags);
755  ret = 0;
756  break;
757 
758  case DMA_PAUSE:
759  dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
760  spin_lock_irqsave(&c->vc.lock, flags);
761  if (c->status == DMA_IN_PROGRESS) {
762  c->status = DMA_PAUSED;
763 
764  p = c->phy;
765  if (p) {
767  } else {
768  spin_lock(&d->lock);
769  list_del_init(&c->node);
770  spin_unlock(&d->lock);
771  }
772  }
773  spin_unlock_irqrestore(&c->vc.lock, flags);
774  ret = 0;
775  break;
776 
777  case DMA_RESUME:
778  dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
779  spin_lock_irqsave(&c->vc.lock, flags);
780  if (c->status == DMA_PAUSED) {
781  c->status = DMA_IN_PROGRESS;
782 
783  p = c->phy;
784  if (p) {
786  } else if (!list_empty(&c->vc.desc_issued)) {
787  spin_lock(&d->lock);
788  list_add_tail(&c->node, &d->chan_pending);
789  spin_unlock(&d->lock);
790  }
791  }
792  spin_unlock_irqrestore(&c->vc.lock, flags);
793  ret = 0;
794  break;
795 
796  default:
797  ret = -ENXIO;
798  break;
799  }
800 
801  return ret;
802 }
803 
806  const char *name;
807 };
808 
809 #define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
810 static const struct sa11x0_dma_channel_desc chan_desc[] = {
811  CD(Ser0UDCTr, 0),
812  CD(Ser0UDCRc, DDAR_RW),
813  CD(Ser1SDLCTr, 0),
814  CD(Ser1SDLCRc, DDAR_RW),
815  CD(Ser1UARTTr, 0),
816  CD(Ser1UARTRc, DDAR_RW),
817  CD(Ser2ICPTr, 0),
818  CD(Ser2ICPRc, DDAR_RW),
819  CD(Ser3UARTTr, 0),
820  CD(Ser3UARTRc, DDAR_RW),
821  CD(Ser4MCP0Tr, 0),
822  CD(Ser4MCP0Rc, DDAR_RW),
823  CD(Ser4MCP1Tr, 0),
824  CD(Ser4MCP1Rc, DDAR_RW),
825  CD(Ser4SSPTr, 0),
826  CD(Ser4SSPRc, DDAR_RW),
827 };
828 
829 static int __devinit sa11x0_dma_init_dmadev(struct dma_device *dmadev,
830  struct device *dev)
831 {
832  unsigned i;
833 
834  dmadev->chancnt = ARRAY_SIZE(chan_desc);
835  INIT_LIST_HEAD(&dmadev->channels);
836  dmadev->dev = dev;
837  dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
838  dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
839  dmadev->device_control = sa11x0_dma_control;
840  dmadev->device_tx_status = sa11x0_dma_tx_status;
841  dmadev->device_issue_pending = sa11x0_dma_issue_pending;
842 
843  for (i = 0; i < dmadev->chancnt; i++) {
844  struct sa11x0_dma_chan *c;
845 
846  c = kzalloc(sizeof(*c), GFP_KERNEL);
847  if (!c) {
848  dev_err(dev, "no memory for channel %u\n", i);
849  return -ENOMEM;
850  }
851 
852  c->status = DMA_IN_PROGRESS;
853  c->ddar = chan_desc[i].ddar;
854  c->name = chan_desc[i].name;
855  INIT_LIST_HEAD(&c->node);
856 
857  c->vc.desc_free = sa11x0_dma_free_desc;
858  vchan_init(&c->vc, dmadev);
859  }
860 
861  return dma_async_device_register(dmadev);
862 }
863 
864 static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
865  void *data)
866 {
867  int irq = platform_get_irq(pdev, nr);
868 
869  if (irq <= 0)
870  return -ENXIO;
871 
872  return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
873 }
874 
875 static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
876  void *data)
877 {
878  int irq = platform_get_irq(pdev, nr);
879  if (irq > 0)
880  free_irq(irq, data);
881 }
882 
883 static void sa11x0_dma_free_channels(struct dma_device *dmadev)
884 {
885  struct sa11x0_dma_chan *c, *cn;
886 
887  list_for_each_entry_safe(c, cn, &dmadev->channels, vc.chan.device_node) {
888  list_del(&c->vc.chan.device_node);
889  tasklet_kill(&c->vc.task);
890  kfree(c);
891  }
892 }
893 
894 static int __devinit sa11x0_dma_probe(struct platform_device *pdev)
895 {
896  struct sa11x0_dma_dev *d;
897  struct resource *res;
898  unsigned i;
899  int ret;
900 
901  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
902  if (!res)
903  return -ENXIO;
904 
905  d = kzalloc(sizeof(*d), GFP_KERNEL);
906  if (!d) {
907  ret = -ENOMEM;
908  goto err_alloc;
909  }
910 
911  spin_lock_init(&d->lock);
912  INIT_LIST_HEAD(&d->chan_pending);
913 
914  d->base = ioremap(res->start, resource_size(res));
915  if (!d->base) {
916  ret = -ENOMEM;
917  goto err_ioremap;
918  }
919 
920  tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
921 
922  for (i = 0; i < NR_PHY_CHAN; i++) {
923  struct sa11x0_dma_phy *p = &d->phy[i];
924 
925  p->dev = d;
926  p->num = i;
927  p->base = d->base + i * DMA_SIZE;
928  writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
930  p->base + DMA_DCSR_C);
931  writel_relaxed(0, p->base + DMA_DDAR);
932 
933  ret = sa11x0_dma_request_irq(pdev, i, p);
934  if (ret) {
935  while (i) {
936  i--;
937  sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
938  }
939  goto err_irq;
940  }
941  }
942 
943  dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
944  dma_cap_set(DMA_CYCLIC, d->slave.cap_mask);
945  d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
946  d->slave.device_prep_dma_cyclic = sa11x0_dma_prep_dma_cyclic;
947  ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
948  if (ret) {
949  dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
950  ret);
951  goto err_slave_reg;
952  }
953 
954  platform_set_drvdata(pdev, d);
955  return 0;
956 
957  err_slave_reg:
958  sa11x0_dma_free_channels(&d->slave);
959  for (i = 0; i < NR_PHY_CHAN; i++)
960  sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
961  err_irq:
962  tasklet_kill(&d->task);
963  iounmap(d->base);
964  err_ioremap:
965  kfree(d);
966  err_alloc:
967  return ret;
968 }
969 
970 static int __devexit sa11x0_dma_remove(struct platform_device *pdev)
971 {
972  struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
973  unsigned pch;
974 
976 
977  sa11x0_dma_free_channels(&d->slave);
978  for (pch = 0; pch < NR_PHY_CHAN; pch++)
979  sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
980  tasklet_kill(&d->task);
981  iounmap(d->base);
982  kfree(d);
983 
984  return 0;
985 }
986 
987 #ifdef CONFIG_PM_SLEEP
988 static int sa11x0_dma_suspend(struct device *dev)
989 {
990  struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
991  unsigned pch;
992 
993  for (pch = 0; pch < NR_PHY_CHAN; pch++) {
994  struct sa11x0_dma_phy *p = &d->phy[pch];
995  u32 dcsr, saved_dcsr;
996 
997  dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
998  if (dcsr & DCSR_RUN) {
999  writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
1000  dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1001  }
1002 
1003  saved_dcsr &= DCSR_RUN | DCSR_IE;
1004  if (dcsr & DCSR_BIU) {
1005  p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
1006  p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
1007  p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
1008  p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
1009  saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
1010  (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
1011  } else {
1012  p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
1013  p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
1014  p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
1015  p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
1016  saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
1017  }
1018  p->dcsr = saved_dcsr;
1019 
1021  }
1022 
1023  return 0;
1024 }
1025 
1026 static int sa11x0_dma_resume(struct device *dev)
1027 {
1028  struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
1029  unsigned pch;
1030 
1031  for (pch = 0; pch < NR_PHY_CHAN; pch++) {
1032  struct sa11x0_dma_phy *p = &d->phy[pch];
1033  struct sa11x0_dma_desc *txd = NULL;
1034  u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1035 
1036  WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
1037 
1038  if (p->txd_done)
1039  txd = p->txd_done;
1040  else if (p->txd_load)
1041  txd = p->txd_load;
1042 
1043  if (!txd)
1044  continue;
1045 
1046  writel_relaxed(txd->ddar, p->base + DMA_DDAR);
1047 
1048  writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
1049  writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
1050  writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
1051  writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
1052  writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
1053  }
1054 
1055  return 0;
1056 }
1057 #endif
1058 
1059 static const struct dev_pm_ops sa11x0_dma_pm_ops = {
1060  .suspend_noirq = sa11x0_dma_suspend,
1061  .resume_noirq = sa11x0_dma_resume,
1062  .freeze_noirq = sa11x0_dma_suspend,
1063  .thaw_noirq = sa11x0_dma_resume,
1064  .poweroff_noirq = sa11x0_dma_suspend,
1065  .restore_noirq = sa11x0_dma_resume,
1066 };
1067 
1068 static struct platform_driver sa11x0_dma_driver = {
1069  .driver = {
1070  .name = "sa11x0-dma",
1071  .owner = THIS_MODULE,
1072  .pm = &sa11x0_dma_pm_ops,
1073  },
1074  .probe = sa11x0_dma_probe,
1075  .remove = __devexit_p(sa11x0_dma_remove),
1076 };
1077 
1078 bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
1079 {
1080  if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
1081  struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
1082  const char *p = param;
1083 
1084  return !strcmp(c->name, p);
1085  }
1086  return false;
1087 }
1089 
1090 static int __init sa11x0_dma_init(void)
1091 {
1092  return platform_driver_register(&sa11x0_dma_driver);
1093 }
1094 subsys_initcall(sa11x0_dma_init);
1095 
1096 static void __exit sa11x0_dma_exit(void)
1097 {
1098  platform_driver_unregister(&sa11x0_dma_driver);
1099 }
1100 module_exit(sa11x0_dma_exit);
1101 
1102 MODULE_AUTHOR("Russell King");
1103 MODULE_DESCRIPTION("SA-11x0 DMA driver");
1104 MODULE_LICENSE("GPL v2");
1105 MODULE_ALIAS("platform:sa11x0-dma");