Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sb1000.c
Go to the documentation of this file.
1 /* sb1000.c: A General Instruments SB1000 driver for linux. */
2 /*
3  Written 1998 by Franco Venturi.
4 
5  Copyright 1998 by Franco Venturi.
6  Copyright 1994,1995 by Donald Becker.
7  Copyright 1993 United States Government as represented by the
8  Director, National Security Agency.
9 
10  This driver is for the General Instruments SB1000 (internal SURFboard)
11 
12  The author may be reached as [email protected]
13 
14  This program is free software; you can redistribute it
15  and/or modify it under the terms of the GNU General
16  Public License as published by the Free Software
17  Foundation; either version 2 of the License, or (at
18  your option) any later version.
19 
20  Changes:
21 
22  981115 Steven Hirsch <[email protected]>
23 
24  Linus changed the timer interface. Should work on all recent
25  development kernels.
26 
27  980608 Steven Hirsch <[email protected]>
28 
29  Small changes to make it work with 2.1.x kernels. Hopefully,
30  nothing major will change before official release of Linux 2.2.
31 
32  Merged with 2.2 - Alan Cox
33 */
34 
35 static char version[] = "sb1000.c:v1.1.2 6/01/98 ([email protected])\n";
36 
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/sched.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/errno.h>
43 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
44 #include <linux/in.h>
45 #include <linux/ioport.h>
46 #include <linux/netdevice.h>
47 #include <linux/if_arp.h>
48 #include <linux/skbuff.h>
49 #include <linux/delay.h> /* for udelay() */
50 #include <linux/etherdevice.h>
51 #include <linux/pnp.h>
52 #include <linux/init.h>
53 #include <linux/bitops.h>
54 #include <linux/gfp.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/uaccess.h>
59 
60 #ifdef SB1000_DEBUG
61 static int sb1000_debug = SB1000_DEBUG;
62 #else
63 static const int sb1000_debug = 1;
64 #endif
65 
66 static const int SB1000_IO_EXTENT = 8;
67 /* SB1000 Maximum Receive Unit */
68 static const int SB1000_MRU = 1500; /* octects */
69 
70 #define NPIDS 4
72  struct sk_buff *rx_skb[NPIDS];
73  short rx_dlen[NPIDS];
74  unsigned int rx_frames;
77  unsigned char rx_session_id[NPIDS];
78  unsigned char rx_frame_id[NPIDS];
79  unsigned char rx_pkt_type[NPIDS];
80 };
81 
82 /* prototypes for Linux interface */
83 extern int sb1000_probe(struct net_device *dev);
84 static int sb1000_open(struct net_device *dev);
85 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
86 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb,
87  struct net_device *dev);
88 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
89 static int sb1000_close(struct net_device *dev);
90 
91 
92 /* SB1000 hardware routines to be used during open/configuration phases */
93 static int card_wait_for_busy_clear(const int ioaddr[],
94  const char* name);
95 static int card_wait_for_ready(const int ioaddr[], const char* name,
96  unsigned char in[]);
97 static int card_send_command(const int ioaddr[], const char* name,
98  const unsigned char out[], unsigned char in[]);
99 
100 /* SB1000 hardware routines to be used during frame rx interrupt */
101 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
102 static int sb1000_wait_for_ready_clear(const int ioaddr[],
103  const char* name);
104 static void sb1000_send_command(const int ioaddr[], const char* name,
105  const unsigned char out[]);
106 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
107 static void sb1000_issue_read_command(const int ioaddr[],
108  const char* name);
109 
110 /* SB1000 commands for open/configuration */
111 static int sb1000_reset(const int ioaddr[], const char* name);
112 static int sb1000_check_CRC(const int ioaddr[], const char* name);
113 static inline int sb1000_start_get_set_command(const int ioaddr[],
114  const char* name);
115 static int sb1000_end_get_set_command(const int ioaddr[],
116  const char* name);
117 static int sb1000_activate(const int ioaddr[], const char* name);
118 static int sb1000_get_firmware_version(const int ioaddr[],
119  const char* name, unsigned char version[], int do_end);
120 static int sb1000_get_frequency(const int ioaddr[], const char* name,
121  int* frequency);
122 static int sb1000_set_frequency(const int ioaddr[], const char* name,
123  int frequency);
124 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
125  short PID[]);
126 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
127  const short PID[]);
128 
129 /* SB1000 commands for frame rx interrupt */
130 static int sb1000_rx(struct net_device *dev);
131 static void sb1000_error_dpc(struct net_device *dev);
132 
133 static const struct pnp_device_id sb1000_pnp_ids[] = {
134  { "GIC1000", 0 },
135  { "", 0 }
136 };
137 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
138 
139 static const struct net_device_ops sb1000_netdev_ops = {
140  .ndo_open = sb1000_open,
141  .ndo_start_xmit = sb1000_start_xmit,
142  .ndo_do_ioctl = sb1000_dev_ioctl,
143  .ndo_stop = sb1000_close,
144  .ndo_change_mtu = eth_change_mtu,
145  .ndo_set_mac_address = eth_mac_addr,
146  .ndo_validate_addr = eth_validate_addr,
147 };
148 
149 static int
150 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
151 {
152  struct net_device *dev;
153  unsigned short ioaddr[2], irq;
154  unsigned int serial_number;
155  int error = -ENODEV;
156 
157  if (pnp_device_attach(pdev) < 0)
158  return -ENODEV;
159  if (pnp_activate_dev(pdev) < 0)
160  goto out_detach;
161 
162  if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
163  goto out_disable;
164  if (!pnp_irq_valid(pdev, 0))
165  goto out_disable;
166 
167  serial_number = pdev->card->serial;
168 
169  ioaddr[0] = pnp_port_start(pdev, 0);
170  ioaddr[1] = pnp_port_start(pdev, 0);
171 
172  irq = pnp_irq(pdev, 0);
173 
174  if (!request_region(ioaddr[0], 16, "sb1000"))
175  goto out_disable;
176  if (!request_region(ioaddr[1], 16, "sb1000"))
177  goto out_release_region0;
178 
179  dev = alloc_etherdev(sizeof(struct sb1000_private));
180  if (!dev) {
181  error = -ENOMEM;
182  goto out_release_regions;
183  }
184 
185 
186  dev->base_addr = ioaddr[0];
187  /* mem_start holds the second I/O address */
188  dev->mem_start = ioaddr[1];
189  dev->irq = irq;
190 
191  if (sb1000_debug > 0)
192  printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
193  "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
194  dev->mem_start, serial_number, dev->irq);
195 
196  /*
197  * The SB1000 is an rx-only cable modem device. The uplink is a modem
198  * and we do not want to arp on it.
199  */
201 
202  SET_NETDEV_DEV(dev, &pdev->dev);
203 
204  if (sb1000_debug > 0)
205  printk(KERN_NOTICE "%s", version);
206 
207  dev->netdev_ops = &sb1000_netdev_ops;
208 
209  /* hardware address is 0:0:serial_number */
210  dev->dev_addr[2] = serial_number >> 24 & 0xff;
211  dev->dev_addr[3] = serial_number >> 16 & 0xff;
212  dev->dev_addr[4] = serial_number >> 8 & 0xff;
213  dev->dev_addr[5] = serial_number >> 0 & 0xff;
214 
215  pnp_set_drvdata(pdev, dev);
216 
217  error = register_netdev(dev);
218  if (error)
219  goto out_free_netdev;
220  return 0;
221 
222  out_free_netdev:
223  free_netdev(dev);
224  out_release_regions:
225  release_region(ioaddr[1], 16);
226  out_release_region0:
227  release_region(ioaddr[0], 16);
228  out_disable:
229  pnp_disable_dev(pdev);
230  out_detach:
231  pnp_device_detach(pdev);
232  return error;
233 }
234 
235 static void
236 sb1000_remove_one(struct pnp_dev *pdev)
237 {
238  struct net_device *dev = pnp_get_drvdata(pdev);
239 
240  unregister_netdev(dev);
241  release_region(dev->base_addr, 16);
242  release_region(dev->mem_start, 16);
243  free_netdev(dev);
244 }
245 
246 static struct pnp_driver sb1000_driver = {
247  .name = "sb1000",
248  .id_table = sb1000_pnp_ids,
249  .probe = sb1000_probe_one,
250  .remove = sb1000_remove_one,
251 };
252 
253 
254 /*
255  * SB1000 hardware routines to be used during open/configuration phases
256  */
257 
258 static const int TimeOutJiffies = (875 * HZ) / 100;
259 
260 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
261 static int
262 card_wait_for_busy_clear(const int ioaddr[], const char* name)
263 {
264  unsigned char a;
265  unsigned long timeout;
266 
267  a = inb(ioaddr[0] + 7);
268  timeout = jiffies + TimeOutJiffies;
269  while (a & 0x80 || a & 0x40) {
270  /* a little sleep */
271  yield();
272 
273  a = inb(ioaddr[0] + 7);
274  if (time_after_eq(jiffies, timeout)) {
275  printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
276  name);
277  return -ETIME;
278  }
279  }
280 
281  return 0;
282 }
283 
284 /* Card Wait For Ready (cannot be used during an interrupt) */
285 static int
286 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
287 {
288  unsigned char a;
289  unsigned long timeout;
290 
291  a = inb(ioaddr[1] + 6);
292  timeout = jiffies + TimeOutJiffies;
293  while (a & 0x80 || !(a & 0x40)) {
294  /* a little sleep */
295  yield();
296 
297  a = inb(ioaddr[1] + 6);
298  if (time_after_eq(jiffies, timeout)) {
299  printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
300  name);
301  return -ETIME;
302  }
303  }
304 
305  in[1] = inb(ioaddr[0] + 1);
306  in[2] = inb(ioaddr[0] + 2);
307  in[3] = inb(ioaddr[0] + 3);
308  in[4] = inb(ioaddr[0] + 4);
309  in[0] = inb(ioaddr[0] + 5);
310  in[6] = inb(ioaddr[0] + 6);
311  in[5] = inb(ioaddr[1] + 6);
312  return 0;
313 }
314 
315 /* Card Send Command (cannot be used during an interrupt) */
316 static int
317 card_send_command(const int ioaddr[], const char* name,
318  const unsigned char out[], unsigned char in[])
319 {
320  int status, x;
321 
322  if ((status = card_wait_for_busy_clear(ioaddr, name)))
323  return status;
324  outb(0xa0, ioaddr[0] + 6);
325  outb(out[2], ioaddr[0] + 1);
326  outb(out[3], ioaddr[0] + 2);
327  outb(out[4], ioaddr[0] + 3);
328  outb(out[5], ioaddr[0] + 4);
329  outb(out[1], ioaddr[0] + 5);
330  outb(0xa0, ioaddr[0] + 6);
331  outb(out[0], ioaddr[0] + 7);
332  if (out[0] != 0x20 && out[0] != 0x30) {
333  if ((status = card_wait_for_ready(ioaddr, name, in)))
334  return status;
335  inb(ioaddr[0] + 7);
336  if (sb1000_debug > 3)
337  printk(KERN_DEBUG "%s: card_send_command "
338  "out: %02x%02x%02x%02x%02x%02x "
339  "in: %02x%02x%02x%02x%02x%02x%02x\n", name,
340  out[0], out[1], out[2], out[3], out[4], out[5],
341  in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
342  } else {
343  if (sb1000_debug > 3)
344  printk(KERN_DEBUG "%s: card_send_command "
345  "out: %02x%02x%02x%02x%02x%02x\n", name,
346  out[0], out[1], out[2], out[3], out[4], out[5]);
347  }
348 
349  if (out[1] == 0x1b) {
350  x = (out[2] == 0x02);
351  } else {
352  if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
353  return -EIO;
354  }
355  return 0;
356 }
357 
358 
359 /*
360  * SB1000 hardware routines to be used during frame rx interrupt
361  */
362 static const int Sb1000TimeOutJiffies = 7 * HZ;
363 
364 /* Card Wait For Ready (to be used during frame rx) */
365 static int
366 sb1000_wait_for_ready(const int ioaddr[], const char* name)
367 {
368  unsigned long timeout;
369 
370  timeout = jiffies + Sb1000TimeOutJiffies;
371  while (inb(ioaddr[1] + 6) & 0x80) {
372  if (time_after_eq(jiffies, timeout)) {
373  printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
374  name);
375  return -ETIME;
376  }
377  }
378  timeout = jiffies + Sb1000TimeOutJiffies;
379  while (!(inb(ioaddr[1] + 6) & 0x40)) {
380  if (time_after_eq(jiffies, timeout)) {
381  printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
382  name);
383  return -ETIME;
384  }
385  }
386  inb(ioaddr[0] + 7);
387  return 0;
388 }
389 
390 /* Card Wait For Ready Clear (to be used during frame rx) */
391 static int
392 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
393 {
394  unsigned long timeout;
395 
396  timeout = jiffies + Sb1000TimeOutJiffies;
397  while (inb(ioaddr[1] + 6) & 0x80) {
398  if (time_after_eq(jiffies, timeout)) {
399  printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
400  name);
401  return -ETIME;
402  }
403  }
404  timeout = jiffies + Sb1000TimeOutJiffies;
405  while (inb(ioaddr[1] + 6) & 0x40) {
406  if (time_after_eq(jiffies, timeout)) {
407  printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
408  name);
409  return -ETIME;
410  }
411  }
412  return 0;
413 }
414 
415 /* Card Send Command (to be used during frame rx) */
416 static void
417 sb1000_send_command(const int ioaddr[], const char* name,
418  const unsigned char out[])
419 {
420  outb(out[2], ioaddr[0] + 1);
421  outb(out[3], ioaddr[0] + 2);
422  outb(out[4], ioaddr[0] + 3);
423  outb(out[5], ioaddr[0] + 4);
424  outb(out[1], ioaddr[0] + 5);
425  outb(out[0], ioaddr[0] + 7);
426  if (sb1000_debug > 3)
427  printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
428  "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
429 }
430 
431 /* Card Read Status (to be used during frame rx) */
432 static void
433 sb1000_read_status(const int ioaddr[], unsigned char in[])
434 {
435  in[1] = inb(ioaddr[0] + 1);
436  in[2] = inb(ioaddr[0] + 2);
437  in[3] = inb(ioaddr[0] + 3);
438  in[4] = inb(ioaddr[0] + 4);
439  in[0] = inb(ioaddr[0] + 5);
440 }
441 
442 /* Issue Read Command (to be used during frame rx) */
443 static void
444 sb1000_issue_read_command(const int ioaddr[], const char* name)
445 {
446  static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
447 
448  sb1000_wait_for_ready_clear(ioaddr, name);
449  outb(0xa0, ioaddr[0] + 6);
450  sb1000_send_command(ioaddr, name, Command0);
451 }
452 
453 
454 /*
455  * SB1000 commands for open/configuration
456  */
457 /* reset SB1000 card */
458 static int
459 sb1000_reset(const int ioaddr[], const char* name)
460 {
461  static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
462 
463  unsigned char st[7];
464  int port, status;
465 
466  port = ioaddr[1] + 6;
467  outb(0x4, port);
468  inb(port);
469  udelay(1000);
470  outb(0x0, port);
471  inb(port);
472  ssleep(1);
473  outb(0x4, port);
474  inb(port);
475  udelay(1000);
476  outb(0x0, port);
477  inb(port);
478  udelay(0);
479 
480  if ((status = card_send_command(ioaddr, name, Command0, st)))
481  return status;
482  if (st[3] != 0xf0)
483  return -EIO;
484  return 0;
485 }
486 
487 /* check SB1000 firmware CRC */
488 static int
489 sb1000_check_CRC(const int ioaddr[], const char* name)
490 {
491  static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
492 
493  unsigned char st[7];
494  int crc, status;
495 
496  /* check CRC */
497  if ((status = card_send_command(ioaddr, name, Command0, st)))
498  return status;
499  if (st[1] != st[3] || st[2] != st[4])
500  return -EIO;
501  crc = st[1] << 8 | st[2];
502  return 0;
503 }
504 
505 static inline int
506 sb1000_start_get_set_command(const int ioaddr[], const char* name)
507 {
508  static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
509 
510  unsigned char st[7];
511 
512  return card_send_command(ioaddr, name, Command0, st);
513 }
514 
515 static int
516 sb1000_end_get_set_command(const int ioaddr[], const char* name)
517 {
518  static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
519  static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
520 
521  unsigned char st[7];
522  int status;
523 
524  if ((status = card_send_command(ioaddr, name, Command0, st)))
525  return status;
526  return card_send_command(ioaddr, name, Command1, st);
527 }
528 
529 static int
530 sb1000_activate(const int ioaddr[], const char* name)
531 {
532  static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
533  static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
534 
535  unsigned char st[7];
536  int status;
537 
538  ssleep(1);
539  if ((status = card_send_command(ioaddr, name, Command0, st)))
540  return status;
541  if ((status = card_send_command(ioaddr, name, Command1, st)))
542  return status;
543  if (st[3] != 0xf1) {
544  if ((status = sb1000_start_get_set_command(ioaddr, name)))
545  return status;
546  return -EIO;
547  }
548  udelay(1000);
549  return sb1000_start_get_set_command(ioaddr, name);
550 }
551 
552 /* get SB1000 firmware version */
553 static int
554 sb1000_get_firmware_version(const int ioaddr[], const char* name,
555  unsigned char version[], int do_end)
556 {
557  static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
558 
559  unsigned char st[7];
560  int status;
561 
562  if ((status = sb1000_start_get_set_command(ioaddr, name)))
563  return status;
564  if ((status = card_send_command(ioaddr, name, Command0, st)))
565  return status;
566  if (st[0] != 0xa3)
567  return -EIO;
568  version[0] = st[1];
569  version[1] = st[2];
570  if (do_end)
571  return sb1000_end_get_set_command(ioaddr, name);
572  else
573  return 0;
574 }
575 
576 /* get SB1000 frequency */
577 static int
578 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
579 {
580  static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
581 
582  unsigned char st[7];
583  int status;
584 
585  udelay(1000);
586  if ((status = sb1000_start_get_set_command(ioaddr, name)))
587  return status;
588  if ((status = card_send_command(ioaddr, name, Command0, st)))
589  return status;
590  *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
591  return sb1000_end_get_set_command(ioaddr, name);
592 }
593 
594 /* set SB1000 frequency */
595 static int
596 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
597 {
598  unsigned char st[7];
599  int status;
600  unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
601 
602  const int FrequencyLowerLimit = 57000;
603  const int FrequencyUpperLimit = 804000;
604 
605  if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
606  printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
607  "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
608  FrequencyUpperLimit);
609  return -EINVAL;
610  }
611  udelay(1000);
612  if ((status = sb1000_start_get_set_command(ioaddr, name)))
613  return status;
614  Command0[5] = frequency & 0xff;
615  frequency >>= 8;
616  Command0[4] = frequency & 0xff;
617  frequency >>= 8;
618  Command0[3] = frequency & 0xff;
619  frequency >>= 8;
620  Command0[2] = frequency & 0xff;
621  return card_send_command(ioaddr, name, Command0, st);
622 }
623 
624 /* get SB1000 PIDs */
625 static int
626 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
627 {
628  static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
629  static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
630  static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
631  static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
632 
633  unsigned char st[7];
634  int status;
635 
636  udelay(1000);
637  if ((status = sb1000_start_get_set_command(ioaddr, name)))
638  return status;
639 
640  if ((status = card_send_command(ioaddr, name, Command0, st)))
641  return status;
642  PID[0] = st[1] << 8 | st[2];
643 
644  if ((status = card_send_command(ioaddr, name, Command1, st)))
645  return status;
646  PID[1] = st[1] << 8 | st[2];
647 
648  if ((status = card_send_command(ioaddr, name, Command2, st)))
649  return status;
650  PID[2] = st[1] << 8 | st[2];
651 
652  if ((status = card_send_command(ioaddr, name, Command3, st)))
653  return status;
654  PID[3] = st[1] << 8 | st[2];
655 
656  return sb1000_end_get_set_command(ioaddr, name);
657 }
658 
659 /* set SB1000 PIDs */
660 static int
661 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
662 {
663  static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
664 
665  unsigned char st[7];
666  short p;
667  int status;
668  unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
669  unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
670  unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
671  unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
672 
673  udelay(1000);
674  if ((status = sb1000_start_get_set_command(ioaddr, name)))
675  return status;
676 
677  p = PID[0];
678  Command0[3] = p & 0xff;
679  p >>= 8;
680  Command0[2] = p & 0xff;
681  if ((status = card_send_command(ioaddr, name, Command0, st)))
682  return status;
683 
684  p = PID[1];
685  Command1[3] = p & 0xff;
686  p >>= 8;
687  Command1[2] = p & 0xff;
688  if ((status = card_send_command(ioaddr, name, Command1, st)))
689  return status;
690 
691  p = PID[2];
692  Command2[3] = p & 0xff;
693  p >>= 8;
694  Command2[2] = p & 0xff;
695  if ((status = card_send_command(ioaddr, name, Command2, st)))
696  return status;
697 
698  p = PID[3];
699  Command3[3] = p & 0xff;
700  p >>= 8;
701  Command3[2] = p & 0xff;
702  if ((status = card_send_command(ioaddr, name, Command3, st)))
703  return status;
704 
705  if ((status = card_send_command(ioaddr, name, Command4, st)))
706  return status;
707  return sb1000_end_get_set_command(ioaddr, name);
708 }
709 
710 
711 static void
712 sb1000_print_status_buffer(const char* name, unsigned char st[],
713  unsigned char buffer[], int size)
714 {
715  int i, j, k;
716 
717  printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
718  if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
719  printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
720  "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
721  buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
722  buffer[46] << 8 | buffer[47],
723  buffer[42], buffer[43], buffer[44], buffer[45],
724  buffer[48] << 8 | buffer[49]);
725  } else {
726  for (i = 0, k = 0; i < (size + 7) / 8; i++) {
727  printk(KERN_DEBUG "%s: %s", name, i ? " " : "buffer:");
728  for (j = 0; j < 8 && k < size; j++, k++)
729  printk(" %02x", buffer[k]);
730  printk("\n");
731  }
732  }
733 }
734 
735 /*
736  * SB1000 commands for frame rx interrupt
737  */
738 /* receive a single frame and assemble datagram
739  * (this is the heart of the interrupt routine)
740  */
741 static int
742 sb1000_rx(struct net_device *dev)
743 {
744 
745 #define FRAMESIZE 184
746  unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
747  short dlen;
748  int ioaddr, ns;
749  unsigned int skbsize;
750  struct sk_buff *skb;
751  struct sb1000_private *lp = netdev_priv(dev);
752  struct net_device_stats *stats = &dev->stats;
753 
754  /* SB1000 frame constants */
755  const int FrameSize = FRAMESIZE;
756  const int NewDatagramHeaderSkip = 8;
757  const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
758  const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
759  const int ContDatagramHeaderSkip = 7;
760  const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
761  const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
762  const int TrailerSize = 4;
763 
764  ioaddr = dev->base_addr;
765 
766  insw(ioaddr, (unsigned short*) st, 1);
767 #ifdef XXXDEBUG
768 printk("cm0: received: %02x %02x\n", st[0], st[1]);
769 #endif /* XXXDEBUG */
770  lp->rx_frames++;
771 
772  /* decide if it is a good or bad frame */
773  for (ns = 0; ns < NPIDS; ns++) {
774  session_id = lp->rx_session_id[ns];
775  frame_id = lp->rx_frame_id[ns];
776  if (st[0] == session_id) {
777  if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
778  goto good_frame;
779  } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
780  goto skipped_frame;
781  } else {
782  goto bad_frame;
783  }
784  } else if (st[0] == (session_id | 0x40)) {
785  if ((st[1] & 0xf0) == 0x30) {
786  goto skipped_frame;
787  } else {
788  goto bad_frame;
789  }
790  }
791  }
792  goto bad_frame;
793 
794 skipped_frame:
795  stats->rx_frame_errors++;
796  skb = lp->rx_skb[ns];
797  if (sb1000_debug > 1)
798  printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
799  "expecting %02x %02x\n", dev->name, st[0], st[1],
800  skb ? session_id : session_id | 0x40, frame_id);
801  if (skb) {
802  dev_kfree_skb(skb);
803  skb = NULL;
804  }
805 
806 good_frame:
807  lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
808  /* new datagram */
809  if (st[0] & 0x40) {
810  /* get data length */
811  insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
812 #ifdef XXXDEBUG
813 printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
814 #endif /* XXXDEBUG */
815  if (buffer[0] != NewDatagramHeaderSkip) {
816  if (sb1000_debug > 1)
817  printk(KERN_WARNING "%s: new datagram header skip error: "
818  "got %02x expecting %02x\n", dev->name, buffer[0],
819  NewDatagramHeaderSkip);
820  stats->rx_length_errors++;
821  insw(ioaddr, buffer, NewDatagramDataSize / 2);
822  goto bad_frame_next;
823  }
824  dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
825  buffer[NewDatagramHeaderSkip + 4]) - 17;
826  if (dlen > SB1000_MRU) {
827  if (sb1000_debug > 1)
828  printk(KERN_WARNING "%s: datagram length (%d) greater "
829  "than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
830  stats->rx_length_errors++;
831  insw(ioaddr, buffer, NewDatagramDataSize / 2);
832  goto bad_frame_next;
833  }
834  lp->rx_dlen[ns] = dlen;
835  /* compute size to allocate for datagram */
836  skbsize = dlen + FrameSize;
837  if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
838  if (sb1000_debug > 1)
839  printk(KERN_WARNING "%s: can't allocate %d bytes long "
840  "skbuff\n", dev->name, skbsize);
841  stats->rx_dropped++;
842  insw(ioaddr, buffer, NewDatagramDataSize / 2);
843  goto dropped_frame;
844  }
845  skb->dev = dev;
846  skb_reset_mac_header(skb);
847  skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
848  insw(ioaddr, skb_put(skb, NewDatagramDataSize),
849  NewDatagramDataSize / 2);
850  lp->rx_skb[ns] = skb;
851  } else {
852  /* continuation of previous datagram */
853  insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
854  if (buffer[0] != ContDatagramHeaderSkip) {
855  if (sb1000_debug > 1)
856  printk(KERN_WARNING "%s: cont datagram header skip error: "
857  "got %02x expecting %02x\n", dev->name, buffer[0],
858  ContDatagramHeaderSkip);
859  stats->rx_length_errors++;
860  insw(ioaddr, buffer, ContDatagramDataSize / 2);
861  goto bad_frame_next;
862  }
863  skb = lp->rx_skb[ns];
864  insw(ioaddr, skb_put(skb, ContDatagramDataSize),
865  ContDatagramDataSize / 2);
866  dlen = lp->rx_dlen[ns];
867  }
868  if (skb->len < dlen + TrailerSize) {
869  lp->rx_session_id[ns] &= ~0x40;
870  return 0;
871  }
872 
873  /* datagram completed: send to upper level */
874  skb_trim(skb, dlen);
875  netif_rx(skb);
876  stats->rx_bytes+=dlen;
877  stats->rx_packets++;
878  lp->rx_skb[ns] = NULL;
879  lp->rx_session_id[ns] |= 0x40;
880  return 0;
881 
882 bad_frame:
883  insw(ioaddr, buffer, FrameSize / 2);
884  if (sb1000_debug > 1)
885  printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
886  dev->name, st[0], st[1]);
887  stats->rx_frame_errors++;
888 bad_frame_next:
889  if (sb1000_debug > 2)
890  sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
891 dropped_frame:
892  stats->rx_errors++;
893  if (ns < NPIDS) {
894  if ((skb = lp->rx_skb[ns])) {
895  dev_kfree_skb(skb);
896  lp->rx_skb[ns] = NULL;
897  }
898  lp->rx_session_id[ns] |= 0x40;
899  }
900  return -1;
901 }
902 
903 static void
904 sb1000_error_dpc(struct net_device *dev)
905 {
906  static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
907 
908  char *name;
909  unsigned char st[5];
910  int ioaddr[2];
911  struct sb1000_private *lp = netdev_priv(dev);
912  const int ErrorDpcCounterInitialize = 200;
913 
914  ioaddr[0] = dev->base_addr;
915  /* mem_start holds the second I/O address */
916  ioaddr[1] = dev->mem_start;
917  name = dev->name;
918 
919  sb1000_wait_for_ready_clear(ioaddr, name);
920  sb1000_send_command(ioaddr, name, Command0);
921  sb1000_wait_for_ready(ioaddr, name);
922  sb1000_read_status(ioaddr, st);
923  if (st[1] & 0x10)
924  lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
925 }
926 
927 
928 /*
929  * Linux interface functions
930  */
931 static int
932 sb1000_open(struct net_device *dev)
933 {
934  char *name;
935  int ioaddr[2], status;
936  struct sb1000_private *lp = netdev_priv(dev);
937  const unsigned short FirmwareVersion[] = {0x01, 0x01};
938 
939  ioaddr[0] = dev->base_addr;
940  /* mem_start holds the second I/O address */
941  ioaddr[1] = dev->mem_start;
942  name = dev->name;
943 
944  /* initialize sb1000 */
945  if ((status = sb1000_reset(ioaddr, name)))
946  return status;
947  ssleep(1);
948  if ((status = sb1000_check_CRC(ioaddr, name)))
949  return status;
950 
951  /* initialize private data before board can catch interrupts */
952  lp->rx_skb[0] = NULL;
953  lp->rx_skb[1] = NULL;
954  lp->rx_skb[2] = NULL;
955  lp->rx_skb[3] = NULL;
956  lp->rx_dlen[0] = 0;
957  lp->rx_dlen[1] = 0;
958  lp->rx_dlen[2] = 0;
959  lp->rx_dlen[3] = 0;
960  lp->rx_frames = 0;
961  lp->rx_error_count = 0;
962  lp->rx_error_dpc_count = 0;
963  lp->rx_session_id[0] = 0x50;
964  lp->rx_session_id[1] = 0x48;
965  lp->rx_session_id[2] = 0x44;
966  lp->rx_session_id[3] = 0x42;
967  lp->rx_frame_id[0] = 0;
968  lp->rx_frame_id[1] = 0;
969  lp->rx_frame_id[2] = 0;
970  lp->rx_frame_id[3] = 0;
971  if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) {
972  return -EAGAIN;
973  }
974 
975  if (sb1000_debug > 2)
976  printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
977 
978  /* Activate board and check firmware version */
979  udelay(1000);
980  if ((status = sb1000_activate(ioaddr, name)))
981  return status;
982  udelay(0);
983  if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
984  return status;
985  if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
986  printk(KERN_WARNING "%s: found firmware version %x.%02x "
987  "(should be %x.%02x)\n", name, version[0], version[1],
988  FirmwareVersion[0], FirmwareVersion[1]);
989 
990 
991  netif_start_queue(dev);
992  return 0; /* Always succeed */
993 }
994 
995 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
996 {
997  char* name;
998  unsigned char version[2];
999  short PID[4];
1000  int ioaddr[2], status, frequency;
1001  unsigned int stats[5];
1002  struct sb1000_private *lp = netdev_priv(dev);
1003 
1004  if (!(dev && dev->flags & IFF_UP))
1005  return -ENODEV;
1006 
1007  ioaddr[0] = dev->base_addr;
1008  /* mem_start holds the second I/O address */
1009  ioaddr[1] = dev->mem_start;
1010  name = dev->name;
1011 
1012  switch (cmd) {
1013  case SIOCGCMSTATS: /* get statistics */
1014  stats[0] = dev->stats.rx_bytes;
1015  stats[1] = lp->rx_frames;
1016  stats[2] = dev->stats.rx_packets;
1017  stats[3] = dev->stats.rx_errors;
1018  stats[4] = dev->stats.rx_dropped;
1019  if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1020  return -EFAULT;
1021  status = 0;
1022  break;
1023 
1024  case SIOCGCMFIRMWARE: /* get firmware version */
1025  if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1026  return status;
1027  if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1028  return -EFAULT;
1029  break;
1030 
1031  case SIOCGCMFREQUENCY: /* get frequency */
1032  if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1033  return status;
1034  if(put_user(frequency, (int __user *) ifr->ifr_data))
1035  return -EFAULT;
1036  break;
1037 
1038  case SIOCSCMFREQUENCY: /* set frequency */
1039  if (!capable(CAP_NET_ADMIN))
1040  return -EPERM;
1041  if(get_user(frequency, (int __user *) ifr->ifr_data))
1042  return -EFAULT;
1043  if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1044  return status;
1045  break;
1046 
1047  case SIOCGCMPIDS: /* get PIDs */
1048  if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1049  return status;
1050  if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1051  return -EFAULT;
1052  break;
1053 
1054  case SIOCSCMPIDS: /* set PIDs */
1055  if (!capable(CAP_NET_ADMIN))
1056  return -EPERM;
1057  if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1058  return -EFAULT;
1059  if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1060  return status;
1061  /* set session_id, frame_id and pkt_type too */
1062  lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1063  lp->rx_session_id[1] = 0x48;
1064  lp->rx_session_id[2] = 0x44;
1065  lp->rx_session_id[3] = 0x42;
1066  lp->rx_frame_id[0] = 0;
1067  lp->rx_frame_id[1] = 0;
1068  lp->rx_frame_id[2] = 0;
1069  lp->rx_frame_id[3] = 0;
1070  break;
1071 
1072  default:
1073  status = -EINVAL;
1074  break;
1075  }
1076  return status;
1077 }
1078 
1079 /* transmit function: do nothing since SB1000 can't send anything out */
1080 static netdev_tx_t
1081 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1082 {
1083  printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1084  /* sb1000 can't xmit datagrams */
1085  dev_kfree_skb(skb);
1086  return NETDEV_TX_OK;
1087 }
1088 
1089 /* SB1000 interrupt handler. */
1090 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1091 {
1092  static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1093  static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1094 
1095  char *name;
1096  unsigned char st;
1097  int ioaddr[2];
1098  struct net_device *dev = dev_id;
1099  struct sb1000_private *lp = netdev_priv(dev);
1100 
1101  const int MaxRxErrorCount = 6;
1102 
1103  ioaddr[0] = dev->base_addr;
1104  /* mem_start holds the second I/O address */
1105  ioaddr[1] = dev->mem_start;
1106  name = dev->name;
1107 
1108  /* is it a good interrupt? */
1109  st = inb(ioaddr[1] + 6);
1110  if (!(st & 0x08 && st & 0x20)) {
1111  return IRQ_NONE;
1112  }
1113 
1114  if (sb1000_debug > 3)
1115  printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1116 
1117  st = inb(ioaddr[0] + 7);
1118  if (sb1000_rx(dev))
1119  lp->rx_error_count++;
1120 #ifdef SB1000_DELAY
1121  udelay(SB1000_DELAY);
1122 #endif /* SB1000_DELAY */
1123  sb1000_issue_read_command(ioaddr, name);
1124  if (st & 0x01) {
1125  sb1000_error_dpc(dev);
1126  sb1000_issue_read_command(ioaddr, name);
1127  }
1128  if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1129  sb1000_wait_for_ready_clear(ioaddr, name);
1130  sb1000_send_command(ioaddr, name, Command0);
1131  sb1000_wait_for_ready(ioaddr, name);
1132  sb1000_issue_read_command(ioaddr, name);
1133  }
1134  if (lp->rx_error_count >= MaxRxErrorCount) {
1135  sb1000_wait_for_ready_clear(ioaddr, name);
1136  sb1000_send_command(ioaddr, name, Command1);
1137  sb1000_wait_for_ready(ioaddr, name);
1138  sb1000_issue_read_command(ioaddr, name);
1139  lp->rx_error_count = 0;
1140  }
1141 
1142  return IRQ_HANDLED;
1143 }
1144 
1145 static int sb1000_close(struct net_device *dev)
1146 {
1147  int i;
1148  int ioaddr[2];
1149  struct sb1000_private *lp = netdev_priv(dev);
1150 
1151  if (sb1000_debug > 2)
1152  printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1153 
1154  netif_stop_queue(dev);
1155 
1156  ioaddr[0] = dev->base_addr;
1157  /* mem_start holds the second I/O address */
1158  ioaddr[1] = dev->mem_start;
1159 
1160  free_irq(dev->irq, dev);
1161  /* If we don't do this, we can't re-insmod it later. */
1162  release_region(ioaddr[1], SB1000_IO_EXTENT);
1163  release_region(ioaddr[0], SB1000_IO_EXTENT);
1164 
1165  /* free rx_skb's if needed */
1166  for (i=0; i<4; i++) {
1167  if (lp->rx_skb[i]) {
1168  dev_kfree_skb(lp->rx_skb[i]);
1169  }
1170  }
1171  return 0;
1172 }
1173 
1174 MODULE_AUTHOR("Franco Venturi <[email protected]>");
1175 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1176 MODULE_LICENSE("GPL");
1177 
1178 static int __init
1179 sb1000_init(void)
1180 {
1181  return pnp_register_driver(&sb1000_driver);
1182 }
1183 
1184 static void __exit
1185 sb1000_exit(void)
1186 {
1187  pnp_unregister_driver(&sb1000_driver);
1188 }
1189 
1190 module_init(sb1000_init);
1191 module_exit(sb1000_exit);