Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
skfddi.c
Go to the documentation of this file.
1 /*
2  * File Name:
3  * skfddi.c
4  *
5  * Copyright Information:
6  * Copyright SysKonnect 1998,1999.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * The information in this file is provided "AS IS" without warranty.
14  *
15  * Abstract:
16  * A Linux device driver supporting the SysKonnect FDDI PCI controller
17  * familie.
18  *
19  * Maintainers:
20  * CG Christoph Goos ([email protected])
21  *
22  * Contributors:
23  * DM David S. Miller
24  *
25  * Address all question to:
27  *
28  * The technical manual for the adapters is available from SysKonnect's
29  * web pages: www.syskonnect.com
30  * Goto "Support" and search Knowledge Base for "manual".
31  *
32  * Driver Architecture:
33  * The driver architecture is based on the DEC FDDI driver by
34  * Lawrence V. Stefani and several ethernet drivers.
35  * I also used an existing Windows NT miniport driver.
36  * All hardware dependent functions are handled by the SysKonnect
37  * Hardware Module.
38  * The only headerfiles that are directly related to this source
39  * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40  * The others belong to the SysKonnect FDDI Hardware Module and
41  * should better not be changed.
42  *
43  * Modification History:
44  * Date Name Description
45  * 02-Mar-98 CG Created.
46  *
47  * 10-Mar-99 CG Support for 2.2.x added.
48  * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
49  * 26-Oct-99 CG Fixed compilation error on 2.2.13
50  * 12-Nov-99 CG Source code release
51  * 22-Nov-99 CG Included in kernel source.
52  * 07-May-00 DM 64 bit fixes, new dma interface
53  * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
54  * Daniele Bellucci <[email protected]>
55  * 03-Dec-03 SH Convert to PCI device model
56  *
57  * Compilation options (-Dxxx):
58  * DRIVERDEBUG print lots of messages to log file
59  * DUMPPACKETS print received/transmitted packets to logfile
60  *
61  * Tested cpu architectures:
62  * - i386
63  * - sparc64
64  */
65 
66 /* Version information string - should be updated prior to */
67 /* each new release!!! */
68 #define VERSION "2.07"
69 
70 static const char * const boot_msg =
71  "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72  " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73 
74 /* Include files */
75 
76 #include <linux/capability.h>
77 #include <linux/module.h>
78 #include <linux/kernel.h>
79 #include <linux/errno.h>
80 #include <linux/ioport.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/netdevice.h>
84 #include <linux/fddidevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/bitops.h>
87 #include <linux/gfp.h>
88 
89 #include <asm/byteorder.h>
90 #include <asm/io.h>
91 #include <asm/uaccess.h>
92 
93 #include "h/types.h"
94 #undef ADDR // undo Linux definition
95 #include "h/skfbi.h"
96 #include "h/fddi.h"
97 #include "h/smc.h"
98 #include "h/smtstate.h"
99 
100 
101 // Define module-wide (static) routines
102 static int skfp_driver_init(struct net_device *dev);
103 static int skfp_open(struct net_device *dev);
104 static int skfp_close(struct net_device *dev);
105 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
106 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107 static void skfp_ctl_set_multicast_list(struct net_device *dev);
108 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112  struct net_device *dev);
113 static void send_queued_packets(struct s_smc *smc);
114 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115 static void ResetAdapter(struct s_smc *smc);
116 
117 
118 // Functions needed by the hardware module
119 void *mac_drv_get_space(struct s_smc *smc, u_int size);
120 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124  int flag);
125 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126 void llc_restart_tx(struct s_smc *smc);
127 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128  int frag_count, int len);
129 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130  int frag_count);
131 void mac_drv_fill_rxd(struct s_smc *smc);
132 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133  int frag_count);
134 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135  int la_len);
136 void dump_data(unsigned char *Data, int length);
137 
138 // External functions from the hardware module
139 extern u_int mac_drv_check_space(void);
140 extern int mac_drv_init(struct s_smc *smc);
141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142  int len, int frame_status);
143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144  int frame_len, int frame_status);
145 extern void fddi_isr(struct s_smc *smc);
146 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147  int len, int frame_status);
148 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
151 
152 static DEFINE_PCI_DEVICE_TABLE(skfddi_pci_tbl) = {
154  { } /* Terminating entry */
155 };
156 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157 MODULE_LICENSE("GPL");
158 MODULE_AUTHOR("Mirko Lindner <[email protected]>");
159 
160 // Define module-wide (static) variables
161 
162 static int num_boards; /* total number of adapters configured */
163 
164 static const struct net_device_ops skfp_netdev_ops = {
165  .ndo_open = skfp_open,
166  .ndo_stop = skfp_close,
167  .ndo_start_xmit = skfp_send_pkt,
168  .ndo_get_stats = skfp_ctl_get_stats,
169  .ndo_change_mtu = fddi_change_mtu,
170  .ndo_set_rx_mode = skfp_ctl_set_multicast_list,
171  .ndo_set_mac_address = skfp_ctl_set_mac_address,
172  .ndo_do_ioctl = skfp_ioctl,
173 };
174 
175 /*
176  * =================
177  * = skfp_init_one =
178  * =================
179  *
180  * Overview:
181  * Probes for supported FDDI PCI controllers
182  *
183  * Returns:
184  * Condition code
185  *
186  * Arguments:
187  * pdev - pointer to PCI device information
188  *
189  * Functional Description:
190  * This is now called by PCI driver registration process
191  * for each board found.
192  *
193  * Return Codes:
194  * 0 - This device (fddi0, fddi1, etc) configured successfully
195  * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
196  * present for this device name
197  *
198  *
199  * Side Effects:
200  * Device structures for FDDI adapters (fddi0, fddi1, etc) are
201  * initialized and the board resources are read and stored in
202  * the device structure.
203  */
204 static int skfp_init_one(struct pci_dev *pdev,
205  const struct pci_device_id *ent)
206 {
207  struct net_device *dev;
208  struct s_smc *smc; /* board pointer */
209  void __iomem *mem;
210  int err;
211 
212  pr_debug("entering skfp_init_one\n");
213 
214  if (num_boards == 0)
215  printk("%s\n", boot_msg);
216 
217  err = pci_enable_device(pdev);
218  if (err)
219  return err;
220 
221  err = pci_request_regions(pdev, "skfddi");
222  if (err)
223  goto err_out1;
224 
225  pci_set_master(pdev);
226 
227 #ifdef MEM_MAPPED_IO
228  if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
229  printk(KERN_ERR "skfp: region is not an MMIO resource\n");
230  err = -EIO;
231  goto err_out2;
232  }
233 
234  mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
235 #else
236  if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
237  printk(KERN_ERR "skfp: region is not PIO resource\n");
238  err = -EIO;
239  goto err_out2;
240  }
241 
242  mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
243 #endif
244  if (!mem) {
245  printk(KERN_ERR "skfp: Unable to map register, "
246  "FDDI adapter will be disabled.\n");
247  err = -EIO;
248  goto err_out2;
249  }
250 
251  dev = alloc_fddidev(sizeof(struct s_smc));
252  if (!dev) {
253  printk(KERN_ERR "skfp: Unable to allocate fddi device, "
254  "FDDI adapter will be disabled.\n");
255  err = -ENOMEM;
256  goto err_out3;
257  }
258 
259  dev->irq = pdev->irq;
260  dev->netdev_ops = &skfp_netdev_ops;
261 
262  SET_NETDEV_DEV(dev, &pdev->dev);
263 
264  /* Initialize board structure with bus-specific info */
265  smc = netdev_priv(dev);
266  smc->os.dev = dev;
267  smc->os.bus_type = SK_BUS_TYPE_PCI;
268  smc->os.pdev = *pdev;
269  smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
270  smc->os.MaxFrameSize = MAX_FRAME_SIZE;
271  smc->os.dev = dev;
272  smc->hw.slot = -1;
273  smc->hw.iop = mem;
274  smc->os.ResetRequested = FALSE;
275  skb_queue_head_init(&smc->os.SendSkbQueue);
276 
277  dev->base_addr = (unsigned long)mem;
278 
279  err = skfp_driver_init(dev);
280  if (err)
281  goto err_out4;
282 
283  err = register_netdev(dev);
284  if (err)
285  goto err_out5;
286 
287  ++num_boards;
288  pci_set_drvdata(pdev, dev);
289 
290  if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
291  (pdev->subsystem_device & 0xff00) == 0x5800)
292  printk("%s: SysKonnect FDDI PCI adapter"
293  " found (SK-%04X)\n", dev->name,
294  pdev->subsystem_device);
295  else
296  printk("%s: FDDI PCI adapter found\n", dev->name);
297 
298  return 0;
299 err_out5:
300  if (smc->os.SharedMemAddr)
301  pci_free_consistent(pdev, smc->os.SharedMemSize,
302  smc->os.SharedMemAddr,
303  smc->os.SharedMemDMA);
305  smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
306 err_out4:
307  free_netdev(dev);
308 err_out3:
309 #ifdef MEM_MAPPED_IO
310  iounmap(mem);
311 #else
312  ioport_unmap(mem);
313 #endif
314 err_out2:
315  pci_release_regions(pdev);
316 err_out1:
317  pci_disable_device(pdev);
318  return err;
319 }
320 
321 /*
322  * Called for each adapter board from pci_unregister_driver
323  */
324 static void __devexit skfp_remove_one(struct pci_dev *pdev)
325 {
326  struct net_device *p = pci_get_drvdata(pdev);
327  struct s_smc *lp = netdev_priv(p);
328 
330 
331  if (lp->os.SharedMemAddr) {
332  pci_free_consistent(&lp->os.pdev,
333  lp->os.SharedMemSize,
334  lp->os.SharedMemAddr,
335  lp->os.SharedMemDMA);
336  lp->os.SharedMemAddr = NULL;
337  }
338  if (lp->os.LocalRxBuffer) {
339  pci_free_consistent(&lp->os.pdev,
341  lp->os.LocalRxBuffer,
342  lp->os.LocalRxBufferDMA);
343  lp->os.LocalRxBuffer = NULL;
344  }
345 #ifdef MEM_MAPPED_IO
346  iounmap(lp->hw.iop);
347 #else
348  ioport_unmap(lp->hw.iop);
349 #endif
350  pci_release_regions(pdev);
351  free_netdev(p);
352 
353  pci_disable_device(pdev);
354  pci_set_drvdata(pdev, NULL);
355 }
356 
357 /*
358  * ====================
359  * = skfp_driver_init =
360  * ====================
361  *
362  * Overview:
363  * Initializes remaining adapter board structure information
364  * and makes sure adapter is in a safe state prior to skfp_open().
365  *
366  * Returns:
367  * Condition code
368  *
369  * Arguments:
370  * dev - pointer to device information
371  *
372  * Functional Description:
373  * This function allocates additional resources such as the host memory
374  * blocks needed by the adapter.
375  * The adapter is also reset. The OS must call skfp_open() to open
376  * the adapter and bring it on-line.
377  *
378  * Return Codes:
379  * 0 - initialization succeeded
380  * -1 - initialization failed
381  */
382 static int skfp_driver_init(struct net_device *dev)
383 {
384  struct s_smc *smc = netdev_priv(dev);
385  skfddi_priv *bp = &smc->os;
386  int err = -EIO;
387 
388  pr_debug("entering skfp_driver_init\n");
389 
390  // set the io address in private structures
391  bp->base_addr = dev->base_addr;
392 
393  // Get the interrupt level from the PCI Configuration Table
394  smc->hw.irq = dev->irq;
395 
397 
398  // Allocate invalid frame
400  if (!bp->LocalRxBuffer) {
401  printk("could not allocate mem for ");
402  printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403  goto fail;
404  }
405 
406  // Determine the required size of the 'shared' memory area.
408  pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
409  if (bp->SharedMemSize > 0) {
410  bp->SharedMemSize += 16; // for descriptor alignment
411 
413  bp->SharedMemSize,
414  &bp->SharedMemDMA);
415  if (!bp->SharedMemAddr) {
416  printk("could not allocate mem for ");
417  printk("hardware module: %ld byte\n",
418  bp->SharedMemSize);
419  goto fail;
420  }
421  bp->SharedMemHeap = 0; // Nothing used yet.
422 
423  } else {
424  bp->SharedMemAddr = NULL;
425  bp->SharedMemHeap = 0;
426  } // SharedMemSize > 0
427 
428  memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
429 
430  card_stop(smc); // Reset adapter.
431 
432  pr_debug("mac_drv_init()..\n");
433  if (mac_drv_init(smc) != 0) {
434  pr_debug("mac_drv_init() failed\n");
435  goto fail;
436  }
437  read_address(smc, NULL);
438  pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
439  memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
440 
441  smt_reset_defaults(smc, 0);
442 
443  return 0;
444 
445 fail:
446  if (bp->SharedMemAddr) {
448  bp->SharedMemSize,
449  bp->SharedMemAddr,
450  bp->SharedMemDMA);
451  bp->SharedMemAddr = NULL;
452  }
453  if (bp->LocalRxBuffer) {
456  bp->LocalRxBuffer = NULL;
457  }
458  return err;
459 } // skfp_driver_init
460 
461 
462 /*
463  * =============
464  * = skfp_open =
465  * =============
466  *
467  * Overview:
468  * Opens the adapter
469  *
470  * Returns:
471  * Condition code
472  *
473  * Arguments:
474  * dev - pointer to device information
475  *
476  * Functional Description:
477  * This function brings the adapter to an operational state.
478  *
479  * Return Codes:
480  * 0 - Adapter was successfully opened
481  * -EAGAIN - Could not register IRQ
482  */
483 static int skfp_open(struct net_device *dev)
484 {
485  struct s_smc *smc = netdev_priv(dev);
486  int err;
487 
488  pr_debug("entering skfp_open\n");
489  /* Register IRQ - support shared interrupts by passing device ptr */
490  err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
491  dev->name, dev);
492  if (err)
493  return err;
494 
495  /*
496  * Set current address to factory MAC address
497  *
498  * Note: We've already done this step in skfp_driver_init.
499  * However, it's possible that a user has set a node
500  * address override, then closed and reopened the
501  * adapter. Unless we reset the device address field
502  * now, we'll continue to use the existing modified
503  * address.
504  */
505  read_address(smc, NULL);
506  memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
507 
508  init_smt(smc, NULL);
509  smt_online(smc, 1);
510  STI_FBI();
511 
512  /* Clear local multicast address tables */
513  mac_clear_multicast(smc);
514 
515  /* Disable promiscuous filter settings */
517 
518  netif_start_queue(dev);
519  return 0;
520 } // skfp_open
521 
522 
523 /*
524  * ==============
525  * = skfp_close =
526  * ==============
527  *
528  * Overview:
529  * Closes the device/module.
530  *
531  * Returns:
532  * Condition code
533  *
534  * Arguments:
535  * dev - pointer to device information
536  *
537  * Functional Description:
538  * This routine closes the adapter and brings it to a safe state.
539  * The interrupt service routine is deregistered with the OS.
540  * The adapter can be opened again with another call to skfp_open().
541  *
542  * Return Codes:
543  * Always return 0.
544  *
545  * Assumptions:
546  * No further requests for this adapter are made after this routine is
547  * called. skfp_open() can be called to reset and reinitialize the
548  * adapter.
549  */
550 static int skfp_close(struct net_device *dev)
551 {
552  struct s_smc *smc = netdev_priv(dev);
553  skfddi_priv *bp = &smc->os;
554 
555  CLI_FBI();
556  smt_reset_defaults(smc, 1);
557  card_stop(smc);
560 
561  netif_stop_queue(dev);
562  /* Deregister (free) IRQ */
563  free_irq(dev->irq, dev);
564 
567 
568  return 0;
569 } // skfp_close
570 
571 
572 /*
573  * ==================
574  * = skfp_interrupt =
575  * ==================
576  *
577  * Overview:
578  * Interrupt processing routine
579  *
580  * Returns:
581  * None
582  *
583  * Arguments:
584  * irq - interrupt vector
585  * dev_id - pointer to device information
586  *
587  * Functional Description:
588  * This routine calls the interrupt processing routine for this adapter. It
589  * disables and reenables adapter interrupts, as appropriate. We can support
590  * shared interrupts since the incoming dev_id pointer provides our device
591  * structure context. All the real work is done in the hardware module.
592  *
593  * Return Codes:
594  * None
595  *
596  * Assumptions:
597  * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
598  * on Intel-based systems) is done by the operating system outside this
599  * routine.
600  *
601  * System interrupts are enabled through this call.
602  *
603  * Side Effects:
604  * Interrupts are disabled, then reenabled at the adapter.
605  */
606 
607 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
608 {
609  struct net_device *dev = dev_id;
610  struct s_smc *smc; /* private board structure pointer */
611  skfddi_priv *bp;
612 
613  smc = netdev_priv(dev);
614  bp = &smc->os;
615 
616  // IRQs enabled or disabled ?
617  if (inpd(ADDR(B0_IMSK)) == 0) {
618  // IRQs are disabled: must be shared interrupt
619  return IRQ_NONE;
620  }
621  // Note: At this point, IRQs are enabled.
622  if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
623  // Adapter did not issue an IRQ: must be shared interrupt
624  return IRQ_NONE;
625  }
626  CLI_FBI(); // Disable IRQs from our adapter.
627  spin_lock(&bp->DriverLock);
628 
629  // Call interrupt handler in hardware module (HWM).
630  fddi_isr(smc);
631 
632  if (smc->os.ResetRequested) {
633  ResetAdapter(smc);
634  smc->os.ResetRequested = FALSE;
635  }
636  spin_unlock(&bp->DriverLock);
637  STI_FBI(); // Enable IRQs from our adapter.
638 
639  return IRQ_HANDLED;
640 } // skfp_interrupt
641 
642 
643 /*
644  * ======================
645  * = skfp_ctl_get_stats =
646  * ======================
647  *
648  * Overview:
649  * Get statistics for FDDI adapter
650  *
651  * Returns:
652  * Pointer to FDDI statistics structure
653  *
654  * Arguments:
655  * dev - pointer to device information
656  *
657  * Functional Description:
658  * Gets current MIB objects from adapter, then
659  * returns FDDI statistics structure as defined
660  * in if_fddi.h.
661  *
662  * Note: Since the FDDI statistics structure is
663  * still new and the device structure doesn't
664  * have an FDDI-specific get statistics handler,
665  * we'll return the FDDI statistics structure as
666  * a pointer to an Ethernet statistics structure.
667  * That way, at least the first part of the statistics
668  * structure can be decoded properly.
669  * We'll have to pay attention to this routine as the
670  * device structure becomes more mature and LAN media
671  * independent.
672  *
673  */
674 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
675 {
676  struct s_smc *bp = netdev_priv(dev);
677 
678  /* Fill the bp->stats structure with driver-maintained counters */
679 
680  bp->os.MacStat.port_bs_flag[0] = 0x1234;
681  bp->os.MacStat.port_bs_flag[1] = 0x5678;
682 // goos: need to fill out fddi statistic
683 #if 0
684  /* Get FDDI SMT MIB objects */
685 
686 /* Fill the bp->stats structure with the SMT MIB object values */
687 
688  memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
689  bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
690  bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
691  bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
692  memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
693  bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
694  bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
695  bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
696  bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
697  bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
698  bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
699  bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
700  bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
701  bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
702  bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
703  bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
704  bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
705  bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
706  bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
707  bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
708  bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
709  bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
710  bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
711  bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
712  bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
713  bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
714  bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
715  bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
716  bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
717  memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
718  memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
719  memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
720  memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
721  bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
722  bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
723  bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
724  memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
725  bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
726  bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
727  bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
728  bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
729  bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
730  bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
731  bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
732  bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
733  bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
734  bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
735  bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
736  bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
737  bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
738  bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
739  bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
740  bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
741  memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
742  bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
743  bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
744  bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
745  bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
746  bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
747  bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
748  bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
749  bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
750  bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
751  bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
752  memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
753  memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
754  bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
755  bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
756  bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
757  bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
758  bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
759  bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
760  bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
761  bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
762  bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
763  bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
764  bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
765  bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
766  bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
767  bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
768  bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
769  bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
770  bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
771  bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
772  bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
773  bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
774  bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
775  bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
776  bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
777  bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
778  bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
779  bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
780 
781 
782  /* Fill the bp->stats structure with the FDDI counter values */
783 
784  bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
785  bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
786  bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
787  bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
788  bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
789  bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
790  bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
791  bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
792  bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
793  bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
794  bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
795 
796 #endif
797  return (struct net_device_stats *)&bp->os.MacStat;
798 } // ctl_get_stat
799 
800 
801 /*
802  * ==============================
803  * = skfp_ctl_set_multicast_list =
804  * ==============================
805  *
806  * Overview:
807  * Enable/Disable LLC frame promiscuous mode reception
808  * on the adapter and/or update multicast address table.
809  *
810  * Returns:
811  * None
812  *
813  * Arguments:
814  * dev - pointer to device information
815  *
816  * Functional Description:
817  * This function acquires the driver lock and only calls
818  * skfp_ctl_set_multicast_list_wo_lock then.
819  * This routine follows a fairly simple algorithm for setting the
820  * adapter filters and CAM:
821  *
822  * if IFF_PROMISC flag is set
823  * enable promiscuous mode
824  * else
825  * disable promiscuous mode
826  * if number of multicast addresses <= max. multicast number
827  * add mc addresses to adapter table
828  * else
829  * enable promiscuous mode
830  * update adapter filters
831  *
832  * Assumptions:
833  * Multicast addresses are presented in canonical (LSB) format.
834  *
835  * Side Effects:
836  * On-board adapter filters are updated.
837  */
838 static void skfp_ctl_set_multicast_list(struct net_device *dev)
839 {
840  struct s_smc *smc = netdev_priv(dev);
841  skfddi_priv *bp = &smc->os;
842  unsigned long Flags;
843 
844  spin_lock_irqsave(&bp->DriverLock, Flags);
845  skfp_ctl_set_multicast_list_wo_lock(dev);
846  spin_unlock_irqrestore(&bp->DriverLock, Flags);
847 } // skfp_ctl_set_multicast_list
848 
849 
850 
851 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
852 {
853  struct s_smc *smc = netdev_priv(dev);
854  struct netdev_hw_addr *ha;
855 
856  /* Enable promiscuous mode, if necessary */
857  if (dev->flags & IFF_PROMISC) {
859  pr_debug("PROMISCUOUS MODE ENABLED\n");
860  }
861  /* Else, update multicast address table */
862  else {
864  pr_debug("PROMISCUOUS MODE DISABLED\n");
865 
866  // Reset all MC addresses
867  mac_clear_multicast(smc);
869 
870  if (dev->flags & IFF_ALLMULTI) {
872  pr_debug("ENABLE ALL MC ADDRESSES\n");
873  } else if (!netdev_mc_empty(dev)) {
874  if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
875  /* use exact filtering */
876 
877  // point to first multicast addr
878  netdev_for_each_mc_addr(ha, dev) {
879  mac_add_multicast(smc,
880  (struct fddi_addr *)ha->addr,
881  1);
882 
883  pr_debug("ENABLE MC ADDRESS: %pMF\n",
884  ha->addr);
885  }
886 
887  } else { // more MC addresses than HW supports
888 
890  pr_debug("ENABLE ALL MC ADDRESSES\n");
891  }
892  } else { // no MC addresses
893 
894  pr_debug("DISABLE ALL MC ADDRESSES\n");
895  }
896 
897  /* Update adapter filters */
899  }
900 } // skfp_ctl_set_multicast_list_wo_lock
901 
902 
903 /*
904  * ===========================
905  * = skfp_ctl_set_mac_address =
906  * ===========================
907  *
908  * Overview:
909  * set new mac address on adapter and update dev_addr field in device table.
910  *
911  * Returns:
912  * None
913  *
914  * Arguments:
915  * dev - pointer to device information
916  * addr - pointer to sockaddr structure containing unicast address to set
917  *
918  * Assumptions:
919  * The address pointed to by addr->sa_data is a valid unicast
920  * address and is presented in canonical (LSB) format.
921  */
922 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
923 {
924  struct s_smc *smc = netdev_priv(dev);
925  struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
926  skfddi_priv *bp = &smc->os;
927  unsigned long Flags;
928 
929 
930  memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
931  spin_lock_irqsave(&bp->DriverLock, Flags);
932  ResetAdapter(smc);
933  spin_unlock_irqrestore(&bp->DriverLock, Flags);
934 
935  return 0; /* always return zero */
936 } // skfp_ctl_set_mac_address
937 
938 
939 /*
940  * ==============
941  * = skfp_ioctl =
942  * ==============
943  *
944  * Overview:
945  *
946  * Perform IOCTL call functions here. Some are privileged operations and the
947  * effective uid is checked in those cases.
948  *
949  * Returns:
950  * status value
951  * 0 - success
952  * other - failure
953  *
954  * Arguments:
955  * dev - pointer to device information
956  * rq - pointer to ioctl request structure
957  * cmd - ?
958  *
959  */
960 
961 
962 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
963 {
964  struct s_smc *smc = netdev_priv(dev);
965  skfddi_priv *lp = &smc->os;
966  struct s_skfp_ioctl ioc;
967  int status = 0;
968 
969  if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
970  return -EFAULT;
971 
972  switch (ioc.cmd) {
973  case SKFP_GET_STATS: /* Get the driver statistics */
974  ioc.len = sizeof(lp->MacStat);
975  status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
976  ? -EFAULT : 0;
977  break;
978  case SKFP_CLR_STATS: /* Zero out the driver statistics */
979  if (!capable(CAP_NET_ADMIN)) {
980  status = -EPERM;
981  } else {
982  memset(&lp->MacStat, 0, sizeof(lp->MacStat));
983  }
984  break;
985  default:
986  printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
987  status = -EOPNOTSUPP;
988 
989  } // switch
990 
991  return status;
992 } // skfp_ioctl
993 
994 
995 /*
996  * =====================
997  * = skfp_send_pkt =
998  * =====================
999  *
1000  * Overview:
1001  * Queues a packet for transmission and try to transmit it.
1002  *
1003  * Returns:
1004  * Condition code
1005  *
1006  * Arguments:
1007  * skb - pointer to sk_buff to queue for transmission
1008  * dev - pointer to device information
1009  *
1010  * Functional Description:
1011  * Here we assume that an incoming skb transmit request
1012  * is contained in a single physically contiguous buffer
1013  * in which the virtual address of the start of packet
1014  * (skb->data) can be converted to a physical address
1015  * by using pci_map_single().
1016  *
1017  * We have an internal queue for packets we can not send
1018  * immediately. Packets in this queue can be given to the
1019  * adapter if transmit buffers are freed.
1020  *
1021  * We can't free the skb until after it's been DMA'd
1022  * out by the adapter, so we'll keep it in the driver and
1023  * return it in mac_drv_tx_complete.
1024  *
1025  * Return Codes:
1026  * 0 - driver has queued and/or sent packet
1027  * 1 - caller should requeue the sk_buff for later transmission
1028  *
1029  * Assumptions:
1030  * The entire packet is stored in one physically
1031  * contiguous buffer which is not cached and whose
1032  * 32-bit physical address can be determined.
1033  *
1034  * It's vital that this routine is NOT reentered for the
1035  * same board and that the OS is not in another section of
1036  * code (eg. skfp_interrupt) for the same board on a
1037  * different thread.
1038  *
1039  * Side Effects:
1040  * None
1041  */
1042 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1043  struct net_device *dev)
1044 {
1045  struct s_smc *smc = netdev_priv(dev);
1046  skfddi_priv *bp = &smc->os;
1047 
1048  pr_debug("skfp_send_pkt\n");
1049 
1050  /*
1051  * Verify that incoming transmit request is OK
1052  *
1053  * Note: The packet size check is consistent with other
1054  * Linux device drivers, although the correct packet
1055  * size should be verified before calling the
1056  * transmit routine.
1057  */
1058 
1059  if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1060  bp->MacStat.gen.tx_errors++; /* bump error counter */
1061  // dequeue packets from xmt queue and send them
1062  netif_start_queue(dev);
1063  dev_kfree_skb(skb);
1064  return NETDEV_TX_OK; /* return "success" */
1065  }
1066  if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1067 
1068  netif_stop_queue(dev);
1069  return NETDEV_TX_BUSY;
1070  }
1071  bp->QueueSkb--;
1072  skb_queue_tail(&bp->SendSkbQueue, skb);
1073  send_queued_packets(netdev_priv(dev));
1074  if (bp->QueueSkb == 0) {
1075  netif_stop_queue(dev);
1076  }
1077  return NETDEV_TX_OK;
1078 
1079 } // skfp_send_pkt
1080 
1081 
1082 /*
1083  * =======================
1084  * = send_queued_packets =
1085  * =======================
1086  *
1087  * Overview:
1088  * Send packets from the driver queue as long as there are some and
1089  * transmit resources are available.
1090  *
1091  * Returns:
1092  * None
1093  *
1094  * Arguments:
1095  * smc - pointer to smc (adapter) structure
1096  *
1097  * Functional Description:
1098  * Take a packet from queue if there is any. If not, then we are done.
1099  * Check if there are resources to send the packet. If not, requeue it
1100  * and exit.
1101  * Set packet descriptor flags and give packet to adapter.
1102  * Check if any send resources can be freed (we do not use the
1103  * transmit complete interrupt).
1104  */
1105 static void send_queued_packets(struct s_smc *smc)
1106 {
1107  skfddi_priv *bp = &smc->os;
1108  struct sk_buff *skb;
1109  unsigned char fc;
1110  int queue;
1111  struct s_smt_fp_txd *txd; // Current TxD.
1113  unsigned long Flags;
1114 
1115  int frame_status; // HWM tx frame status.
1116 
1117  pr_debug("send queued packets\n");
1118  for (;;) {
1119  // send first buffer from queue
1120  skb = skb_dequeue(&bp->SendSkbQueue);
1121 
1122  if (!skb) {
1123  pr_debug("queue empty\n");
1124  return;
1125  } // queue empty !
1126 
1127  spin_lock_irqsave(&bp->DriverLock, Flags);
1128  fc = skb->data[0];
1129  queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1130 #ifdef ESS
1131  // Check if the frame may/must be sent as a synchronous frame.
1132 
1133  if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1134  // It's an LLC frame.
1135  if (!smc->ess.sync_bw_available)
1136  fc &= ~FC_SYNC_BIT; // No bandwidth available.
1137 
1138  else { // Bandwidth is available.
1139 
1140  if (smc->mib.fddiESSSynchTxMode) {
1141  // Send as sync. frame.
1142  fc |= FC_SYNC_BIT;
1143  }
1144  }
1145  }
1146 #endif // ESS
1147  frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1148 
1149  if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1150  // Unable to send the frame.
1151 
1152  if ((frame_status & RING_DOWN) != 0) {
1153  // Ring is down.
1154  pr_debug("Tx attempt while ring down.\n");
1155  } else if ((frame_status & OUT_OF_TXD) != 0) {
1156  pr_debug("%s: out of TXDs.\n", bp->dev->name);
1157  } else {
1158  pr_debug("%s: out of transmit resources",
1159  bp->dev->name);
1160  }
1161 
1162  // Note: We will retry the operation as soon as
1163  // transmit resources become available.
1164  skb_queue_head(&bp->SendSkbQueue, skb);
1165  spin_unlock_irqrestore(&bp->DriverLock, Flags);
1166  return; // Packet has been queued.
1167 
1168  } // if (unable to send frame)
1169 
1170  bp->QueueSkb++; // one packet less in local queue
1171 
1172  // source address in packet ?
1173  CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1174 
1175  txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1176 
1177  dma_address = pci_map_single(&bp->pdev, skb->data,
1178  skb->len, PCI_DMA_TODEVICE);
1179  if (frame_status & LAN_TX) {
1180  txd->txd_os.skb = skb; // save skb
1181  txd->txd_os.dma_addr = dma_address; // save dma mapping
1182  }
1183  hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1184  frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1185 
1186  if (!(frame_status & LAN_TX)) { // local only frame
1187  pci_unmap_single(&bp->pdev, dma_address,
1188  skb->len, PCI_DMA_TODEVICE);
1189  dev_kfree_skb_irq(skb);
1190  }
1191  spin_unlock_irqrestore(&bp->DriverLock, Flags);
1192  } // for
1193 
1194  return; // never reached
1195 
1196 } // send_queued_packets
1197 
1198 
1199 /************************
1200  *
1201  * CheckSourceAddress
1202  *
1203  * Verify if the source address is set. Insert it if necessary.
1204  *
1205  ************************/
1206 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1207 {
1208  unsigned char SRBit;
1209 
1210  if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1211 
1212  return;
1213  if ((unsigned short) frame[1 + 10] != 0)
1214  return;
1215  SRBit = frame[1 + 6] & 0x01;
1216  memcpy(&frame[1 + 6], hw_addr, 6);
1217  frame[8] |= SRBit;
1218 } // CheckSourceAddress
1219 
1220 
1221 /************************
1222  *
1223  * ResetAdapter
1224  *
1225  * Reset the adapter and bring it back to operational mode.
1226  * Args
1227  * smc - A pointer to the SMT context struct.
1228  * Out
1229  * Nothing.
1230  *
1231  ************************/
1232 static void ResetAdapter(struct s_smc *smc)
1233 {
1234 
1235  pr_debug("[fddi: ResetAdapter]\n");
1236 
1237  // Stop the adapter.
1238 
1239  card_stop(smc); // Stop all activity.
1240 
1241  // Clear the transmit and receive descriptor queues.
1244 
1245  // Restart the adapter.
1246 
1247  smt_reset_defaults(smc, 1); // Initialize the SMT module.
1248 
1249  init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1250 
1251  smt_online(smc, 1); // Insert into the ring again.
1252  STI_FBI();
1253 
1254  // Restore original receive mode (multicasts, promiscuous, etc.).
1255  skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1256 } // ResetAdapter
1257 
1258 
1259 //--------------- functions called by hardware module ----------------
1260 
1261 /************************
1262  *
1263  * llc_restart_tx
1264  *
1265  * The hardware driver calls this routine when the transmit complete
1266  * interrupt bits (end of frame) for the synchronous or asynchronous
1267  * queue is set.
1268  *
1269  * NOTE The hardware driver calls this function also if no packets are queued.
1270  * The routine must be able to handle this case.
1271  * Args
1272  * smc - A pointer to the SMT context struct.
1273  * Out
1274  * Nothing.
1275  *
1276  ************************/
1277 void llc_restart_tx(struct s_smc *smc)
1278 {
1279  skfddi_priv *bp = &smc->os;
1280 
1281  pr_debug("[llc_restart_tx]\n");
1282 
1283  // Try to send queued packets
1284  spin_unlock(&bp->DriverLock);
1285  send_queued_packets(smc);
1286  spin_lock(&bp->DriverLock);
1287  netif_start_queue(bp->dev);// system may send again if it was blocked
1288 
1289 } // llc_restart_tx
1290 
1291 
1292 /************************
1293  *
1294  * mac_drv_get_space
1295  *
1296  * The hardware module calls this function to allocate the memory
1297  * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1298  * Args
1299  * smc - A pointer to the SMT context struct.
1300  *
1301  * size - Size of memory in bytes to allocate.
1302  * Out
1303  * != 0 A pointer to the virtual address of the allocated memory.
1304  * == 0 Allocation error.
1305  *
1306  ************************/
1307 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1308 {
1309  void *virt;
1310 
1311  pr_debug("mac_drv_get_space (%d bytes), ", size);
1312  virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1313 
1314  if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1315  printk("Unexpected SMT memory size requested: %d\n", size);
1316  return NULL;
1317  }
1318  smc->os.SharedMemHeap += size; // Move heap pointer.
1319 
1320  pr_debug("mac_drv_get_space end\n");
1321  pr_debug("virt addr: %lx\n", (ulong) virt);
1322  pr_debug("bus addr: %lx\n", (ulong)
1323  (smc->os.SharedMemDMA +
1324  ((char *) virt - (char *)smc->os.SharedMemAddr)));
1325  return virt;
1326 } // mac_drv_get_space
1327 
1328 
1329 /************************
1330  *
1331  * mac_drv_get_desc_mem
1332  *
1333  * This function is called by the hardware dependent module.
1334  * It allocates the memory for the RxD and TxD descriptors.
1335  *
1336  * This memory must be non-cached, non-movable and non-swappable.
1337  * This memory should start at a physical page boundary.
1338  * Args
1339  * smc - A pointer to the SMT context struct.
1340  *
1341  * size - Size of memory in bytes to allocate.
1342  * Out
1343  * != 0 A pointer to the virtual address of the allocated memory.
1344  * == 0 Allocation error.
1345  *
1346  ************************/
1347 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1348 {
1349 
1350  char *virt;
1351 
1352  pr_debug("mac_drv_get_desc_mem\n");
1353 
1354  // Descriptor memory must be aligned on 16-byte boundary.
1355 
1356  virt = mac_drv_get_space(smc, size);
1357 
1358  size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1359  size = size % 16;
1360 
1361  pr_debug("Allocate %u bytes alignment gap ", size);
1362  pr_debug("for descriptor memory.\n");
1363 
1364  if (!mac_drv_get_space(smc, size)) {
1365  printk("fddi: Unable to align descriptor memory.\n");
1366  return NULL;
1367  }
1368  return virt + size;
1369 } // mac_drv_get_desc_mem
1370 
1371 
1372 /************************
1373  *
1374  * mac_drv_virt2phys
1375  *
1376  * Get the physical address of a given virtual address.
1377  * Args
1378  * smc - A pointer to the SMT context struct.
1379  *
1380  * virt - A (virtual) pointer into our 'shared' memory area.
1381  * Out
1382  * Physical address of the given virtual address.
1383  *
1384  ************************/
1385 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1386 {
1387  return smc->os.SharedMemDMA +
1388  ((char *) virt - (char *)smc->os.SharedMemAddr);
1389 } // mac_drv_virt2phys
1390 
1391 
1392 /************************
1393  *
1394  * dma_master
1395  *
1396  * The HWM calls this function, when the driver leads through a DMA
1397  * transfer. If the OS-specific module must prepare the system hardware
1398  * for the DMA transfer, it should do it in this function.
1399  *
1400  * The hardware module calls this dma_master if it wants to send an SMT
1401  * frame. This means that the virt address passed in here is part of
1402  * the 'shared' memory area.
1403  * Args
1404  * smc - A pointer to the SMT context struct.
1405  *
1406  * virt - The virtual address of the data.
1407  *
1408  * len - The length in bytes of the data.
1409  *
1410  * flag - Indicates the transmit direction and the buffer type:
1411  * DMA_RD (0x01) system RAM ==> adapter buffer memory
1412  * DMA_WR (0x02) adapter buffer memory ==> system RAM
1413  * SMT_BUF (0x80) SMT buffer
1414  *
1415  * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1416  * Out
1417  * Returns the pyhsical address for the DMA transfer.
1418  *
1419  ************************/
1420 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1421 {
1422  return smc->os.SharedMemDMA +
1423  ((char *) virt - (char *)smc->os.SharedMemAddr);
1424 } // dma_master
1425 
1426 
1427 /************************
1428  *
1429  * dma_complete
1430  *
1431  * The hardware module calls this routine when it has completed a DMA
1432  * transfer. If the operating system dependent module has set up the DMA
1433  * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1434  * the DMA channel.
1435  * Args
1436  * smc - A pointer to the SMT context struct.
1437  *
1438  * descr - A pointer to a TxD or RxD, respectively.
1439  *
1440  * flag - Indicates the DMA transfer direction / SMT buffer:
1441  * DMA_RD (0x01) system RAM ==> adapter buffer memory
1442  * DMA_WR (0x02) adapter buffer memory ==> system RAM
1443  * SMT_BUF (0x80) SMT buffer (managed by HWM)
1444  * Out
1445  * Nothing.
1446  *
1447  ************************/
1448 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1449 {
1450  /* For TX buffers, there are two cases. If it is an SMT transmit
1451  * buffer, there is nothing to do since we use consistent memory
1452  * for the 'shared' memory area. The other case is for normal
1453  * transmit packets given to us by the networking stack, and in
1454  * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1455  * below.
1456  *
1457  * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1458  * because the hardware module is about to potentially look at
1459  * the contents of the buffer. If we did not call the PCI DMA
1460  * unmap first, the hardware module could read inconsistent data.
1461  */
1462  if (flag & DMA_WR) {
1463  skfddi_priv *bp = &smc->os;
1464  volatile struct s_smt_fp_rxd *r = &descr->r;
1465 
1466  /* If SKB is NULL, we used the local buffer. */
1467  if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1468  int MaxFrameSize = bp->MaxFrameSize;
1469 
1470  pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1471  MaxFrameSize, PCI_DMA_FROMDEVICE);
1472  r->rxd_os.dma_addr = 0;
1473  }
1474  }
1475 } // dma_complete
1476 
1477 
1478 /************************
1479  *
1480  * mac_drv_tx_complete
1481  *
1482  * Transmit of a packet is complete. Release the tx staging buffer.
1483  *
1484  * Args
1485  * smc - A pointer to the SMT context struct.
1486  *
1487  * txd - A pointer to the last TxD which is used by the frame.
1488  * Out
1489  * Returns nothing.
1490  *
1491  ************************/
1492 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1493 {
1494  struct sk_buff *skb;
1495 
1496  pr_debug("entering mac_drv_tx_complete\n");
1497  // Check if this TxD points to a skb
1498 
1499  if (!(skb = txd->txd_os.skb)) {
1500  pr_debug("TXD with no skb assigned.\n");
1501  return;
1502  }
1503  txd->txd_os.skb = NULL;
1504 
1505  // release the DMA mapping
1506  pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1507  skb->len, PCI_DMA_TODEVICE);
1508  txd->txd_os.dma_addr = 0;
1509 
1510  smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1511  smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1512 
1513  // free the skb
1514  dev_kfree_skb_irq(skb);
1515 
1516  pr_debug("leaving mac_drv_tx_complete\n");
1517 } // mac_drv_tx_complete
1518 
1519 
1520 /************************
1521  *
1522  * dump packets to logfile
1523  *
1524  ************************/
1525 #ifdef DUMPPACKETS
1526 void dump_data(unsigned char *Data, int length)
1527 {
1528  int i, j;
1529  unsigned char s[255], sh[10];
1530  if (length > 64) {
1531  length = 64;
1532  }
1533  printk(KERN_INFO "---Packet start---\n");
1534  for (i = 0, j = 0; i < length / 8; i++, j += 8)
1535  printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1536  Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1537  Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1538  strcpy(s, "");
1539  for (i = 0; i < length % 8; i++) {
1540  sprintf(sh, "%02x ", Data[j + i]);
1541  strcat(s, sh);
1542  }
1543  printk(KERN_INFO "%s\n", s);
1544  printk(KERN_INFO "------------------\n");
1545 } // dump_data
1546 #else
1547 #define dump_data(data,len)
1548 #endif // DUMPPACKETS
1549 
1550 /************************
1551  *
1552  * mac_drv_rx_complete
1553  *
1554  * The hardware module calls this function if an LLC frame is received
1555  * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1556  * from the network will be passed to the LLC layer by this function
1557  * if passing is enabled.
1558  *
1559  * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1560  * be received. It also fills the RxD ring with new receive buffers if
1561  * some can be queued.
1562  * Args
1563  * smc - A pointer to the SMT context struct.
1564  *
1565  * rxd - A pointer to the first RxD which is used by the receive frame.
1566  *
1567  * frag_count - Count of RxDs used by the received frame.
1568  *
1569  * len - Frame length.
1570  * Out
1571  * Nothing.
1572  *
1573  ************************/
1574 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1575  int frag_count, int len)
1576 {
1577  skfddi_priv *bp = &smc->os;
1578  struct sk_buff *skb;
1579  unsigned char *virt, *cp;
1580  unsigned short ri;
1581  u_int RifLength;
1582 
1583  pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1584  if (frag_count != 1) { // This is not allowed to happen.
1585 
1586  printk("fddi: Multi-fragment receive!\n");
1587  goto RequeueRxd; // Re-use the given RXD(s).
1588 
1589  }
1590  skb = rxd->rxd_os.skb;
1591  if (!skb) {
1592  pr_debug("No skb in rxd\n");
1593  smc->os.MacStat.gen.rx_errors++;
1594  goto RequeueRxd;
1595  }
1596  virt = skb->data;
1597 
1598  // The DMA mapping was released in dma_complete above.
1599 
1600  dump_data(skb->data, len);
1601 
1602  /*
1603  * FDDI Frame format:
1604  * +-------+-------+-------+------------+--------+------------+
1605  * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1606  * +-------+-------+-------+------------+--------+------------+
1607  *
1608  * FC = Frame Control
1609  * DA = Destination Address
1610  * SA = Source Address
1611  * RIF = Routing Information Field
1612  * LLC = Logical Link Control
1613  */
1614 
1615  // Remove Routing Information Field (RIF), if present.
1616 
1617  if ((virt[1 + 6] & FDDI_RII) == 0)
1618  RifLength = 0;
1619  else {
1620  int n;
1621 // goos: RIF removal has still to be tested
1622  pr_debug("RIF found\n");
1623  // Get RIF length from Routing Control (RC) field.
1624  cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1625 
1626  ri = ntohs(*((__be16 *) cp));
1627  RifLength = ri & FDDI_RCF_LEN_MASK;
1628  if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1629  printk("fddi: Invalid RIF.\n");
1630  goto RequeueRxd; // Discard the frame.
1631 
1632  }
1633  virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1634  // regions overlap
1635 
1636  virt = cp + RifLength;
1637  for (n = FDDI_MAC_HDR_LEN; n; n--)
1638  *--virt = *--cp;
1639  // adjust sbd->data pointer
1640  skb_pull(skb, RifLength);
1641  len -= RifLength;
1642  RifLength = 0;
1643  }
1644 
1645  // Count statistics.
1646  smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1647  // packets.
1648  smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1649 
1650  // virt points to header again
1651  if (virt[1] & 0x01) { // Check group (multicast) bit.
1652 
1653  smc->os.MacStat.gen.multicast++;
1654  }
1655 
1656  // deliver frame to system
1657  rxd->rxd_os.skb = NULL;
1658  skb_trim(skb, len);
1659  skb->protocol = fddi_type_trans(skb, bp->dev);
1660 
1661  netif_rx(skb);
1662 
1664  return;
1665 
1666  RequeueRxd:
1667  pr_debug("Rx: re-queue RXD.\n");
1668  mac_drv_requeue_rxd(smc, rxd, frag_count);
1669  smc->os.MacStat.gen.rx_errors++; // Count receive packets
1670  // not indicated.
1671 
1672 } // mac_drv_rx_complete
1673 
1674 
1675 /************************
1676  *
1677  * mac_drv_requeue_rxd
1678  *
1679  * The hardware module calls this function to request the OS-specific
1680  * module to queue the receive buffer(s) represented by the pointer
1681  * to the RxD and the frag_count into the receive queue again. This
1682  * buffer was filled with an invalid frame or an SMT frame.
1683  * Args
1684  * smc - A pointer to the SMT context struct.
1685  *
1686  * rxd - A pointer to the first RxD which is used by the receive frame.
1687  *
1688  * frag_count - Count of RxDs used by the received frame.
1689  * Out
1690  * Nothing.
1691  *
1692  ************************/
1693 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1694  int frag_count)
1695 {
1696  volatile struct s_smt_fp_rxd *next_rxd;
1697  volatile struct s_smt_fp_rxd *src_rxd;
1698  struct sk_buff *skb;
1699  int MaxFrameSize;
1700  unsigned char *v_addr;
1701  dma_addr_t b_addr;
1702 
1703  if (frag_count != 1) // This is not allowed to happen.
1704 
1705  printk("fddi: Multi-fragment requeue!\n");
1706 
1707  MaxFrameSize = smc->os.MaxFrameSize;
1708  src_rxd = rxd;
1709  for (; frag_count > 0; frag_count--) {
1710  next_rxd = src_rxd->rxd_next;
1711  rxd = HWM_GET_CURR_RXD(smc);
1712 
1713  skb = src_rxd->rxd_os.skb;
1714  if (skb == NULL) { // this should not happen
1715 
1716  pr_debug("Requeue with no skb in rxd!\n");
1717  skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1718  if (skb) {
1719  // we got a skb
1720  rxd->rxd_os.skb = skb;
1721  skb_reserve(skb, 3);
1722  skb_put(skb, MaxFrameSize);
1723  v_addr = skb->data;
1724  b_addr = pci_map_single(&smc->os.pdev,
1725  v_addr,
1726  MaxFrameSize,
1728  rxd->rxd_os.dma_addr = b_addr;
1729  } else {
1730  // no skb available, use local buffer
1731  pr_debug("Queueing invalid buffer!\n");
1732  rxd->rxd_os.skb = NULL;
1733  v_addr = smc->os.LocalRxBuffer;
1734  b_addr = smc->os.LocalRxBufferDMA;
1735  }
1736  } else {
1737  // we use skb from old rxd
1738  rxd->rxd_os.skb = skb;
1739  v_addr = skb->data;
1740  b_addr = pci_map_single(&smc->os.pdev,
1741  v_addr,
1742  MaxFrameSize,
1744  rxd->rxd_os.dma_addr = b_addr;
1745  }
1746  hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1747  FIRST_FRAG | LAST_FRAG);
1748 
1749  src_rxd = next_rxd;
1750  }
1751 } // mac_drv_requeue_rxd
1752 
1753 
1754 /************************
1755  *
1756  * mac_drv_fill_rxd
1757  *
1758  * The hardware module calls this function at initialization time
1759  * to fill the RxD ring with receive buffers. It is also called by
1760  * mac_drv_rx_complete if rx_free is large enough to queue some new
1761  * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1762  * receive buffers as long as enough RxDs and receive buffers are
1763  * available.
1764  * Args
1765  * smc - A pointer to the SMT context struct.
1766  * Out
1767  * Nothing.
1768  *
1769  ************************/
1770 void mac_drv_fill_rxd(struct s_smc *smc)
1771 {
1772  int MaxFrameSize;
1773  unsigned char *v_addr;
1774  unsigned long b_addr;
1775  struct sk_buff *skb;
1776  volatile struct s_smt_fp_rxd *rxd;
1777 
1778  pr_debug("entering mac_drv_fill_rxd\n");
1779 
1780  // Walk through the list of free receive buffers, passing receive
1781  // buffers to the HWM as long as RXDs are available.
1782 
1783  MaxFrameSize = smc->os.MaxFrameSize;
1784  // Check if there is any RXD left.
1785  while (HWM_GET_RX_FREE(smc) > 0) {
1786  pr_debug(".\n");
1787 
1788  rxd = HWM_GET_CURR_RXD(smc);
1789  skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1790  if (skb) {
1791  // we got a skb
1792  skb_reserve(skb, 3);
1793  skb_put(skb, MaxFrameSize);
1794  v_addr = skb->data;
1795  b_addr = pci_map_single(&smc->os.pdev,
1796  v_addr,
1797  MaxFrameSize,
1799  rxd->rxd_os.dma_addr = b_addr;
1800  } else {
1801  // no skb available, use local buffer
1802  // System has run out of buffer memory, but we want to
1803  // keep the receiver running in hope of better times.
1804  // Multiple descriptors may point to this local buffer,
1805  // so data in it must be considered invalid.
1806  pr_debug("Queueing invalid buffer!\n");
1807  v_addr = smc->os.LocalRxBuffer;
1808  b_addr = smc->os.LocalRxBufferDMA;
1809  }
1810 
1811  rxd->rxd_os.skb = skb;
1812 
1813  // Pass receive buffer to HWM.
1814  hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1815  FIRST_FRAG | LAST_FRAG);
1816  }
1817  pr_debug("leaving mac_drv_fill_rxd\n");
1818 } // mac_drv_fill_rxd
1819 
1820 
1821 /************************
1822  *
1823  * mac_drv_clear_rxd
1824  *
1825  * The hardware module calls this function to release unused
1826  * receive buffers.
1827  * Args
1828  * smc - A pointer to the SMT context struct.
1829  *
1830  * rxd - A pointer to the first RxD which is used by the receive buffer.
1831  *
1832  * frag_count - Count of RxDs used by the receive buffer.
1833  * Out
1834  * Nothing.
1835  *
1836  ************************/
1837 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1838  int frag_count)
1839 {
1840 
1841  struct sk_buff *skb;
1842 
1843  pr_debug("entering mac_drv_clear_rxd\n");
1844 
1845  if (frag_count != 1) // This is not allowed to happen.
1846 
1847  printk("fddi: Multi-fragment clear!\n");
1848 
1849  for (; frag_count > 0; frag_count--) {
1850  skb = rxd->rxd_os.skb;
1851  if (skb != NULL) {
1852  skfddi_priv *bp = &smc->os;
1853  int MaxFrameSize = bp->MaxFrameSize;
1854 
1855  pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1856  MaxFrameSize, PCI_DMA_FROMDEVICE);
1857 
1858  dev_kfree_skb(skb);
1859  rxd->rxd_os.skb = NULL;
1860  }
1861  rxd = rxd->rxd_next; // Next RXD.
1862 
1863  }
1864 } // mac_drv_clear_rxd
1865 
1866 
1867 /************************
1868  *
1869  * mac_drv_rx_init
1870  *
1871  * The hardware module calls this routine when an SMT or NSA frame of the
1872  * local SMT should be delivered to the LLC layer.
1873  *
1874  * It is necessary to have this function, because there is no other way to
1875  * copy the contents of SMT MBufs into receive buffers.
1876  *
1877  * mac_drv_rx_init allocates the required target memory for this frame,
1878  * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1879  * Args
1880  * smc - A pointer to the SMT context struct.
1881  *
1882  * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1883  *
1884  * fc - The Frame Control field of the received frame.
1885  *
1886  * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1887  *
1888  * la_len - The length of the lookahead data stored in the lookahead
1889  * buffer (may be zero).
1890  * Out
1891  * Always returns zero (0).
1892  *
1893  ************************/
1894 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1895  char *look_ahead, int la_len)
1896 {
1897  struct sk_buff *skb;
1898 
1899  pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1900 
1901  // "Received" a SMT or NSA frame of the local SMT.
1902 
1903  if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1904  pr_debug("fddi: Discard invalid local SMT frame\n");
1905  pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1906  len, la_len, (unsigned long) look_ahead);
1907  return 0;
1908  }
1909  skb = alloc_skb(len + 3, GFP_ATOMIC);
1910  if (!skb) {
1911  pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1912  return 0;
1913  }
1914  skb_reserve(skb, 3);
1915  skb_put(skb, len);
1916  skb_copy_to_linear_data(skb, look_ahead, len);
1917 
1918  // deliver frame to system
1919  skb->protocol = fddi_type_trans(skb, smc->os.dev);
1920  netif_rx(skb);
1921 
1922  return 0;
1923 } // mac_drv_rx_init
1924 
1925 
1926 /************************
1927  *
1928  * smt_timer_poll
1929  *
1930  * This routine is called periodically by the SMT module to clean up the
1931  * driver.
1932  *
1933  * Return any queued frames back to the upper protocol layers if the ring
1934  * is down.
1935  * Args
1936  * smc - A pointer to the SMT context struct.
1937  * Out
1938  * Nothing.
1939  *
1940  ************************/
1941 void smt_timer_poll(struct s_smc *smc)
1942 {
1943 } // smt_timer_poll
1944 
1945 
1946 /************************
1947  *
1948  * ring_status_indication
1949  *
1950  * This function indicates a change of the ring state.
1951  * Args
1952  * smc - A pointer to the SMT context struct.
1953  *
1954  * status - The current ring status.
1955  * Out
1956  * Nothing.
1957  *
1958  ************************/
1959 void ring_status_indication(struct s_smc *smc, u_long status)
1960 {
1961  pr_debug("ring_status_indication( ");
1962  if (status & RS_RES15)
1963  pr_debug("RS_RES15 ");
1964  if (status & RS_HARDERROR)
1965  pr_debug("RS_HARDERROR ");
1966  if (status & RS_SOFTERROR)
1967  pr_debug("RS_SOFTERROR ");
1968  if (status & RS_BEACON)
1969  pr_debug("RS_BEACON ");
1970  if (status & RS_PATHTEST)
1971  pr_debug("RS_PATHTEST ");
1972  if (status & RS_SELFTEST)
1973  pr_debug("RS_SELFTEST ");
1974  if (status & RS_RES9)
1975  pr_debug("RS_RES9 ");
1976  if (status & RS_DISCONNECT)
1977  pr_debug("RS_DISCONNECT ");
1978  if (status & RS_RES7)
1979  pr_debug("RS_RES7 ");
1980  if (status & RS_DUPADDR)
1981  pr_debug("RS_DUPADDR ");
1982  if (status & RS_NORINGOP)
1983  pr_debug("RS_NORINGOP ");
1984  if (status & RS_VERSION)
1985  pr_debug("RS_VERSION ");
1986  if (status & RS_STUCKBYPASSS)
1987  pr_debug("RS_STUCKBYPASSS ");
1988  if (status & RS_EVENT)
1989  pr_debug("RS_EVENT ");
1990  if (status & RS_RINGOPCHANGE)
1991  pr_debug("RS_RINGOPCHANGE ");
1992  if (status & RS_RES0)
1993  pr_debug("RS_RES0 ");
1994  pr_debug("]\n");
1995 } // ring_status_indication
1996 
1997 
1998 /************************
1999  *
2000  * smt_get_time
2001  *
2002  * Gets the current time from the system.
2003  * Args
2004  * None.
2005  * Out
2006  * The current time in TICKS_PER_SECOND.
2007  *
2008  * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2009  * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2010  * to the time returned by smt_get_time().
2011  *
2012  ************************/
2013 unsigned long smt_get_time(void)
2014 {
2015  return jiffies;
2016 } // smt_get_time
2017 
2018 
2019 /************************
2020  *
2021  * smt_stat_counter
2022  *
2023  * Status counter update (ring_op, fifo full).
2024  * Args
2025  * smc - A pointer to the SMT context struct.
2026  *
2027  * stat - = 0: A ring operational change occurred.
2028  * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2029  * Out
2030  * Nothing.
2031  *
2032  ************************/
2033 void smt_stat_counter(struct s_smc *smc, int stat)
2034 {
2035 // BOOLEAN RingIsUp ;
2036 
2037  pr_debug("smt_stat_counter\n");
2038  switch (stat) {
2039  case 0:
2040  pr_debug("Ring operational change.\n");
2041  break;
2042  case 1:
2043  pr_debug("Receive fifo overflow.\n");
2044  smc->os.MacStat.gen.rx_errors++;
2045  break;
2046  default:
2047  pr_debug("Unknown status (%d).\n", stat);
2048  break;
2049  }
2050 } // smt_stat_counter
2051 
2052 
2053 /************************
2054  *
2055  * cfm_state_change
2056  *
2057  * Sets CFM state in custom statistics.
2058  * Args
2059  * smc - A pointer to the SMT context struct.
2060  *
2061  * c_state - Possible values are:
2062  *
2063  * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2064  * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2065  * Out
2066  * Nothing.
2067  *
2068  ************************/
2069 void cfm_state_change(struct s_smc *smc, int c_state)
2070 {
2071 #ifdef DRIVERDEBUG
2072  char *s;
2073 
2074  switch (c_state) {
2075  case SC0_ISOLATED:
2076  s = "SC0_ISOLATED";
2077  break;
2078  case SC1_WRAP_A:
2079  s = "SC1_WRAP_A";
2080  break;
2081  case SC2_WRAP_B:
2082  s = "SC2_WRAP_B";
2083  break;
2084  case SC4_THRU_A:
2085  s = "SC4_THRU_A";
2086  break;
2087  case SC5_THRU_B:
2088  s = "SC5_THRU_B";
2089  break;
2090  case SC7_WRAP_S:
2091  s = "SC7_WRAP_S";
2092  break;
2093  case SC9_C_WRAP_A:
2094  s = "SC9_C_WRAP_A";
2095  break;
2096  case SC10_C_WRAP_B:
2097  s = "SC10_C_WRAP_B";
2098  break;
2099  case SC11_C_WRAP_S:
2100  s = "SC11_C_WRAP_S";
2101  break;
2102  default:
2103  pr_debug("cfm_state_change: unknown %d\n", c_state);
2104  return;
2105  }
2106  pr_debug("cfm_state_change: %s\n", s);
2107 #endif // DRIVERDEBUG
2108 } // cfm_state_change
2109 
2110 
2111 /************************
2112  *
2113  * ecm_state_change
2114  *
2115  * Sets ECM state in custom statistics.
2116  * Args
2117  * smc - A pointer to the SMT context struct.
2118  *
2119  * e_state - Possible values are:
2120  *
2121  * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2122  * SC5_THRU_B (7), SC7_WRAP_S (8)
2123  * Out
2124  * Nothing.
2125  *
2126  ************************/
2127 void ecm_state_change(struct s_smc *smc, int e_state)
2128 {
2129 #ifdef DRIVERDEBUG
2130  char *s;
2131 
2132  switch (e_state) {
2133  case EC0_OUT:
2134  s = "EC0_OUT";
2135  break;
2136  case EC1_IN:
2137  s = "EC1_IN";
2138  break;
2139  case EC2_TRACE:
2140  s = "EC2_TRACE";
2141  break;
2142  case EC3_LEAVE:
2143  s = "EC3_LEAVE";
2144  break;
2145  case EC4_PATH_TEST:
2146  s = "EC4_PATH_TEST";
2147  break;
2148  case EC5_INSERT:
2149  s = "EC5_INSERT";
2150  break;
2151  case EC6_CHECK:
2152  s = "EC6_CHECK";
2153  break;
2154  case EC7_DEINSERT:
2155  s = "EC7_DEINSERT";
2156  break;
2157  default:
2158  s = "unknown";
2159  break;
2160  }
2161  pr_debug("ecm_state_change: %s\n", s);
2162 #endif //DRIVERDEBUG
2163 } // ecm_state_change
2164 
2165 
2166 /************************
2167  *
2168  * rmt_state_change
2169  *
2170  * Sets RMT state in custom statistics.
2171  * Args
2172  * smc - A pointer to the SMT context struct.
2173  *
2174  * r_state - Possible values are:
2175  *
2176  * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2177  * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2178  * Out
2179  * Nothing.
2180  *
2181  ************************/
2182 void rmt_state_change(struct s_smc *smc, int r_state)
2183 {
2184 #ifdef DRIVERDEBUG
2185  char *s;
2186 
2187  switch (r_state) {
2188  case RM0_ISOLATED:
2189  s = "RM0_ISOLATED";
2190  break;
2191  case RM1_NON_OP:
2192  s = "RM1_NON_OP - not operational";
2193  break;
2194  case RM2_RING_OP:
2195  s = "RM2_RING_OP - ring operational";
2196  break;
2197  case RM3_DETECT:
2198  s = "RM3_DETECT - detect dupl addresses";
2199  break;
2200  case RM4_NON_OP_DUP:
2201  s = "RM4_NON_OP_DUP - dupl. addr detected";
2202  break;
2203  case RM5_RING_OP_DUP:
2204  s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2205  break;
2206  case RM6_DIRECTED:
2207  s = "RM6_DIRECTED - sending directed beacons";
2208  break;
2209  case RM7_TRACE:
2210  s = "RM7_TRACE - trace initiated";
2211  break;
2212  default:
2213  s = "unknown";
2214  break;
2215  }
2216  pr_debug("[rmt_state_change: %s]\n", s);
2217 #endif // DRIVERDEBUG
2218 } // rmt_state_change
2219 
2220 
2221 /************************
2222  *
2223  * drv_reset_indication
2224  *
2225  * This function is called by the SMT when it has detected a severe
2226  * hardware problem. The driver should perform a reset on the adapter
2227  * as soon as possible, but not from within this function.
2228  * Args
2229  * smc - A pointer to the SMT context struct.
2230  * Out
2231  * Nothing.
2232  *
2233  ************************/
2234 void drv_reset_indication(struct s_smc *smc)
2235 {
2236  pr_debug("entering drv_reset_indication\n");
2237 
2238  smc->os.ResetRequested = TRUE; // Set flag.
2239 
2240 } // drv_reset_indication
2241 
2242 static struct pci_driver skfddi_pci_driver = {
2243  .name = "skfddi",
2244  .id_table = skfddi_pci_tbl,
2245  .probe = skfp_init_one,
2246  .remove = __devexit_p(skfp_remove_one),
2247 };
2248 
2249 static int __init skfd_init(void)
2250 {
2251  return pci_register_driver(&skfddi_pci_driver);
2252 }
2253 
2254 static void __exit skfd_exit(void)
2255 {
2256  pci_unregister_driver(&skfddi_pci_driver);
2257 }
2258 
2259 module_init(skfd_init);
2260 module_exit(skfd_exit);