Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
process_64.c
Go to the documentation of this file.
1 /* arch/sparc64/kernel/process.c
2  *
3  * Copyright (C) 1995, 1996, 2008 David S. Miller ([email protected])
4  * Copyright (C) 1996 Eddie C. Dost ([email protected])
5  * Copyright (C) 1997, 1998 Jakub Jelinek ([email protected])
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
52 
53 #include "kstack.h"
54 
55 static void sparc64_yield(int cpu)
56 {
57  if (tlb_type != hypervisor) {
59  return;
60  }
61 
62  clear_thread_flag(TIF_POLLING_NRFLAG);
64 
65  while (!need_resched() && !cpu_is_offline(cpu)) {
66  unsigned long pstate;
67 
68  /* Disable interrupts. */
69  __asm__ __volatile__(
70  "rdpr %%pstate, %0\n\t"
71  "andn %0, %1, %0\n\t"
72  "wrpr %0, %%g0, %%pstate"
73  : "=&r" (pstate)
74  : "i" (PSTATE_IE));
75 
76  if (!need_resched() && !cpu_is_offline(cpu))
78 
79  /* Re-enable interrupts. */
80  __asm__ __volatile__(
81  "rdpr %%pstate, %0\n\t"
82  "or %0, %1, %0\n\t"
83  "wrpr %0, %%g0, %%pstate"
84  : "=&r" (pstate)
85  : "i" (PSTATE_IE));
86  }
87 
88  set_thread_flag(TIF_POLLING_NRFLAG);
89 }
90 
91 /* The idle loop on sparc64. */
92 void cpu_idle(void)
93 {
94  int cpu = smp_processor_id();
95 
96  set_thread_flag(TIF_POLLING_NRFLAG);
97 
98  while(1) {
99  tick_nohz_idle_enter();
100  rcu_idle_enter();
101 
102  while (!need_resched() && !cpu_is_offline(cpu))
103  sparc64_yield(cpu);
104 
105  rcu_idle_exit();
106  tick_nohz_idle_exit();
107 
108 #ifdef CONFIG_HOTPLUG_CPU
109  if (cpu_is_offline(cpu)) {
111  cpu_play_dead();
112  }
113 #endif
115  }
116 }
117 
118 #ifdef CONFIG_COMPAT
119 static void show_regwindow32(struct pt_regs *regs)
120 {
121  struct reg_window32 __user *rw;
122  struct reg_window32 r_w;
123  mm_segment_t old_fs;
124 
125  __asm__ __volatile__ ("flushw");
126  rw = compat_ptr((unsigned)regs->u_regs[14]);
127  old_fs = get_fs();
128  set_fs (USER_DS);
129  if (copy_from_user (&r_w, rw, sizeof(r_w))) {
130  set_fs (old_fs);
131  return;
132  }
133 
134  set_fs (old_fs);
135  printk("l0: %08x l1: %08x l2: %08x l3: %08x "
136  "l4: %08x l5: %08x l6: %08x l7: %08x\n",
137  r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
138  r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
139  printk("i0: %08x i1: %08x i2: %08x i3: %08x "
140  "i4: %08x i5: %08x i6: %08x i7: %08x\n",
141  r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
142  r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
143 }
144 #else
145 #define show_regwindow32(regs) do { } while (0)
146 #endif
147 
148 static void show_regwindow(struct pt_regs *regs)
149 {
150  struct reg_window __user *rw;
151  struct reg_window *rwk;
152  struct reg_window r_w;
153  mm_segment_t old_fs;
154 
155  if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
156  __asm__ __volatile__ ("flushw");
157  rw = (struct reg_window __user *)
158  (regs->u_regs[14] + STACK_BIAS);
159  rwk = (struct reg_window *)
160  (regs->u_regs[14] + STACK_BIAS);
161  if (!(regs->tstate & TSTATE_PRIV)) {
162  old_fs = get_fs();
163  set_fs (USER_DS);
164  if (copy_from_user (&r_w, rw, sizeof(r_w))) {
165  set_fs (old_fs);
166  return;
167  }
168  rwk = &r_w;
169  set_fs (old_fs);
170  }
171  } else {
172  show_regwindow32(regs);
173  return;
174  }
175  printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
176  rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
177  printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
178  rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
179  printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
180  rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
181  printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
182  rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
183  if (regs->tstate & TSTATE_PRIV)
184  printk("I7: <%pS>\n", (void *) rwk->ins[7]);
185 }
186 
187 void show_regs(struct pt_regs *regs)
188 {
189  printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
190  regs->tpc, regs->tnpc, regs->y, print_tainted());
191  printk("TPC: <%pS>\n", (void *) regs->tpc);
192  printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
193  regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
194  regs->u_regs[3]);
195  printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
196  regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
197  regs->u_regs[7]);
198  printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
199  regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
200  regs->u_regs[11]);
201  printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
202  regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
203  regs->u_regs[15]);
204  printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
205  show_regwindow(regs);
206  show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
207 }
208 
210 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
211 
212 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
213  int this_cpu)
214 {
215  struct global_reg_snapshot *rp;
216 
217  flushw_all();
218 
219  rp = &global_cpu_snapshot[this_cpu].reg;
220 
221  rp->tstate = regs->tstate;
222  rp->tpc = regs->tpc;
223  rp->tnpc = regs->tnpc;
224  rp->o7 = regs->u_regs[UREG_I7];
225 
226  if (regs->tstate & TSTATE_PRIV) {
227  struct reg_window *rw;
228 
229  rw = (struct reg_window *)
230  (regs->u_regs[UREG_FP] + STACK_BIAS);
231  if (kstack_valid(tp, (unsigned long) rw)) {
232  rp->i7 = rw->ins[7];
233  rw = (struct reg_window *)
234  (rw->ins[6] + STACK_BIAS);
235  if (kstack_valid(tp, (unsigned long) rw))
236  rp->rpc = rw->ins[7];
237  }
238  } else {
239  rp->i7 = 0;
240  rp->rpc = 0;
241  }
242  rp->thread = tp;
243 }
244 
245 /* In order to avoid hangs we do not try to synchronize with the
246  * global register dump client cpus. The last store they make is to
247  * the thread pointer, so do a short poll waiting for that to become
248  * non-NULL.
249  */
250 static void __global_reg_poll(struct global_reg_snapshot *gp)
251 {
252  int limit = 0;
253 
254  while (!gp->thread && ++limit < 100) {
255  barrier();
256  udelay(1);
257  }
258 }
259 
261 {
262  struct thread_info *tp = current_thread_info();
263  struct pt_regs *regs = get_irq_regs();
264  unsigned long flags;
265  int this_cpu, cpu;
266 
267  if (!regs)
268  regs = tp->kregs;
269 
270  spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
271 
273 
274  this_cpu = raw_smp_processor_id();
275 
276  __global_reg_self(tp, regs, this_cpu);
277 
279 
280  for_each_online_cpu(cpu) {
281  struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
282 
283  __global_reg_poll(gp);
284 
285  tp = gp->thread;
286  printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
287  (cpu == this_cpu ? '*' : ' '), cpu,
288  gp->tstate, gp->tpc, gp->tnpc,
289  ((tp && tp->task) ? tp->task->comm : "NULL"),
290  ((tp && tp->task) ? tp->task->pid : -1));
291 
292  if (gp->tstate & TSTATE_PRIV) {
293  printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
294  (void *) gp->tpc,
295  (void *) gp->o7,
296  (void *) gp->i7,
297  (void *) gp->rpc);
298  } else {
299  printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
300  gp->tpc, gp->o7, gp->i7, gp->rpc);
301  }
302  }
303 
305 
306  spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
307 }
308 
309 #ifdef CONFIG_MAGIC_SYSRQ
310 
311 static void sysrq_handle_globreg(int key)
312 {
314 }
315 
316 static struct sysrq_key_op sparc_globalreg_op = {
317  .handler = sysrq_handle_globreg,
318  .help_msg = "global-regs(Y)",
319  .action_msg = "Show Global CPU Regs",
320 };
321 
322 static void __global_pmu_self(int this_cpu)
323 {
324  struct global_pmu_snapshot *pp;
325  int i, num;
326 
327  pp = &global_cpu_snapshot[this_cpu].pmu;
328 
329  num = 1;
330  if (tlb_type == hypervisor &&
331  sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
332  num = 4;
333 
334  for (i = 0; i < num; i++) {
335  pp->pcr[i] = pcr_ops->read_pcr(i);
336  pp->pic[i] = pcr_ops->read_pic(i);
337  }
338 }
339 
340 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
341 {
342  int limit = 0;
343 
344  while (!pp->pcr[0] && ++limit < 100) {
345  barrier();
346  udelay(1);
347  }
348 }
349 
350 static void pmu_snapshot_all_cpus(void)
351 {
352  unsigned long flags;
353  int this_cpu, cpu;
354 
355  spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
356 
358 
359  this_cpu = raw_smp_processor_id();
360 
361  __global_pmu_self(this_cpu);
362 
364 
365  for_each_online_cpu(cpu) {
366  struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
367 
368  __global_pmu_poll(pp);
369 
370  printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
371  (cpu == this_cpu ? '*' : ' '), cpu,
372  pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
373  pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
374  }
375 
377 
378  spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
379 }
380 
381 static void sysrq_handle_globpmu(int key)
382 {
383  pmu_snapshot_all_cpus();
384 }
385 
386 static struct sysrq_key_op sparc_globalpmu_op = {
387  .handler = sysrq_handle_globpmu,
388  .help_msg = "global-pmu(X)",
389  .action_msg = "Show Global PMU Regs",
390 };
391 
392 static int __init sparc_sysrq_init(void)
393 {
394  int ret = register_sysrq_key('y', &sparc_globalreg_op);
395 
396  if (!ret)
397  ret = register_sysrq_key('x', &sparc_globalpmu_op);
398  return ret;
399 }
400 
401 core_initcall(sparc_sysrq_init);
402 
403 #endif
404 
405 unsigned long thread_saved_pc(struct task_struct *tsk)
406 {
407  struct thread_info *ti = task_thread_info(tsk);
408  unsigned long ret = 0xdeadbeefUL;
409 
410  if (ti && ti->ksp) {
411  unsigned long *sp;
412  sp = (unsigned long *)(ti->ksp + STACK_BIAS);
413  if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
414  sp[14]) {
415  unsigned long *fp;
416  fp = (unsigned long *)(sp[14] + STACK_BIAS);
417  if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
418  ret = fp[15];
419  }
420  }
421  return ret;
422 }
423 
424 /* Free current thread data structures etc.. */
425 void exit_thread(void)
426 {
427  struct thread_info *t = current_thread_info();
428 
429  if (t->utraps) {
430  if (t->utraps[0] < 2)
431  kfree (t->utraps);
432  else
433  t->utraps[0]--;
434  }
435 }
436 
437 void flush_thread(void)
438 {
439  struct thread_info *t = current_thread_info();
440  struct mm_struct *mm;
441 
442  mm = t->task->mm;
443  if (mm)
444  tsb_context_switch(mm);
445 
446  set_thread_wsaved(0);
447 
448  /* Clear FPU register state. */
449  t->fpsaved[0] = 0;
450 }
451 
452 /* It's a bit more tricky when 64-bit tasks are involved... */
453 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
454 {
455  bool stack_64bit = test_thread_64bit_stack(psp);
456  unsigned long fp, distance, rval;
457 
458  if (stack_64bit) {
459  csp += STACK_BIAS;
460  psp += STACK_BIAS;
461  __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
462  fp += STACK_BIAS;
463  if (test_thread_flag(TIF_32BIT))
464  fp &= 0xffffffff;
465  } else
466  __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
467 
468  /* Now align the stack as this is mandatory in the Sparc ABI
469  * due to how register windows work. This hides the
470  * restriction from thread libraries etc.
471  */
472  csp &= ~15UL;
473 
474  distance = fp - psp;
475  rval = (csp - distance);
476  if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
477  rval = 0;
478  else if (!stack_64bit) {
479  if (put_user(((u32)csp),
480  &(((struct reg_window32 __user *)rval)->ins[6])))
481  rval = 0;
482  } else {
483  if (put_user(((u64)csp - STACK_BIAS),
484  &(((struct reg_window __user *)rval)->ins[6])))
485  rval = 0;
486  else
487  rval = rval - STACK_BIAS;
488  }
489 
490  return rval;
491 }
492 
493 /* Standard stuff. */
494 static inline void shift_window_buffer(int first_win, int last_win,
495  struct thread_info *t)
496 {
497  int i;
498 
499  for (i = first_win; i < last_win; i++) {
500  t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
501  memcpy(&t->reg_window[i], &t->reg_window[i+1],
502  sizeof(struct reg_window));
503  }
504 }
505 
507 {
508  struct thread_info *t = current_thread_info();
509  unsigned long window;
510 
512  if ((window = get_thread_wsaved()) != 0) {
513  window -= 1;
514  do {
515  struct reg_window *rwin = &t->reg_window[window];
516  int winsize = sizeof(struct reg_window);
517  unsigned long sp;
518 
519  sp = t->rwbuf_stkptrs[window];
520 
521  if (test_thread_64bit_stack(sp))
522  sp += STACK_BIAS;
523  else
524  winsize = sizeof(struct reg_window32);
525 
526  if (!copy_to_user((char __user *)sp, rwin, winsize)) {
527  shift_window_buffer(window, get_thread_wsaved() - 1, t);
528  set_thread_wsaved(get_thread_wsaved() - 1);
529  }
530  } while (window--);
531  }
532 }
533 
534 static void stack_unaligned(unsigned long sp)
535 {
536  siginfo_t info;
537 
538  info.si_signo = SIGBUS;
539  info.si_errno = 0;
540  info.si_code = BUS_ADRALN;
541  info.si_addr = (void __user *) sp;
542  info.si_trapno = 0;
543  force_sig_info(SIGBUS, &info, current);
544 }
545 
547 {
548  struct thread_info *t = current_thread_info();
549  unsigned long window;
550 
552  window = get_thread_wsaved();
553 
554  if (likely(window != 0)) {
555  window -= 1;
556  do {
557  struct reg_window *rwin = &t->reg_window[window];
558  int winsize = sizeof(struct reg_window);
559  unsigned long sp;
560 
561  sp = t->rwbuf_stkptrs[window];
562 
563  if (test_thread_64bit_stack(sp))
564  sp += STACK_BIAS;
565  else
566  winsize = sizeof(struct reg_window32);
567 
568  if (unlikely(sp & 0x7UL))
569  stack_unaligned(sp);
570 
571  if (unlikely(copy_to_user((char __user *)sp,
572  rwin, winsize)))
573  goto barf;
574  } while (window--);
575  }
576  set_thread_wsaved(0);
577  return;
578 
579 barf:
580  set_thread_wsaved(window + 1);
581  do_exit(SIGILL);
582 }
583 
584 asmlinkage long sparc_do_fork(unsigned long clone_flags,
585  unsigned long stack_start,
586  struct pt_regs *regs,
587  unsigned long stack_size)
588 {
589  int __user *parent_tid_ptr, *child_tid_ptr;
590  unsigned long orig_i1 = regs->u_regs[UREG_I1];
591  long ret;
592 
593 #ifdef CONFIG_COMPAT
594  if (test_thread_flag(TIF_32BIT)) {
595  parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
596  child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
597  } else
598 #endif
599  {
600  parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
601  child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
602  }
603 
604  ret = do_fork(clone_flags, stack_start,
605  regs, stack_size,
606  parent_tid_ptr, child_tid_ptr);
607 
608  /* If we get an error and potentially restart the system
609  * call, we're screwed because copy_thread() clobbered
610  * the parent's %o1. So detect that case and restore it
611  * here.
612  */
613  if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
614  regs->u_regs[UREG_I1] = orig_i1;
615 
616  return ret;
617 }
618 
619 /* Copy a Sparc thread. The fork() return value conventions
620  * under SunOS are nothing short of bletcherous:
621  * Parent --> %o0 == childs pid, %o1 == 0
622  * Child --> %o0 == parents pid, %o1 == 1
623  */
624 int copy_thread(unsigned long clone_flags, unsigned long sp,
625  unsigned long unused,
626  struct task_struct *p, struct pt_regs *regs)
627 {
628  struct thread_info *t = task_thread_info(p);
629  struct sparc_stackf *parent_sf;
630  unsigned long child_stack_sz;
631  char *child_trap_frame;
632  int kernel_thread;
633 
634  kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
635  parent_sf = ((struct sparc_stackf *) regs) - 1;
636 
637  /* Calculate offset to stack_frame & pt_regs */
638  child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
639  (kernel_thread ? STACKFRAME_SZ : 0));
640  child_trap_frame = (task_stack_page(p) +
641  (THREAD_SIZE - child_stack_sz));
642  memcpy(child_trap_frame, parent_sf, child_stack_sz);
643 
644  t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
645  (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
646  (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
647  t->new_child = 1;
648  t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
649  t->kregs = (struct pt_regs *) (child_trap_frame +
650  sizeof(struct sparc_stackf));
651  t->fpsaved[0] = 0;
652 
653  if (kernel_thread) {
654  struct sparc_stackf *child_sf = (struct sparc_stackf *)
655  (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
656 
657  /* Zero terminate the stack backtrace. */
658  child_sf->fp = NULL;
659  t->kregs->u_regs[UREG_FP] =
660  ((unsigned long) child_sf) - STACK_BIAS;
661 
662  t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
663  t->kregs->u_regs[UREG_G6] = (unsigned long) t;
664  t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
665  } else {
666  if (t->flags & _TIF_32BIT) {
667  sp &= 0x00000000ffffffffUL;
668  regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
669  }
670  t->kregs->u_regs[UREG_FP] = sp;
671  t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
672  if (sp != regs->u_regs[UREG_FP]) {
673  unsigned long csp;
674 
675  csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
676  if (!csp)
677  return -EFAULT;
678  t->kregs->u_regs[UREG_FP] = csp;
679  }
680  if (t->utraps)
681  t->utraps[0]++;
682  }
683 
684  /* Set the return value for the child. */
685  t->kregs->u_regs[UREG_I0] = current->pid;
686  t->kregs->u_regs[UREG_I1] = 1;
687 
688  /* Set the second return value for the parent. */
689  regs->u_regs[UREG_I1] = 0;
690 
691  if (clone_flags & CLONE_SETTLS)
692  t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
693 
694  return 0;
695 }
696 
697 /*
698  * This is the mechanism for creating a new kernel thread.
699  *
700  * NOTE! Only a kernel-only process(ie the swapper or direct descendants
701  * who haven't done an "execve()") should use this: it will work within
702  * a system call from a "real" process, but the process memory space will
703  * not be freed until both the parent and the child have exited.
704  */
705 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
706 {
707  long retval;
708 
709  /* If the parent runs before fn(arg) is called by the child,
710  * the input registers of this function can be clobbered.
711  * So we stash 'fn' and 'arg' into global registers which
712  * will not be modified by the parent.
713  */
714  __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
715  "mov %5, %%g3\n\t" /* Save ARG into global */
716  "mov %1, %%g1\n\t" /* Clone syscall nr. */
717  "mov %2, %%o0\n\t" /* Clone flags. */
718  "mov 0, %%o1\n\t" /* usp arg == 0 */
719  "t 0x6d\n\t" /* Linux/Sparc clone(). */
720  "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
721  " mov %%o0, %0\n\t"
722  "jmpl %%g2, %%o7\n\t" /* Call the function. */
723  " mov %%g3, %%o0\n\t" /* Set arg in delay. */
724  "mov %3, %%g1\n\t"
725  "t 0x6d\n\t" /* Linux/Sparc exit(). */
726  /* Notreached by child. */
727  "1:" :
728  "=r" (retval) :
729  "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
730  "i" (__NR_exit), "r" (fn), "r" (arg) :
731  "g1", "g2", "g3", "o0", "o1", "memory", "cc");
732  return retval;
733 }
735 
736 typedef struct {
737  union {
738  unsigned int pr_regs[32];
739  unsigned long pr_dregs[16];
740  } pr_fr;
741  unsigned int __unused;
742  unsigned int pr_fsr;
743  unsigned char pr_qcnt;
744  unsigned char pr_q_entrysize;
745  unsigned char pr_en;
746  unsigned int pr_q[64];
748 
749 /*
750  * fill in the fpu structure for a core dump.
751  */
752 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
753 {
754  unsigned long *kfpregs = current_thread_info()->fpregs;
755  unsigned long fprs = current_thread_info()->fpsaved[0];
756 
757  if (test_thread_flag(TIF_32BIT)) {
758  elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
759 
760  if (fprs & FPRS_DL)
761  memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
762  sizeof(unsigned int) * 32);
763  else
764  memset(&fpregs32->pr_fr.pr_regs[0], 0,
765  sizeof(unsigned int) * 32);
766  fpregs32->pr_qcnt = 0;
767  fpregs32->pr_q_entrysize = 8;
768  memset(&fpregs32->pr_q[0], 0,
769  (sizeof(unsigned int) * 64));
770  if (fprs & FPRS_FEF) {
771  fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
772  fpregs32->pr_en = 1;
773  } else {
774  fpregs32->pr_fsr = 0;
775  fpregs32->pr_en = 0;
776  }
777  } else {
778  if(fprs & FPRS_DL)
779  memcpy(&fpregs->pr_regs[0], kfpregs,
780  sizeof(unsigned int) * 32);
781  else
782  memset(&fpregs->pr_regs[0], 0,
783  sizeof(unsigned int) * 32);
784  if(fprs & FPRS_DU)
785  memcpy(&fpregs->pr_regs[16], kfpregs+16,
786  sizeof(unsigned int) * 32);
787  else
788  memset(&fpregs->pr_regs[16], 0,
789  sizeof(unsigned int) * 32);
790  if(fprs & FPRS_FEF) {
791  fpregs->pr_fsr = current_thread_info()->xfsr[0];
792  fpregs->pr_gsr = current_thread_info()->gsr[0];
793  } else {
794  fpregs->pr_fsr = fpregs->pr_gsr = 0;
795  }
796  fpregs->pr_fprs = fprs;
797  }
798  return 1;
799 }
801 
802 /*
803  * sparc_execve() executes a new program after the asm stub has set
804  * things up for us. This should basically do what I want it to.
805  */
806 asmlinkage int sparc_execve(struct pt_regs *regs)
807 {
808  int error, base = 0;
809  struct filename *filename;
810 
811  /* User register window flush is done by entry.S */
812 
813  /* Check for indirect call. */
814  if (regs->u_regs[UREG_G1] == 0)
815  base = 1;
816 
817  filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
818  error = PTR_ERR(filename);
819  if (IS_ERR(filename))
820  goto out;
821  error = do_execve(filename->name,
822  (const char __user *const __user *)
823  regs->u_regs[base + UREG_I1],
824  (const char __user *const __user *)
825  regs->u_regs[base + UREG_I2], regs);
826  putname(filename);
827  if (!error) {
828  fprs_write(0);
829  current_thread_info()->xfsr[0] = 0;
830  current_thread_info()->fpsaved[0] = 0;
831  regs->tstate &= ~TSTATE_PEF;
832  }
833 out:
834  return error;
835 }
836 
837 unsigned long get_wchan(struct task_struct *task)
838 {
839  unsigned long pc, fp, bias = 0;
840  struct thread_info *tp;
841  struct reg_window *rw;
842  unsigned long ret = 0;
843  int count = 0;
844 
845  if (!task || task == current ||
846  task->state == TASK_RUNNING)
847  goto out;
848 
849  tp = task_thread_info(task);
850  bias = STACK_BIAS;
851  fp = task_thread_info(task)->ksp + bias;
852 
853  do {
854  if (!kstack_valid(tp, fp))
855  break;
856  rw = (struct reg_window *) fp;
857  pc = rw->ins[7];
858  if (!in_sched_functions(pc)) {
859  ret = pc;
860  goto out;
861  }
862  fp = rw->ins[6] + bias;
863  } while (++count < 16);
864 
865 out:
866  return ret;
867 }