Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
traps_64.c
Go to the documentation of this file.
1 /* arch/sparc64/kernel/traps.c
2  *
3  * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller ([email protected])
4  * Copyright (C) 1997,1999,2000 Jakub Jelinek ([email protected])
5  */
6 
7 /*
8  * I like traps on v9, :))))
9  */
10 
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/linkage.h>
14 #include <linux/kernel.h>
15 #include <linux/signal.h>
16 #include <linux/smp.h>
17 #include <linux/mm.h>
18 #include <linux/init.h>
19 #include <linux/kdebug.h>
20 #include <linux/ftrace.h>
21 #include <linux/reboot.h>
22 #include <linux/gfp.h>
23 
24 #include <asm/smp.h>
25 #include <asm/delay.h>
26 #include <asm/ptrace.h>
27 #include <asm/oplib.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/unistd.h>
31 #include <asm/uaccess.h>
32 #include <asm/fpumacro.h>
33 #include <asm/lsu.h>
34 #include <asm/dcu.h>
35 #include <asm/estate.h>
36 #include <asm/chafsr.h>
37 #include <asm/sfafsr.h>
38 #include <asm/psrcompat.h>
39 #include <asm/processor.h>
40 #include <asm/timer.h>
41 #include <asm/head.h>
42 #include <asm/prom.h>
43 #include <asm/memctrl.h>
44 #include <asm/cacheflush.h>
45 
46 #include "entry.h"
47 #include "kstack.h"
48 
49 /* When an irrecoverable trap occurs at tl > 0, the trap entry
50  * code logs the trap state registers at every level in the trap
51  * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
52  * is as follows:
53  */
54 struct tl1_traplog {
55  struct {
56  unsigned long tstate;
57  unsigned long tpc;
58  unsigned long tnpc;
59  unsigned long tt;
60  } trapstack[4];
61  unsigned long tl;
62 };
63 
64 static void dump_tl1_traplog(struct tl1_traplog *p)
65 {
66  int i, limit;
67 
68  printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
69  "dumping track stack.\n", p->tl);
70 
71  limit = (tlb_type == hypervisor) ? 2 : 4;
72  for (i = 0; i < limit; i++) {
74  "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
75  "TNPC[%016lx] TT[%lx]\n",
76  i + 1,
77  p->trapstack[i].tstate, p->trapstack[i].tpc,
78  p->trapstack[i].tnpc, p->trapstack[i].tt);
79  printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
80  }
81 }
82 
83 void bad_trap(struct pt_regs *regs, long lvl)
84 {
85  char buffer[32];
87 
88  if (notify_die(DIE_TRAP, "bad trap", regs,
89  0, lvl, SIGTRAP) == NOTIFY_STOP)
90  return;
91 
92  if (lvl < 0x100) {
93  sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
94  die_if_kernel(buffer, regs);
95  }
96 
97  lvl -= 0x100;
98  if (regs->tstate & TSTATE_PRIV) {
99  sprintf(buffer, "Kernel bad sw trap %lx", lvl);
100  die_if_kernel(buffer, regs);
101  }
102  if (test_thread_flag(TIF_32BIT)) {
103  regs->tpc &= 0xffffffff;
104  regs->tnpc &= 0xffffffff;
105  }
106  info.si_signo = SIGILL;
107  info.si_errno = 0;
108  info.si_code = ILL_ILLTRP;
109  info.si_addr = (void __user *)regs->tpc;
110  info.si_trapno = lvl;
111  force_sig_info(SIGILL, &info, current);
112 }
113 
114 void bad_trap_tl1(struct pt_regs *regs, long lvl)
115 {
116  char buffer[32];
117 
118  if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
119  0, lvl, SIGTRAP) == NOTIFY_STOP)
120  return;
121 
122  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
123 
124  sprintf (buffer, "Bad trap %lx at tl>0", lvl);
125  die_if_kernel (buffer, regs);
126 }
127 
128 #ifdef CONFIG_DEBUG_BUGVERBOSE
129 void do_BUG(const char *file, int line)
130 {
131  bust_spinlocks(1);
132  printk("kernel BUG at %s:%d!\n", file, line);
133 }
135 #endif
136 
137 static DEFINE_SPINLOCK(dimm_handler_lock);
138 static dimm_printer_t dimm_handler;
139 
140 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
141 {
142  unsigned long flags;
143  int ret = -ENODEV;
144 
145  spin_lock_irqsave(&dimm_handler_lock, flags);
146  if (dimm_handler) {
147  ret = dimm_handler(synd_code, paddr, buf, buflen);
148  } else if (tlb_type == spitfire) {
149  if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
150  ret = -EINVAL;
151  else
152  ret = 0;
153  } else
154  ret = -ENODEV;
155  spin_unlock_irqrestore(&dimm_handler_lock, flags);
156 
157  return ret;
158 }
159 
161 {
162  unsigned long flags;
163  int ret = 0;
164 
165  spin_lock_irqsave(&dimm_handler_lock, flags);
166  if (!dimm_handler)
167  dimm_handler = func;
168  else
169  ret = -EEXIST;
170  spin_unlock_irqrestore(&dimm_handler_lock, flags);
171 
172  return ret;
173 }
175 
177 {
178  unsigned long flags;
179 
180  spin_lock_irqsave(&dimm_handler_lock, flags);
181  if (dimm_handler == func)
182  dimm_handler = NULL;
183  spin_unlock_irqrestore(&dimm_handler_lock, flags);
184 }
186 
187 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
188 {
189  siginfo_t info;
190 
191  if (notify_die(DIE_TRAP, "instruction access exception", regs,
192  0, 0x8, SIGTRAP) == NOTIFY_STOP)
193  return;
194 
195  if (regs->tstate & TSTATE_PRIV) {
196  printk("spitfire_insn_access_exception: SFSR[%016lx] "
197  "SFAR[%016lx], going.\n", sfsr, sfar);
198  die_if_kernel("Iax", regs);
199  }
200  if (test_thread_flag(TIF_32BIT)) {
201  regs->tpc &= 0xffffffff;
202  regs->tnpc &= 0xffffffff;
203  }
204  info.si_signo = SIGSEGV;
205  info.si_errno = 0;
206  info.si_code = SEGV_MAPERR;
207  info.si_addr = (void __user *)regs->tpc;
208  info.si_trapno = 0;
209  force_sig_info(SIGSEGV, &info, current);
210 }
211 
212 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
213 {
214  if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
215  0, 0x8, SIGTRAP) == NOTIFY_STOP)
216  return;
217 
218  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
219  spitfire_insn_access_exception(regs, sfsr, sfar);
220 }
221 
222 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
223 {
224  unsigned short type = (type_ctx >> 16);
225  unsigned short ctx = (type_ctx & 0xffff);
226  siginfo_t info;
227 
228  if (notify_die(DIE_TRAP, "instruction access exception", regs,
229  0, 0x8, SIGTRAP) == NOTIFY_STOP)
230  return;
231 
232  if (regs->tstate & TSTATE_PRIV) {
233  printk("sun4v_insn_access_exception: ADDR[%016lx] "
234  "CTX[%04x] TYPE[%04x], going.\n",
235  addr, ctx, type);
236  die_if_kernel("Iax", regs);
237  }
238 
239  if (test_thread_flag(TIF_32BIT)) {
240  regs->tpc &= 0xffffffff;
241  regs->tnpc &= 0xffffffff;
242  }
243  info.si_signo = SIGSEGV;
244  info.si_errno = 0;
245  info.si_code = SEGV_MAPERR;
246  info.si_addr = (void __user *) addr;
247  info.si_trapno = 0;
248  force_sig_info(SIGSEGV, &info, current);
249 }
250 
251 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
252 {
253  if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
254  0, 0x8, SIGTRAP) == NOTIFY_STOP)
255  return;
256 
257  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
258  sun4v_insn_access_exception(regs, addr, type_ctx);
259 }
260 
261 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
262 {
263  siginfo_t info;
264 
265  if (notify_die(DIE_TRAP, "data access exception", regs,
266  0, 0x30, SIGTRAP) == NOTIFY_STOP)
267  return;
268 
269  if (regs->tstate & TSTATE_PRIV) {
270  /* Test if this comes from uaccess places. */
271  const struct exception_table_entry *entry;
272 
273  entry = search_exception_tables(regs->tpc);
274  if (entry) {
275  /* Ouch, somebody is trying VM hole tricks on us... */
276 #ifdef DEBUG_EXCEPTIONS
277  printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
278  printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
279  regs->tpc, entry->fixup);
280 #endif
281  regs->tpc = entry->fixup;
282  regs->tnpc = regs->tpc + 4;
283  return;
284  }
285  /* Shit... */
286  printk("spitfire_data_access_exception: SFSR[%016lx] "
287  "SFAR[%016lx], going.\n", sfsr, sfar);
288  die_if_kernel("Dax", regs);
289  }
290 
291  info.si_signo = SIGSEGV;
292  info.si_errno = 0;
293  info.si_code = SEGV_MAPERR;
294  info.si_addr = (void __user *)sfar;
295  info.si_trapno = 0;
296  force_sig_info(SIGSEGV, &info, current);
297 }
298 
299 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
300 {
301  if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
302  0, 0x30, SIGTRAP) == NOTIFY_STOP)
303  return;
304 
305  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
306  spitfire_data_access_exception(regs, sfsr, sfar);
307 }
308 
309 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
310 {
311  unsigned short type = (type_ctx >> 16);
312  unsigned short ctx = (type_ctx & 0xffff);
313  siginfo_t info;
314 
315  if (notify_die(DIE_TRAP, "data access exception", regs,
316  0, 0x8, SIGTRAP) == NOTIFY_STOP)
317  return;
318 
319  if (regs->tstate & TSTATE_PRIV) {
320  /* Test if this comes from uaccess places. */
321  const struct exception_table_entry *entry;
322 
323  entry = search_exception_tables(regs->tpc);
324  if (entry) {
325  /* Ouch, somebody is trying VM hole tricks on us... */
326 #ifdef DEBUG_EXCEPTIONS
327  printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
328  printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
329  regs->tpc, entry->fixup);
330 #endif
331  regs->tpc = entry->fixup;
332  regs->tnpc = regs->tpc + 4;
333  return;
334  }
335  printk("sun4v_data_access_exception: ADDR[%016lx] "
336  "CTX[%04x] TYPE[%04x], going.\n",
337  addr, ctx, type);
338  die_if_kernel("Dax", regs);
339  }
340 
341  if (test_thread_flag(TIF_32BIT)) {
342  regs->tpc &= 0xffffffff;
343  regs->tnpc &= 0xffffffff;
344  }
345  info.si_signo = SIGSEGV;
346  info.si_errno = 0;
347  info.si_code = SEGV_MAPERR;
348  info.si_addr = (void __user *) addr;
349  info.si_trapno = 0;
350  force_sig_info(SIGSEGV, &info, current);
351 }
352 
353 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
354 {
355  if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
356  0, 0x8, SIGTRAP) == NOTIFY_STOP)
357  return;
358 
359  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
360  sun4v_data_access_exception(regs, addr, type_ctx);
361 }
362 
363 #ifdef CONFIG_PCI
364 #include "pci_impl.h"
365 #endif
366 
367 /* When access exceptions happen, we must do this. */
368 static void spitfire_clean_and_reenable_l1_caches(void)
369 {
370  unsigned long va;
371 
372  if (tlb_type != spitfire)
373  BUG();
374 
375  /* Clean 'em. */
376  for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
377  spitfire_put_icache_tag(va, 0x0);
378  spitfire_put_dcache_tag(va, 0x0);
379  }
380 
381  /* Re-enable in LSU. */
382  __asm__ __volatile__("flush %%g6\n\t"
383  "membar #Sync\n\t"
384  "stxa %0, [%%g0] %1\n\t"
385  "membar #Sync"
386  : /* no outputs */
387  : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
389  "i" (ASI_LSU_CONTROL)
390  : "memory");
391 }
392 
393 static void spitfire_enable_estate_errors(void)
394 {
395  __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
396  "membar #Sync"
397  : /* no outputs */
398  : "r" (ESTATE_ERR_ALL),
399  "i" (ASI_ESTATE_ERROR_EN));
400 }
401 
402 static char ecc_syndrome_table[] = {
403  0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
404  0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
405  0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
406  0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
407  0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
408  0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
409  0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
410  0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
411  0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
412  0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
413  0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
414  0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
415  0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
416  0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
417  0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
418  0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
419  0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
420  0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
421  0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
422  0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
423  0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
424  0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
425  0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
426  0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
427  0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
428  0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
429  0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
430  0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
431  0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
432  0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
433  0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
434  0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
435 };
436 
437 static char *syndrome_unknown = "<Unknown>";
438 
439 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
440 {
441  unsigned short scode;
442  char memmod_str[64], *p;
443 
444  if (udbl & bit) {
445  scode = ecc_syndrome_table[udbl & 0xff];
446  if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
447  p = syndrome_unknown;
448  else
449  p = memmod_str;
450  printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
451  "Memory Module \"%s\"\n",
452  smp_processor_id(), scode, p);
453  }
454 
455  if (udbh & bit) {
456  scode = ecc_syndrome_table[udbh & 0xff];
457  if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
458  p = syndrome_unknown;
459  else
460  p = memmod_str;
461  printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
462  "Memory Module \"%s\"\n",
463  smp_processor_id(), scode, p);
464  }
465 
466 }
467 
468 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
469 {
470 
471  printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
472  "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
473  smp_processor_id(), afsr, afar, udbl, udbh, tl1);
474 
475  spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
476 
477  /* We always log it, even if someone is listening for this
478  * trap.
479  */
480  notify_die(DIE_TRAP, "Correctable ECC Error", regs,
481  0, TRAP_TYPE_CEE, SIGTRAP);
482 
483  /* The Correctable ECC Error trap does not disable I/D caches. So
484  * we only have to restore the ESTATE Error Enable register.
485  */
486  spitfire_enable_estate_errors();
487 }
488 
489 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
490 {
491  siginfo_t info;
492 
493  printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
494  "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
495  smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
496 
497  /* XXX add more human friendly logging of the error status
498  * XXX as is implemented for cheetah
499  */
500 
501  spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
502 
503  /* We always log it, even if someone is listening for this
504  * trap.
505  */
506  notify_die(DIE_TRAP, "Uncorrectable Error", regs,
507  0, tt, SIGTRAP);
508 
509  if (regs->tstate & TSTATE_PRIV) {
510  if (tl1)
511  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
512  die_if_kernel("UE", regs);
513  }
514 
515  /* XXX need more intelligent processing here, such as is implemented
516  * XXX for cheetah errors, in fact if the E-cache still holds the
517  * XXX line with bad parity this will loop
518  */
519 
520  spitfire_clean_and_reenable_l1_caches();
521  spitfire_enable_estate_errors();
522 
523  if (test_thread_flag(TIF_32BIT)) {
524  regs->tpc &= 0xffffffff;
525  regs->tnpc &= 0xffffffff;
526  }
527  info.si_signo = SIGBUS;
528  info.si_errno = 0;
529  info.si_code = BUS_OBJERR;
530  info.si_addr = (void *)0;
531  info.si_trapno = 0;
532  force_sig_info(SIGBUS, &info, current);
533 }
534 
535 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
536 {
537  unsigned long afsr, tt, udbh, udbl;
538  int tl1;
539 
540  afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
541  tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
542  tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
543  udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
544  udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
545 
546 #ifdef CONFIG_PCI
547  if (tt == TRAP_TYPE_DAE &&
549  spitfire_clean_and_reenable_l1_caches();
550  spitfire_enable_estate_errors();
551 
552  pci_poke_faulted = 1;
553  regs->tnpc = regs->tpc + 4;
554  return;
555  }
556 #endif
557 
558  if (afsr & SFAFSR_UE)
559  spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
560 
561  if (tt == TRAP_TYPE_CEE) {
562  /* Handle the case where we took a CEE trap, but ACK'd
563  * only the UE state in the UDB error registers.
564  */
565  if (afsr & SFAFSR_UE) {
566  if (udbh & UDBE_CE) {
567  __asm__ __volatile__(
568  "stxa %0, [%1] %2\n\t"
569  "membar #Sync"
570  : /* no outputs */
571  : "r" (udbh & UDBE_CE),
572  "r" (0x0), "i" (ASI_UDB_ERROR_W));
573  }
574  if (udbl & UDBE_CE) {
575  __asm__ __volatile__(
576  "stxa %0, [%1] %2\n\t"
577  "membar #Sync"
578  : /* no outputs */
579  : "r" (udbl & UDBE_CE),
580  "r" (0x18), "i" (ASI_UDB_ERROR_W));
581  }
582  }
583 
584  spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
585  }
586 }
587 
589 
591 {
592  unsigned long dcr;
593 
594  printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
595  smp_processor_id());
596 
597  __asm__ __volatile__("ldxa [%%g0] %1, %0"
598  : "=r" (dcr)
599  : "i" (ASI_DCU_CONTROL_REG));
600  dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
601  __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
602  "membar #Sync"
603  : /* no outputs */
604  : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
605 }
606 
607 /* Cheetah error trap handling. */
608 static unsigned long ecache_flush_physbase;
609 static unsigned long ecache_flush_linesize;
610 static unsigned long ecache_flush_size;
611 
612 /* This table is ordered in priority of errors and matches the
613  * AFAR overwrite policy as well.
614  */
615 
617  unsigned long mask;
618  const char *name;
619 };
620 
621 static const char CHAFSR_PERR_msg[] =
622  "System interface protocol error";
623 static const char CHAFSR_IERR_msg[] =
624  "Internal processor error";
625 static const char CHAFSR_ISAP_msg[] =
626  "System request parity error on incoming address";
627 static const char CHAFSR_UCU_msg[] =
628  "Uncorrectable E-cache ECC error for ifetch/data";
629 static const char CHAFSR_UCC_msg[] =
630  "SW Correctable E-cache ECC error for ifetch/data";
631 static const char CHAFSR_UE_msg[] =
632  "Uncorrectable system bus data ECC error for read";
633 static const char CHAFSR_EDU_msg[] =
634  "Uncorrectable E-cache ECC error for stmerge/blkld";
635 static const char CHAFSR_EMU_msg[] =
636  "Uncorrectable system bus MTAG error";
637 static const char CHAFSR_WDU_msg[] =
638  "Uncorrectable E-cache ECC error for writeback";
639 static const char CHAFSR_CPU_msg[] =
640  "Uncorrectable ECC error for copyout";
641 static const char CHAFSR_CE_msg[] =
642  "HW corrected system bus data ECC error for read";
643 static const char CHAFSR_EDC_msg[] =
644  "HW corrected E-cache ECC error for stmerge/blkld";
645 static const char CHAFSR_EMC_msg[] =
646  "HW corrected system bus MTAG ECC error";
647 static const char CHAFSR_WDC_msg[] =
648  "HW corrected E-cache ECC error for writeback";
649 static const char CHAFSR_CPC_msg[] =
650  "HW corrected ECC error for copyout";
651 static const char CHAFSR_TO_msg[] =
652  "Unmapped error from system bus";
653 static const char CHAFSR_BERR_msg[] =
654  "Bus error response from system bus";
655 static const char CHAFSR_IVC_msg[] =
656  "HW corrected system bus data ECC error for ivec read";
657 static const char CHAFSR_IVU_msg[] =
658  "Uncorrectable system bus data ECC error for ivec read";
659 static struct afsr_error_table __cheetah_error_table[] = {
660  { CHAFSR_PERR, CHAFSR_PERR_msg },
661  { CHAFSR_IERR, CHAFSR_IERR_msg },
662  { CHAFSR_ISAP, CHAFSR_ISAP_msg },
663  { CHAFSR_UCU, CHAFSR_UCU_msg },
664  { CHAFSR_UCC, CHAFSR_UCC_msg },
665  { CHAFSR_UE, CHAFSR_UE_msg },
666  { CHAFSR_EDU, CHAFSR_EDU_msg },
667  { CHAFSR_EMU, CHAFSR_EMU_msg },
668  { CHAFSR_WDU, CHAFSR_WDU_msg },
669  { CHAFSR_CPU, CHAFSR_CPU_msg },
670  { CHAFSR_CE, CHAFSR_CE_msg },
671  { CHAFSR_EDC, CHAFSR_EDC_msg },
672  { CHAFSR_EMC, CHAFSR_EMC_msg },
673  { CHAFSR_WDC, CHAFSR_WDC_msg },
674  { CHAFSR_CPC, CHAFSR_CPC_msg },
675  { CHAFSR_TO, CHAFSR_TO_msg },
676  { CHAFSR_BERR, CHAFSR_BERR_msg },
677  /* These two do not update the AFAR. */
678  { CHAFSR_IVC, CHAFSR_IVC_msg },
679  { CHAFSR_IVU, CHAFSR_IVU_msg },
680  { 0, NULL },
681 };
682 static const char CHPAFSR_DTO_msg[] =
683  "System bus unmapped error for prefetch/storequeue-read";
684 static const char CHPAFSR_DBERR_msg[] =
685  "System bus error for prefetch/storequeue-read";
686 static const char CHPAFSR_THCE_msg[] =
687  "Hardware corrected E-cache Tag ECC error";
688 static const char CHPAFSR_TSCE_msg[] =
689  "SW handled correctable E-cache Tag ECC error";
690 static const char CHPAFSR_TUE_msg[] =
691  "Uncorrectable E-cache Tag ECC error";
692 static const char CHPAFSR_DUE_msg[] =
693  "System bus uncorrectable data ECC error due to prefetch/store-fill";
694 static struct afsr_error_table __cheetah_plus_error_table[] = {
695  { CHAFSR_PERR, CHAFSR_PERR_msg },
696  { CHAFSR_IERR, CHAFSR_IERR_msg },
697  { CHAFSR_ISAP, CHAFSR_ISAP_msg },
698  { CHAFSR_UCU, CHAFSR_UCU_msg },
699  { CHAFSR_UCC, CHAFSR_UCC_msg },
700  { CHAFSR_UE, CHAFSR_UE_msg },
701  { CHAFSR_EDU, CHAFSR_EDU_msg },
702  { CHAFSR_EMU, CHAFSR_EMU_msg },
703  { CHAFSR_WDU, CHAFSR_WDU_msg },
704  { CHAFSR_CPU, CHAFSR_CPU_msg },
705  { CHAFSR_CE, CHAFSR_CE_msg },
706  { CHAFSR_EDC, CHAFSR_EDC_msg },
707  { CHAFSR_EMC, CHAFSR_EMC_msg },
708  { CHAFSR_WDC, CHAFSR_WDC_msg },
709  { CHAFSR_CPC, CHAFSR_CPC_msg },
710  { CHAFSR_TO, CHAFSR_TO_msg },
711  { CHAFSR_BERR, CHAFSR_BERR_msg },
712  { CHPAFSR_DTO, CHPAFSR_DTO_msg },
713  { CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
714  { CHPAFSR_THCE, CHPAFSR_THCE_msg },
715  { CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
716  { CHPAFSR_TUE, CHPAFSR_TUE_msg },
717  { CHPAFSR_DUE, CHPAFSR_DUE_msg },
718  /* These two do not update the AFAR. */
719  { CHAFSR_IVC, CHAFSR_IVC_msg },
720  { CHAFSR_IVU, CHAFSR_IVU_msg },
721  { 0, NULL },
722 };
723 static const char JPAFSR_JETO_msg[] =
724  "System interface protocol error, hw timeout caused";
725 static const char JPAFSR_SCE_msg[] =
726  "Parity error on system snoop results";
727 static const char JPAFSR_JEIC_msg[] =
728  "System interface protocol error, illegal command detected";
729 static const char JPAFSR_JEIT_msg[] =
730  "System interface protocol error, illegal ADTYPE detected";
731 static const char JPAFSR_OM_msg[] =
732  "Out of range memory error has occurred";
733 static const char JPAFSR_ETP_msg[] =
734  "Parity error on L2 cache tag SRAM";
735 static const char JPAFSR_UMS_msg[] =
736  "Error due to unsupported store";
737 static const char JPAFSR_RUE_msg[] =
738  "Uncorrectable ECC error from remote cache/memory";
739 static const char JPAFSR_RCE_msg[] =
740  "Correctable ECC error from remote cache/memory";
741 static const char JPAFSR_BP_msg[] =
742  "JBUS parity error on returned read data";
743 static const char JPAFSR_WBP_msg[] =
744  "JBUS parity error on data for writeback or block store";
745 static const char JPAFSR_FRC_msg[] =
746  "Foreign read to DRAM incurring correctable ECC error";
747 static const char JPAFSR_FRU_msg[] =
748  "Foreign read to DRAM incurring uncorrectable ECC error";
749 static struct afsr_error_table __jalapeno_error_table[] = {
750  { JPAFSR_JETO, JPAFSR_JETO_msg },
751  { JPAFSR_SCE, JPAFSR_SCE_msg },
752  { JPAFSR_JEIC, JPAFSR_JEIC_msg },
753  { JPAFSR_JEIT, JPAFSR_JEIT_msg },
754  { CHAFSR_PERR, CHAFSR_PERR_msg },
755  { CHAFSR_IERR, CHAFSR_IERR_msg },
756  { CHAFSR_ISAP, CHAFSR_ISAP_msg },
757  { CHAFSR_UCU, CHAFSR_UCU_msg },
758  { CHAFSR_UCC, CHAFSR_UCC_msg },
759  { CHAFSR_UE, CHAFSR_UE_msg },
760  { CHAFSR_EDU, CHAFSR_EDU_msg },
761  { JPAFSR_OM, JPAFSR_OM_msg },
762  { CHAFSR_WDU, CHAFSR_WDU_msg },
763  { CHAFSR_CPU, CHAFSR_CPU_msg },
764  { CHAFSR_CE, CHAFSR_CE_msg },
765  { CHAFSR_EDC, CHAFSR_EDC_msg },
766  { JPAFSR_ETP, JPAFSR_ETP_msg },
767  { CHAFSR_WDC, CHAFSR_WDC_msg },
768  { CHAFSR_CPC, CHAFSR_CPC_msg },
769  { CHAFSR_TO, CHAFSR_TO_msg },
770  { CHAFSR_BERR, CHAFSR_BERR_msg },
771  { JPAFSR_UMS, JPAFSR_UMS_msg },
772  { JPAFSR_RUE, JPAFSR_RUE_msg },
773  { JPAFSR_RCE, JPAFSR_RCE_msg },
774  { JPAFSR_BP, JPAFSR_BP_msg },
775  { JPAFSR_WBP, JPAFSR_WBP_msg },
776  { JPAFSR_FRC, JPAFSR_FRC_msg },
777  { JPAFSR_FRU, JPAFSR_FRU_msg },
778  /* These two do not update the AFAR. */
779  { CHAFSR_IVU, CHAFSR_IVU_msg },
780  { 0, NULL },
781 };
782 static struct afsr_error_table *cheetah_error_table;
783 static unsigned long cheetah_afsr_errors;
784 
786 
787 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
788 {
789  struct cheetah_err_info *p;
790  int cpu = smp_processor_id();
791 
792  if (!cheetah_error_log)
793  return NULL;
794 
795  p = cheetah_error_log + (cpu * 2);
796  if ((afsr & CHAFSR_TL1) != 0UL)
797  p++;
798 
799  return p;
800 }
801 
802 extern unsigned int tl0_icpe[], tl1_icpe[];
803 extern unsigned int tl0_dcpe[], tl1_dcpe[];
804 extern unsigned int tl0_fecc[], tl1_fecc[];
805 extern unsigned int tl0_cee[], tl1_cee[];
806 extern unsigned int tl0_iae[], tl1_iae[];
807 extern unsigned int tl0_dae[], tl1_dae[];
813 
815 {
816  unsigned long largest_size, smallest_linesize, order, ver;
817  int i, sz;
818 
819  /* Scan all cpu device tree nodes, note two values:
820  * 1) largest E-cache size
821  * 2) smallest E-cache line size
822  */
823  largest_size = 0UL;
824  smallest_linesize = ~0UL;
825 
826  for (i = 0; i < NR_CPUS; i++) {
827  unsigned long val;
828 
829  val = cpu_data(i).ecache_size;
830  if (!val)
831  continue;
832 
833  if (val > largest_size)
834  largest_size = val;
835 
836  val = cpu_data(i).ecache_line_size;
837  if (val < smallest_linesize)
838  smallest_linesize = val;
839 
840  }
841 
842  if (largest_size == 0UL || smallest_linesize == ~0UL) {
843  prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
844  "parameters.\n");
845  prom_halt();
846  }
847 
848  ecache_flush_size = (2 * largest_size);
849  ecache_flush_linesize = smallest_linesize;
850 
851  ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
852 
853  if (ecache_flush_physbase == ~0UL) {
854  prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
855  "contiguous physical memory.\n",
856  ecache_flush_size);
857  prom_halt();
858  }
859 
860  /* Now allocate error trap reporting scoreboard. */
861  sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
862  for (order = 0; order < MAX_ORDER; order++) {
863  if ((PAGE_SIZE << order) >= sz)
864  break;
865  }
866  cheetah_error_log = (struct cheetah_err_info *)
868  if (!cheetah_error_log) {
869  prom_printf("cheetah_ecache_flush_init: Failed to allocate "
870  "error logging scoreboard (%d bytes).\n", sz);
871  prom_halt();
872  }
873  memset(cheetah_error_log, 0, PAGE_SIZE << order);
874 
875  /* Mark all AFSRs as invalid so that the trap handler will
876  * log new new information there.
877  */
878  for (i = 0; i < 2 * NR_CPUS; i++)
879  cheetah_error_log[i].afsr = CHAFSR_INVALID;
880 
881  __asm__ ("rdpr %%ver, %0" : "=r" (ver));
882  if ((ver >> 32) == __JALAPENO_ID ||
883  (ver >> 32) == __SERRANO_ID) {
884  cheetah_error_table = &__jalapeno_error_table[0];
885  cheetah_afsr_errors = JPAFSR_ERRORS;
886  } else if ((ver >> 32) == 0x003e0015) {
887  cheetah_error_table = &__cheetah_plus_error_table[0];
888  cheetah_afsr_errors = CHPAFSR_ERRORS;
889  } else {
890  cheetah_error_table = &__cheetah_error_table[0];
891  cheetah_afsr_errors = CHAFSR_ERRORS;
892  }
893 
894  /* Now patch trap tables. */
895  memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
896  memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
897  memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
898  memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
899  memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
900  memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
901  memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
902  memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
903  if (tlb_type == cheetah_plus) {
904  memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
905  memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
906  memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
907  memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
908  }
910 }
911 
912 static void cheetah_flush_ecache(void)
913 {
914  unsigned long flush_base = ecache_flush_physbase;
915  unsigned long flush_linesize = ecache_flush_linesize;
916  unsigned long flush_size = ecache_flush_size;
917 
918  __asm__ __volatile__("1: subcc %0, %4, %0\n\t"
919  " bne,pt %%xcc, 1b\n\t"
920  " ldxa [%2 + %0] %3, %%g0\n\t"
921  : "=&r" (flush_size)
922  : "0" (flush_size), "r" (flush_base),
923  "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
924 }
925 
926 static void cheetah_flush_ecache_line(unsigned long physaddr)
927 {
928  unsigned long alias;
929 
930  physaddr &= ~(8UL - 1UL);
931  physaddr = (ecache_flush_physbase +
932  (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
933  alias = physaddr + (ecache_flush_size >> 1UL);
934  __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
935  "ldxa [%1] %2, %%g0\n\t"
936  "membar #Sync"
937  : /* no outputs */
938  : "r" (physaddr), "r" (alias),
939  "i" (ASI_PHYS_USE_EC));
940 }
941 
942 /* Unfortunately, the diagnostic access to the I-cache tags we need to
943  * use to clear the thing interferes with I-cache coherency transactions.
944  *
945  * So we must only flush the I-cache when it is disabled.
946  */
947 static void __cheetah_flush_icache(void)
948 {
949  unsigned int icache_size, icache_line_size;
950  unsigned long addr;
951 
952  icache_size = local_cpu_data().icache_size;
953  icache_line_size = local_cpu_data().icache_line_size;
954 
955  /* Clear the valid bits in all the tags. */
956  for (addr = 0; addr < icache_size; addr += icache_line_size) {
957  __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
958  "membar #Sync"
959  : /* no outputs */
960  : "r" (addr | (2 << 3)),
961  "i" (ASI_IC_TAG));
962  }
963 }
964 
965 static void cheetah_flush_icache(void)
966 {
967  unsigned long dcu_save;
968 
969  /* Save current DCU, disable I-cache. */
970  __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
971  "or %0, %2, %%g1\n\t"
972  "stxa %%g1, [%%g0] %1\n\t"
973  "membar #Sync"
974  : "=r" (dcu_save)
975  : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
976  : "g1");
977 
978  __cheetah_flush_icache();
979 
980  /* Restore DCU register */
981  __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
982  "membar #Sync"
983  : /* no outputs */
984  : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
985 }
986 
987 static void cheetah_flush_dcache(void)
988 {
989  unsigned int dcache_size, dcache_line_size;
990  unsigned long addr;
991 
992  dcache_size = local_cpu_data().dcache_size;
993  dcache_line_size = local_cpu_data().dcache_line_size;
994 
995  for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
996  __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
997  "membar #Sync"
998  : /* no outputs */
999  : "r" (addr), "i" (ASI_DCACHE_TAG));
1000  }
1001 }
1002 
1003 /* In order to make the even parity correct we must do two things.
1004  * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1005  * Next, we clear out all 32-bytes of data for that line. Data of
1006  * all-zero + tag parity value of zero == correct parity.
1007  */
1008 static void cheetah_plus_zap_dcache_parity(void)
1009 {
1010  unsigned int dcache_size, dcache_line_size;
1011  unsigned long addr;
1012 
1013  dcache_size = local_cpu_data().dcache_size;
1014  dcache_line_size = local_cpu_data().dcache_line_size;
1015 
1016  for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1017  unsigned long tag = (addr >> 14);
1018  unsigned long line;
1019 
1020  __asm__ __volatile__("membar #Sync\n\t"
1021  "stxa %0, [%1] %2\n\t"
1022  "membar #Sync"
1023  : /* no outputs */
1024  : "r" (tag), "r" (addr),
1025  "i" (ASI_DCACHE_UTAG));
1026  for (line = addr; line < addr + dcache_line_size; line += 8)
1027  __asm__ __volatile__("membar #Sync\n\t"
1028  "stxa %%g0, [%0] %1\n\t"
1029  "membar #Sync"
1030  : /* no outputs */
1031  : "r" (line),
1032  "i" (ASI_DCACHE_DATA));
1033  }
1034 }
1035 
1036 /* Conversion tables used to frob Cheetah AFSR syndrome values into
1037  * something palatable to the memory controller driver get_unumber
1038  * routine.
1039  */
1040 #define MT0 137
1041 #define MT1 138
1042 #define MT2 139
1043 #define NONE 254
1044 #define MTC0 140
1045 #define MTC1 141
1046 #define MTC2 142
1047 #define MTC3 143
1048 #define C0 128
1049 #define C1 129
1050 #define C2 130
1051 #define C3 131
1052 #define C4 132
1053 #define C5 133
1054 #define C6 134
1055 #define C7 135
1056 #define C8 136
1057 #define M2 144
1058 #define M3 145
1059 #define M4 146
1060 #define M 147
1061 static unsigned char cheetah_ecc_syntab[] = {
1062 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1063 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1064 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1065 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1066 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1067 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1068 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1069 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1070 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1071 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1072 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1073 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1074 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1075 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1076 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1077 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1078 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1079 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1080 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1081 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1082 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1083 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1084 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1085 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1086 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1087 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1088 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1089 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1090 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1091 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1092 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1093 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1094 };
1095 static unsigned char cheetah_mtag_syntab[] = {
1096  NONE, MTC0,
1097  MTC1, NONE,
1098  MTC2, NONE,
1099  NONE, MT0,
1100  MTC3, NONE,
1101  NONE, MT1,
1102  NONE, MT2,
1103  NONE, NONE
1104 };
1105 
1106 /* Return the highest priority error conditon mentioned. */
1107 static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1108 {
1109  unsigned long tmp = 0;
1110  int i;
1111 
1112  for (i = 0; cheetah_error_table[i].mask; i++) {
1113  if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1114  return tmp;
1115  }
1116  return tmp;
1117 }
1118 
1119 static const char *cheetah_get_string(unsigned long bit)
1120 {
1121  int i;
1122 
1123  for (i = 0; cheetah_error_table[i].mask; i++) {
1124  if ((bit & cheetah_error_table[i].mask) != 0UL)
1125  return cheetah_error_table[i].name;
1126  }
1127  return "???";
1128 }
1129 
1130 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1131  unsigned long afsr, unsigned long afar, int recoverable)
1132 {
1133  unsigned long hipri;
1134  char unum[256];
1135 
1136  printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1137  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1138  afsr, afar,
1139  (afsr & CHAFSR_TL1) ? 1 : 0);
1140  printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1141  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1142  regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1143  printk("%s" "ERROR(%d): ",
1144  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1145  printk("TPC<%pS>\n", (void *) regs->tpc);
1146  printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
1147  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1150  (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1151  (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1152  hipri = cheetah_get_hipri(afsr);
1153  printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1154  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1155  hipri, cheetah_get_string(hipri));
1156 
1157  /* Try to get unumber if relevant. */
1158 #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
1159  CHAFSR_CPC | CHAFSR_CPU | \
1160  CHAFSR_UE | CHAFSR_CE | \
1161  CHAFSR_EDC | CHAFSR_EDU | \
1162  CHAFSR_UCC | CHAFSR_UCU | \
1163  CHAFSR_WDU | CHAFSR_WDC)
1164 #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
1165  if (afsr & ESYND_ERRORS) {
1166  int syndrome;
1167  int ret;
1168 
1169  syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1170  syndrome = cheetah_ecc_syntab[syndrome];
1171  ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1172  if (ret != -1)
1173  printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1174  (recoverable ? KERN_WARNING : KERN_CRIT),
1175  smp_processor_id(), unum);
1176  } else if (afsr & MSYND_ERRORS) {
1177  int syndrome;
1178  int ret;
1179 
1180  syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1181  syndrome = cheetah_mtag_syntab[syndrome];
1182  ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1183  if (ret != -1)
1184  printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1185  (recoverable ? KERN_WARNING : KERN_CRIT),
1186  smp_processor_id(), unum);
1187  }
1188 
1189  /* Now dump the cache snapshots. */
1190  printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1191  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1192  (int) info->dcache_index,
1193  info->dcache_tag,
1194  info->dcache_utag,
1195  info->dcache_stag);
1196  printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1197  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1198  info->dcache_data[0],
1199  info->dcache_data[1],
1200  info->dcache_data[2],
1201  info->dcache_data[3]);
1202  printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1203  "u[%016llx] l[%016llx]\n",
1204  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1205  (int) info->icache_index,
1206  info->icache_tag,
1207  info->icache_utag,
1208  info->icache_stag,
1209  info->icache_upper,
1210  info->icache_lower);
1211  printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1212  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1213  info->icache_data[0],
1214  info->icache_data[1],
1215  info->icache_data[2],
1216  info->icache_data[3]);
1217  printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1218  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1219  info->icache_data[4],
1220  info->icache_data[5],
1221  info->icache_data[6],
1222  info->icache_data[7]);
1223  printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1224  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1225  (int) info->ecache_index, info->ecache_tag);
1226  printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1227  (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1228  info->ecache_data[0],
1229  info->ecache_data[1],
1230  info->ecache_data[2],
1231  info->ecache_data[3]);
1232 
1233  afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1234  while (afsr != 0UL) {
1235  unsigned long bit = cheetah_get_hipri(afsr);
1236 
1237  printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1238  (recoverable ? KERN_WARNING : KERN_CRIT),
1239  bit, cheetah_get_string(bit));
1240 
1241  afsr &= ~bit;
1242  }
1243 
1244  if (!recoverable)
1245  printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1246 }
1247 
1248 static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1249 {
1250  unsigned long afsr, afar;
1251  int ret = 0;
1252 
1253  __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1254  : "=r" (afsr)
1255  : "i" (ASI_AFSR));
1256  if ((afsr & cheetah_afsr_errors) != 0) {
1257  if (logp != NULL) {
1258  __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1259  : "=r" (afar)
1260  : "i" (ASI_AFAR));
1261  logp->afsr = afsr;
1262  logp->afar = afar;
1263  }
1264  ret = 1;
1265  }
1266  __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1267  "membar #Sync\n\t"
1268  : : "r" (afsr), "i" (ASI_AFSR));
1269 
1270  return ret;
1271 }
1272 
1273 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1274 {
1275  struct cheetah_err_info local_snapshot, *p;
1276  int recoverable;
1277 
1278  /* Flush E-cache */
1279  cheetah_flush_ecache();
1280 
1281  p = cheetah_get_error_log(afsr);
1282  if (!p) {
1283  prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1284  afsr, afar);
1285  prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1286  smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1287  prom_halt();
1288  }
1289 
1290  /* Grab snapshot of logged error. */
1291  memcpy(&local_snapshot, p, sizeof(local_snapshot));
1292 
1293  /* If the current trap snapshot does not match what the
1294  * trap handler passed along into our args, big trouble.
1295  * In such a case, mark the local copy as invalid.
1296  *
1297  * Else, it matches and we mark the afsr in the non-local
1298  * copy as invalid so we may log new error traps there.
1299  */
1300  if (p->afsr != afsr || p->afar != afar)
1301  local_snapshot.afsr = CHAFSR_INVALID;
1302  else
1303  p->afsr = CHAFSR_INVALID;
1304 
1305  cheetah_flush_icache();
1306  cheetah_flush_dcache();
1307 
1308  /* Re-enable I-cache/D-cache */
1309  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1310  "or %%g1, %1, %%g1\n\t"
1311  "stxa %%g1, [%%g0] %0\n\t"
1312  "membar #Sync"
1313  : /* no outputs */
1314  : "i" (ASI_DCU_CONTROL_REG),
1315  "i" (DCU_DC | DCU_IC)
1316  : "g1");
1317 
1318  /* Re-enable error reporting */
1319  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1320  "or %%g1, %1, %%g1\n\t"
1321  "stxa %%g1, [%%g0] %0\n\t"
1322  "membar #Sync"
1323  : /* no outputs */
1324  : "i" (ASI_ESTATE_ERROR_EN),
1326  : "g1");
1327 
1328  /* Decide if we can continue after handling this trap and
1329  * logging the error.
1330  */
1331  recoverable = 1;
1332  if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1333  recoverable = 0;
1334 
1335  /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1336  * error was logged while we had error reporting traps disabled.
1337  */
1338  if (cheetah_recheck_errors(&local_snapshot)) {
1339  unsigned long new_afsr = local_snapshot.afsr;
1340 
1341  /* If we got a new asynchronous error, die... */
1342  if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1344  CHAFSR_IVU | CHAFSR_UE |
1346  recoverable = 0;
1347  }
1348 
1349  /* Log errors. */
1350  cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1351 
1352  if (!recoverable)
1353  panic("Irrecoverable Fast-ECC error trap.\n");
1354 
1355  /* Flush E-cache to kick the error trap handlers out. */
1356  cheetah_flush_ecache();
1357 }
1358 
1359 /* Try to fix a correctable error by pushing the line out from
1360  * the E-cache. Recheck error reporting registers to see if the
1361  * problem is intermittent.
1362  */
1363 static int cheetah_fix_ce(unsigned long physaddr)
1364 {
1365  unsigned long orig_estate;
1366  unsigned long alias1, alias2;
1367  int ret;
1368 
1369  /* Make sure correctable error traps are disabled. */
1370  __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
1371  "andn %0, %1, %%g1\n\t"
1372  "stxa %%g1, [%%g0] %2\n\t"
1373  "membar #Sync"
1374  : "=&r" (orig_estate)
1375  : "i" (ESTATE_ERROR_CEEN),
1376  "i" (ASI_ESTATE_ERROR_EN)
1377  : "g1");
1378 
1379  /* We calculate alias addresses that will force the
1380  * cache line in question out of the E-cache. Then
1381  * we bring it back in with an atomic instruction so
1382  * that we get it in some modified/exclusive state,
1383  * then we displace it again to try and get proper ECC
1384  * pushed back into the system.
1385  */
1386  physaddr &= ~(8UL - 1UL);
1387  alias1 = (ecache_flush_physbase +
1388  (physaddr & ((ecache_flush_size >> 1) - 1)));
1389  alias2 = alias1 + (ecache_flush_size >> 1);
1390  __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
1391  "ldxa [%1] %3, %%g0\n\t"
1392  "casxa [%2] %3, %%g0, %%g0\n\t"
1393  "ldxa [%0] %3, %%g0\n\t"
1394  "ldxa [%1] %3, %%g0\n\t"
1395  "membar #Sync"
1396  : /* no outputs */
1397  : "r" (alias1), "r" (alias2),
1398  "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1399 
1400  /* Did that trigger another error? */
1401  if (cheetah_recheck_errors(NULL)) {
1402  /* Try one more time. */
1403  __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1404  "membar #Sync"
1405  : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1406  if (cheetah_recheck_errors(NULL))
1407  ret = 2;
1408  else
1409  ret = 1;
1410  } else {
1411  /* No new error, intermittent problem. */
1412  ret = 0;
1413  }
1414 
1415  /* Restore error enables. */
1416  __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1417  "membar #Sync"
1418  : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1419 
1420  return ret;
1421 }
1422 
1423 /* Return non-zero if PADDR is a valid physical memory address. */
1424 static int cheetah_check_main_memory(unsigned long paddr)
1425 {
1426  unsigned long vaddr = PAGE_OFFSET + paddr;
1427 
1428  if (vaddr > (unsigned long) high_memory)
1429  return 0;
1430 
1431  return kern_addr_valid(vaddr);
1432 }
1433 
1434 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1435 {
1436  struct cheetah_err_info local_snapshot, *p;
1437  int recoverable, is_memory;
1438 
1439  p = cheetah_get_error_log(afsr);
1440  if (!p) {
1441  prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1442  afsr, afar);
1443  prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1444  smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1445  prom_halt();
1446  }
1447 
1448  /* Grab snapshot of logged error. */
1449  memcpy(&local_snapshot, p, sizeof(local_snapshot));
1450 
1451  /* If the current trap snapshot does not match what the
1452  * trap handler passed along into our args, big trouble.
1453  * In such a case, mark the local copy as invalid.
1454  *
1455  * Else, it matches and we mark the afsr in the non-local
1456  * copy as invalid so we may log new error traps there.
1457  */
1458  if (p->afsr != afsr || p->afar != afar)
1459  local_snapshot.afsr = CHAFSR_INVALID;
1460  else
1461  p->afsr = CHAFSR_INVALID;
1462 
1463  is_memory = cheetah_check_main_memory(afar);
1464 
1465  if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1466  /* XXX Might want to log the results of this operation
1467  * XXX somewhere... -DaveM
1468  */
1469  cheetah_fix_ce(afar);
1470  }
1471 
1472  {
1473  int flush_all, flush_line;
1474 
1475  flush_all = flush_line = 0;
1476  if ((afsr & CHAFSR_EDC) != 0UL) {
1477  if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1478  flush_line = 1;
1479  else
1480  flush_all = 1;
1481  } else if ((afsr & CHAFSR_CPC) != 0UL) {
1482  if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1483  flush_line = 1;
1484  else
1485  flush_all = 1;
1486  }
1487 
1488  /* Trap handler only disabled I-cache, flush it. */
1489  cheetah_flush_icache();
1490 
1491  /* Re-enable I-cache */
1492  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1493  "or %%g1, %1, %%g1\n\t"
1494  "stxa %%g1, [%%g0] %0\n\t"
1495  "membar #Sync"
1496  : /* no outputs */
1497  : "i" (ASI_DCU_CONTROL_REG),
1498  "i" (DCU_IC)
1499  : "g1");
1500 
1501  if (flush_all)
1502  cheetah_flush_ecache();
1503  else if (flush_line)
1504  cheetah_flush_ecache_line(afar);
1505  }
1506 
1507  /* Re-enable error reporting */
1508  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1509  "or %%g1, %1, %%g1\n\t"
1510  "stxa %%g1, [%%g0] %0\n\t"
1511  "membar #Sync"
1512  : /* no outputs */
1513  : "i" (ASI_ESTATE_ERROR_EN),
1514  "i" (ESTATE_ERROR_CEEN)
1515  : "g1");
1516 
1517  /* Decide if we can continue after handling this trap and
1518  * logging the error.
1519  */
1520  recoverable = 1;
1521  if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1522  recoverable = 0;
1523 
1524  /* Re-check AFSR/AFAR */
1525  (void) cheetah_recheck_errors(&local_snapshot);
1526 
1527  /* Log errors. */
1528  cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1529 
1530  if (!recoverable)
1531  panic("Irrecoverable Correctable-ECC error trap.\n");
1532 }
1533 
1534 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1535 {
1536  struct cheetah_err_info local_snapshot, *p;
1537  int recoverable, is_memory;
1538 
1539 #ifdef CONFIG_PCI
1540  /* Check for the special PCI poke sequence. */
1542  cheetah_flush_icache();
1543  cheetah_flush_dcache();
1544 
1545  /* Re-enable I-cache/D-cache */
1546  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1547  "or %%g1, %1, %%g1\n\t"
1548  "stxa %%g1, [%%g0] %0\n\t"
1549  "membar #Sync"
1550  : /* no outputs */
1551  : "i" (ASI_DCU_CONTROL_REG),
1552  "i" (DCU_DC | DCU_IC)
1553  : "g1");
1554 
1555  /* Re-enable error reporting */
1556  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1557  "or %%g1, %1, %%g1\n\t"
1558  "stxa %%g1, [%%g0] %0\n\t"
1559  "membar #Sync"
1560  : /* no outputs */
1561  : "i" (ASI_ESTATE_ERROR_EN),
1563  : "g1");
1564 
1565  (void) cheetah_recheck_errors(NULL);
1566 
1567  pci_poke_faulted = 1;
1568  regs->tpc += 4;
1569  regs->tnpc = regs->tpc + 4;
1570  return;
1571  }
1572 #endif
1573 
1574  p = cheetah_get_error_log(afsr);
1575  if (!p) {
1576  prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1577  afsr, afar);
1578  prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1579  smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1580  prom_halt();
1581  }
1582 
1583  /* Grab snapshot of logged error. */
1584  memcpy(&local_snapshot, p, sizeof(local_snapshot));
1585 
1586  /* If the current trap snapshot does not match what the
1587  * trap handler passed along into our args, big trouble.
1588  * In such a case, mark the local copy as invalid.
1589  *
1590  * Else, it matches and we mark the afsr in the non-local
1591  * copy as invalid so we may log new error traps there.
1592  */
1593  if (p->afsr != afsr || p->afar != afar)
1594  local_snapshot.afsr = CHAFSR_INVALID;
1595  else
1596  p->afsr = CHAFSR_INVALID;
1597 
1598  is_memory = cheetah_check_main_memory(afar);
1599 
1600  {
1601  int flush_all, flush_line;
1602 
1603  flush_all = flush_line = 0;
1604  if ((afsr & CHAFSR_EDU) != 0UL) {
1605  if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1606  flush_line = 1;
1607  else
1608  flush_all = 1;
1609  } else if ((afsr & CHAFSR_BERR) != 0UL) {
1610  if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1611  flush_line = 1;
1612  else
1613  flush_all = 1;
1614  }
1615 
1616  cheetah_flush_icache();
1617  cheetah_flush_dcache();
1618 
1619  /* Re-enable I/D caches */
1620  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1621  "or %%g1, %1, %%g1\n\t"
1622  "stxa %%g1, [%%g0] %0\n\t"
1623  "membar #Sync"
1624  : /* no outputs */
1625  : "i" (ASI_DCU_CONTROL_REG),
1626  "i" (DCU_IC | DCU_DC)
1627  : "g1");
1628 
1629  if (flush_all)
1630  cheetah_flush_ecache();
1631  else if (flush_line)
1632  cheetah_flush_ecache_line(afar);
1633  }
1634 
1635  /* Re-enable error reporting */
1636  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1637  "or %%g1, %1, %%g1\n\t"
1638  "stxa %%g1, [%%g0] %0\n\t"
1639  "membar #Sync"
1640  : /* no outputs */
1641  : "i" (ASI_ESTATE_ERROR_EN),
1643  : "g1");
1644 
1645  /* Decide if we can continue after handling this trap and
1646  * logging the error.
1647  */
1648  recoverable = 1;
1649  if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1650  recoverable = 0;
1651 
1652  /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1653  * error was logged while we had error reporting traps disabled.
1654  */
1655  if (cheetah_recheck_errors(&local_snapshot)) {
1656  unsigned long new_afsr = local_snapshot.afsr;
1657 
1658  /* If we got a new asynchronous error, die... */
1659  if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1661  CHAFSR_IVU | CHAFSR_UE |
1663  recoverable = 0;
1664  }
1665 
1666  /* Log errors. */
1667  cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1668 
1669  /* "Recoverable" here means we try to yank the page from ever
1670  * being newly used again. This depends upon a few things:
1671  * 1) Must be main memory, and AFAR must be valid.
1672  * 2) If we trapped from user, OK.
1673  * 3) Else, if we trapped from kernel we must find exception
1674  * table entry (ie. we have to have been accessing user
1675  * space).
1676  *
1677  * If AFAR is not in main memory, or we trapped from kernel
1678  * and cannot find an exception table entry, it is unacceptable
1679  * to try and continue.
1680  */
1681  if (recoverable && is_memory) {
1682  if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1683  /* OK, usermode access. */
1684  recoverable = 1;
1685  } else {
1686  const struct exception_table_entry *entry;
1687 
1688  entry = search_exception_tables(regs->tpc);
1689  if (entry) {
1690  /* OK, kernel access to userspace. */
1691  recoverable = 1;
1692 
1693  } else {
1694  /* BAD, privileged state is corrupted. */
1695  recoverable = 0;
1696  }
1697 
1698  if (recoverable) {
1699  if (pfn_valid(afar >> PAGE_SHIFT))
1700  get_page(pfn_to_page(afar >> PAGE_SHIFT));
1701  else
1702  recoverable = 0;
1703 
1704  /* Only perform fixup if we still have a
1705  * recoverable condition.
1706  */
1707  if (recoverable) {
1708  regs->tpc = entry->fixup;
1709  regs->tnpc = regs->tpc + 4;
1710  }
1711  }
1712  }
1713  } else {
1714  recoverable = 0;
1715  }
1716 
1717  if (!recoverable)
1718  panic("Irrecoverable deferred error trap.\n");
1719 }
1720 
1721 /* Handle a D/I cache parity error trap. TYPE is encoded as:
1722  *
1723  * Bit0: 0=dcache,1=icache
1724  * Bit1: 0=recoverable,1=unrecoverable
1725  *
1726  * The hardware has disabled both the I-cache and D-cache in
1727  * the %dcr register.
1728  */
1729 void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1730 {
1731  if (type & 0x1)
1732  __cheetah_flush_icache();
1733  else
1734  cheetah_plus_zap_dcache_parity();
1735  cheetah_flush_dcache();
1736 
1737  /* Re-enable I-cache/D-cache */
1738  __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1739  "or %%g1, %1, %%g1\n\t"
1740  "stxa %%g1, [%%g0] %0\n\t"
1741  "membar #Sync"
1742  : /* no outputs */
1743  : "i" (ASI_DCU_CONTROL_REG),
1744  "i" (DCU_DC | DCU_IC)
1745  : "g1");
1746 
1747  if (type & 0x2) {
1748  printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1749  smp_processor_id(),
1750  (type & 0x1) ? 'I' : 'D',
1751  regs->tpc);
1752  printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1753  panic("Irrecoverable Cheetah+ parity error.");
1754  }
1755 
1756  printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1757  smp_processor_id(),
1758  (type & 0x1) ? 'I' : 'D',
1759  regs->tpc);
1760  printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1761 }
1762 
1764  /* Unique error handle */
1765 /*0x00*/u64 err_handle;
1766 
1767  /* %stick value at the time of the error */
1768 /*0x08*/u64 err_stick;
1769 
1770 /*0x10*/u8 reserved_1[3];
1771 
1772  /* Error type */
1773 /*0x13*/u8 err_type;
1774 #define SUN4V_ERR_TYPE_UNDEFINED 0
1775 #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
1776 #define SUN4V_ERR_TYPE_PRECISE_NONRES 2
1777 #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
1778 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4
1779 #define SUN4V_ERR_TYPE_DUMP_CORE 5
1780 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6
1781 #define SUN4V_ERR_TYPE_NUM 7
1782 
1783  /* Error attributes */
1784 /*0x14*/u32 err_attrs;
1785 #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
1786 #define SUN4V_ERR_ATTRS_MEMORY 0x00000002
1787 #define SUN4V_ERR_ATTRS_PIO 0x00000004
1788 #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
1789 #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
1790 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020
1791 #define SUN4V_ERR_ATTRS_ASR 0x00000040
1792 #define SUN4V_ERR_ATTRS_ASI 0x00000080
1793 #define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100
1794 #define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600
1795 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9
1796 #define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000
1797 #define SUN4V_ERR_ATTRS_MODE_SHFT 24
1798 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
1799 
1800 #define SUN4V_ERR_SPSTATE_FAULTED 0
1801 #define SUN4V_ERR_SPSTATE_AVAILABLE 1
1802 #define SUN4V_ERR_SPSTATE_NOT_PRESENT 2
1803 
1804 #define SUN4V_ERR_MODE_USER 1
1805 #define SUN4V_ERR_MODE_PRIV 2
1806 
1807  /* Real address of the memory region or PIO transaction */
1808 /*0x18*/u64 err_raddr;
1809 
1810  /* Size of the operation triggering the error, in bytes */
1811 /*0x20*/u32 err_size;
1812 
1813  /* ID of the CPU */
1814 /*0x24*/u16 err_cpu;
1815 
1816  /* Grace periof for shutdown, in seconds */
1817 /*0x26*/u16 err_secs;
1818 
1819  /* Value of the %asi register */
1820 /*0x28*/u8 err_asi;
1821 
1822 /*0x29*/u8 reserved_2;
1823 
1824  /* Value of the ASR register number */
1825 /*0x2a*/u16 err_asr;
1826 #define SUN4V_ERR_ASR_VALID 0x8000
1827 
1828 /*0x2c*/u32 reserved_3;
1829 /*0x30*/u64 reserved_4;
1830 /*0x38*/u64 reserved_5;
1831 };
1832 
1833 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1834 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1835 
1836 static const char *sun4v_err_type_to_str(u8 type)
1837 {
1838  static const char *types[SUN4V_ERR_TYPE_NUM] = {
1839  "undefined",
1840  "uncorrected resumable",
1841  "precise nonresumable",
1842  "deferred nonresumable",
1843  "shutdown request",
1844  "dump core",
1845  "SP state change",
1846  };
1847 
1848  if (type < SUN4V_ERR_TYPE_NUM)
1849  return types[type];
1850 
1851  return "unknown";
1852 }
1853 
1854 static void sun4v_emit_err_attr_strings(u32 attrs)
1855 {
1856  static const char *attr_names[] = {
1857  "processor",
1858  "memory",
1859  "PIO",
1860  "int-registers",
1861  "fpu-registers",
1862  "shutdown-request",
1863  "ASR",
1864  "ASI",
1865  "priv-reg",
1866  };
1867  static const char *sp_states[] = {
1868  "sp-faulted",
1869  "sp-available",
1870  "sp-not-present",
1871  "sp-state-reserved",
1872  };
1873  static const char *modes[] = {
1874  "mode-reserved0",
1875  "user",
1876  "priv",
1877  "mode-reserved1",
1878  };
1879  u32 sp_state, mode;
1880  int i;
1881 
1882  for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1883  if (attrs & (1U << i)) {
1884  const char *s = attr_names[i];
1885 
1886  pr_cont("%s ", s);
1887  }
1888  }
1889 
1890  sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1892  pr_cont("%s ", sp_states[sp_state]);
1893 
1894  mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1896  pr_cont("%s ", modes[mode]);
1897 
1898  if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1899  pr_cont("res-queue-full ");
1900 }
1901 
1902 /* When the report contains a real-address of "-1" it means that the
1903  * hardware did not provide the address. So we compute the effective
1904  * address of the load or store instruction at regs->tpc and report
1905  * that. Usually when this happens it's a PIO and in such a case we
1906  * are using physical addresses with bypass ASIs anyways, so what we
1907  * report here is exactly what we want.
1908  */
1909 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1910 {
1911  unsigned int insn;
1912  u64 addr;
1913 
1914  if (!(regs->tstate & TSTATE_PRIV))
1915  return;
1916 
1917  insn = *(unsigned int *) regs->tpc;
1918 
1919  addr = compute_effective_address(regs, insn, 0);
1920 
1921  printk("%s: insn effective address [0x%016llx]\n",
1922  pfx, addr);
1923 }
1924 
1925 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1926  int cpu, const char *pfx, atomic_t *ocnt)
1927 {
1928  u64 *raw_ptr = (u64 *) ent;
1929  u32 attrs;
1930  int cnt;
1931 
1932  printk("%s: Reporting on cpu %d\n", pfx, cpu);
1933  printk("%s: TPC [0x%016lx] <%pS>\n",
1934  pfx, regs->tpc, (void *) regs->tpc);
1935 
1936  printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1937  pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1938  printk("%s: %016llx:%016llx:%016llx:%016llx]\n",
1939  pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1940 
1941  printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1942  pfx, ent->err_handle, ent->err_stick);
1943 
1944  printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1945 
1946  attrs = ent->err_attrs;
1947  printk("%s: attrs [0x%08x] < ", pfx, attrs);
1948  sun4v_emit_err_attr_strings(attrs);
1949  pr_cont(">\n");
1950 
1951  /* Various fields in the error report are only valid if
1952  * certain attribute bits are set.
1953  */
1954  if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1957  printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1958 
1959  if (ent->err_raddr == ~(u64)0)
1960  sun4v_report_real_raddr(pfx, regs);
1961  }
1962 
1964  printk("%s: size [0x%x]\n", pfx, ent->err_size);
1965 
1966  if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
1970  printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
1971 
1972  if (attrs & SUN4V_ERR_ATTRS_ASI)
1973  printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
1974 
1975  if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
1978  (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
1979  printk("%s: reg [0x%04x]\n",
1980  pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
1981 
1982  show_regs(regs);
1983 
1984  if ((cnt = atomic_read(ocnt)) != 0) {
1985  atomic_set(ocnt, 0);
1986  wmb();
1987  printk("%s: Queue overflowed %d times.\n",
1988  pfx, cnt);
1989  }
1990 }
1991 
1992 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
1993  * Log the event and clear the first word of the entry.
1994  */
1995 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
1996 {
1997  struct sun4v_error_entry *ent, local_copy;
1998  struct trap_per_cpu *tb;
1999  unsigned long paddr;
2000  int cpu;
2001 
2002  cpu = get_cpu();
2003 
2004  tb = &trap_block[cpu];
2005  paddr = tb->resum_kernel_buf_pa + offset;
2006  ent = __va(paddr);
2007 
2008  memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2009 
2010  /* We have a local copy now, so release the entry. */
2011  ent->err_handle = 0;
2012  wmb();
2013 
2014  put_cpu();
2015 
2016  if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2017  /* We should really take the seconds field of
2018  * the error report and use it for the shutdown
2019  * invocation, but for now do the same thing we
2020  * do for a DS shutdown request.
2021  */
2022  pr_info("Shutdown request, %u seconds...\n",
2023  local_copy.err_secs);
2024  orderly_poweroff(true);
2025  return;
2026  }
2027 
2028  sun4v_log_error(regs, &local_copy, cpu,
2029  KERN_ERR "RESUMABLE ERROR",
2030  &sun4v_resum_oflow_cnt);
2031 }
2032 
2033 /* If we try to printk() we'll probably make matters worse, by trying
2034  * to retake locks this cpu already holds or causing more errors. So
2035  * just bump a counter, and we'll report these counter bumps above.
2036  */
2037 void sun4v_resum_overflow(struct pt_regs *regs)
2038 {
2039  atomic_inc(&sun4v_resum_oflow_cnt);
2040 }
2041 
2042 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2043  * Log the event, clear the first word of the entry, and die.
2044  */
2045 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2046 {
2047  struct sun4v_error_entry *ent, local_copy;
2048  struct trap_per_cpu *tb;
2049  unsigned long paddr;
2050  int cpu;
2051 
2052  cpu = get_cpu();
2053 
2054  tb = &trap_block[cpu];
2055  paddr = tb->nonresum_kernel_buf_pa + offset;
2056  ent = __va(paddr);
2057 
2058  memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2059 
2060  /* We have a local copy now, so release the entry. */
2061  ent->err_handle = 0;
2062  wmb();
2063 
2064  put_cpu();
2065 
2066 #ifdef CONFIG_PCI
2067  /* Check for the special PCI poke sequence. */
2068  if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2069  pci_poke_faulted = 1;
2070  regs->tpc += 4;
2071  regs->tnpc = regs->tpc + 4;
2072  return;
2073  }
2074 #endif
2075 
2076  sun4v_log_error(regs, &local_copy, cpu,
2077  KERN_EMERG "NON-RESUMABLE ERROR",
2078  &sun4v_nonresum_oflow_cnt);
2079 
2080  panic("Non-resumable error.");
2081 }
2082 
2083 /* If we try to printk() we'll probably make matters worse, by trying
2084  * to retake locks this cpu already holds or causing more errors. So
2085  * just bump a counter, and we'll report these counter bumps above.
2086  */
2088 {
2089  /* XXX Actually even this can make not that much sense. Perhaps
2090  * XXX we should just pull the plug and panic directly from here?
2091  */
2092  atomic_inc(&sun4v_nonresum_oflow_cnt);
2093 }
2094 
2095 unsigned long sun4v_err_itlb_vaddr;
2096 unsigned long sun4v_err_itlb_ctx;
2097 unsigned long sun4v_err_itlb_pte;
2098 unsigned long sun4v_err_itlb_error;
2099 
2100 void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2101 {
2102  if (tl > 1)
2103  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2104 
2105  printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2106  regs->tpc, tl);
2107  printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2108  printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2109  printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2110  (void *) regs->u_regs[UREG_I7]);
2111  printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2112  "pte[%lx] error[%lx]\n",
2113  sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2114  sun4v_err_itlb_pte, sun4v_err_itlb_error);
2115 
2116  prom_halt();
2117 }
2118 
2119 unsigned long sun4v_err_dtlb_vaddr;
2120 unsigned long sun4v_err_dtlb_ctx;
2121 unsigned long sun4v_err_dtlb_pte;
2122 unsigned long sun4v_err_dtlb_error;
2123 
2124 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2125 {
2126  if (tl > 1)
2127  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2128 
2129  printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2130  regs->tpc, tl);
2131  printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2132  printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2133  printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2134  (void *) regs->u_regs[UREG_I7]);
2135  printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2136  "pte[%lx] error[%lx]\n",
2137  sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2138  sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2139 
2140  prom_halt();
2141 }
2142 
2143 void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2144 {
2145  printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2146  err, op);
2147 }
2148 
2149 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2150 {
2151  printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2152  err, op);
2153 }
2154 
2155 void do_fpe_common(struct pt_regs *regs)
2156 {
2157  if (regs->tstate & TSTATE_PRIV) {
2158  regs->tpc = regs->tnpc;
2159  regs->tnpc += 4;
2160  } else {
2161  unsigned long fsr = current_thread_info()->xfsr[0];
2162  siginfo_t info;
2163 
2164  if (test_thread_flag(TIF_32BIT)) {
2165  regs->tpc &= 0xffffffff;
2166  regs->tnpc &= 0xffffffff;
2167  }
2168  info.si_signo = SIGFPE;
2169  info.si_errno = 0;
2170  info.si_addr = (void __user *)regs->tpc;
2171  info.si_trapno = 0;
2172  info.si_code = __SI_FAULT;
2173  if ((fsr & 0x1c000) == (1 << 14)) {
2174  if (fsr & 0x10)
2175  info.si_code = FPE_FLTINV;
2176  else if (fsr & 0x08)
2177  info.si_code = FPE_FLTOVF;
2178  else if (fsr & 0x04)
2179  info.si_code = FPE_FLTUND;
2180  else if (fsr & 0x02)
2181  info.si_code = FPE_FLTDIV;
2182  else if (fsr & 0x01)
2183  info.si_code = FPE_FLTRES;
2184  }
2185  force_sig_info(SIGFPE, &info, current);
2186  }
2187 }
2188 
2189 void do_fpieee(struct pt_regs *regs)
2190 {
2191  if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2192  0, 0x24, SIGFPE) == NOTIFY_STOP)
2193  return;
2194 
2195  do_fpe_common(regs);
2196 }
2197 
2198 extern int do_mathemu(struct pt_regs *, struct fpustate *, bool);
2199 
2200 void do_fpother(struct pt_regs *regs)
2201 {
2202  struct fpustate *f = FPUSTATE;
2203  int ret = 0;
2204 
2205  if (notify_die(DIE_TRAP, "fpu exception other", regs,
2206  0, 0x25, SIGFPE) == NOTIFY_STOP)
2207  return;
2208 
2209  switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2210  case (2 << 14): /* unfinished_FPop */
2211  case (3 << 14): /* unimplemented_FPop */
2212  ret = do_mathemu(regs, f, false);
2213  break;
2214  }
2215  if (ret)
2216  return;
2217  do_fpe_common(regs);
2218 }
2219 
2220 void do_tof(struct pt_regs *regs)
2221 {
2222  siginfo_t info;
2223 
2224  if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2225  0, 0x26, SIGEMT) == NOTIFY_STOP)
2226  return;
2227 
2228  if (regs->tstate & TSTATE_PRIV)
2229  die_if_kernel("Penguin overflow trap from kernel mode", regs);
2230  if (test_thread_flag(TIF_32BIT)) {
2231  regs->tpc &= 0xffffffff;
2232  regs->tnpc &= 0xffffffff;
2233  }
2234  info.si_signo = SIGEMT;
2235  info.si_errno = 0;
2236  info.si_code = EMT_TAGOVF;
2237  info.si_addr = (void __user *)regs->tpc;
2238  info.si_trapno = 0;
2239  force_sig_info(SIGEMT, &info, current);
2240 }
2241 
2242 void do_div0(struct pt_regs *regs)
2243 {
2244  siginfo_t info;
2245 
2246  if (notify_die(DIE_TRAP, "integer division by zero", regs,
2247  0, 0x28, SIGFPE) == NOTIFY_STOP)
2248  return;
2249 
2250  if (regs->tstate & TSTATE_PRIV)
2251  die_if_kernel("TL0: Kernel divide by zero.", regs);
2252  if (test_thread_flag(TIF_32BIT)) {
2253  regs->tpc &= 0xffffffff;
2254  regs->tnpc &= 0xffffffff;
2255  }
2256  info.si_signo = SIGFPE;
2257  info.si_errno = 0;
2258  info.si_code = FPE_INTDIV;
2259  info.si_addr = (void __user *)regs->tpc;
2260  info.si_trapno = 0;
2261  force_sig_info(SIGFPE, &info, current);
2262 }
2263 
2264 static void instruction_dump(unsigned int *pc)
2265 {
2266  int i;
2267 
2268  if ((((unsigned long) pc) & 3))
2269  return;
2270 
2271  printk("Instruction DUMP:");
2272  for (i = -3; i < 6; i++)
2273  printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2274  printk("\n");
2275 }
2276 
2277 static void user_instruction_dump(unsigned int __user *pc)
2278 {
2279  int i;
2280  unsigned int buf[9];
2281 
2282  if ((((unsigned long) pc) & 3))
2283  return;
2284 
2285  if (copy_from_user(buf, pc - 3, sizeof(buf)))
2286  return;
2287 
2288  printk("Instruction DUMP:");
2289  for (i = 0; i < 9; i++)
2290  printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2291  printk("\n");
2292 }
2293 
2294 void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2295 {
2296  unsigned long fp, ksp;
2297  struct thread_info *tp;
2298  int count = 0;
2299 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2300  int graph = 0;
2301 #endif
2302 
2303  ksp = (unsigned long) _ksp;
2304  if (!tsk)
2305  tsk = current;
2306  tp = task_thread_info(tsk);
2307  if (ksp == 0UL) {
2308  if (tsk == current)
2309  asm("mov %%fp, %0" : "=r" (ksp));
2310  else
2311  ksp = tp->ksp;
2312  }
2313  if (tp == current_thread_info())
2314  flushw_all();
2315 
2316  fp = ksp + STACK_BIAS;
2317 
2318  printk("Call Trace:\n");
2319  do {
2320  struct sparc_stackf *sf;
2321  struct pt_regs *regs;
2322  unsigned long pc;
2323 
2324  if (!kstack_valid(tp, fp))
2325  break;
2326  sf = (struct sparc_stackf *) fp;
2327  regs = (struct pt_regs *) (sf + 1);
2328 
2329  if (kstack_is_trap_frame(tp, regs)) {
2330  if (!(regs->tstate & TSTATE_PRIV))
2331  break;
2332  pc = regs->tpc;
2333  fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2334  } else {
2335  pc = sf->callers_pc;
2336  fp = (unsigned long)sf->fp + STACK_BIAS;
2337  }
2338 
2339  printk(" [%016lx] %pS\n", pc, (void *) pc);
2340 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2341  if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2342  int index = tsk->curr_ret_stack;
2343  if (tsk->ret_stack && index >= graph) {
2344  pc = tsk->ret_stack[index - graph].ret;
2345  printk(" [%016lx] %pS\n", pc, (void *) pc);
2346  graph++;
2347  }
2348  }
2349 #endif
2350  } while (++count < 16);
2351 }
2352 
2353 void dump_stack(void)
2354 {
2356 }
2357 
2359 
2360 static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2361 {
2362  unsigned long fp = rw->ins[6];
2363 
2364  if (!fp)
2365  return NULL;
2366 
2367  return (struct reg_window *) (fp + STACK_BIAS);
2368 }
2369 
2370 void die_if_kernel(char *str, struct pt_regs *regs)
2371 {
2372  static int die_counter;
2373  int count = 0;
2374 
2375  /* Amuse the user. */
2376  printk(
2377 " \\|/ ____ \\|/\n"
2378 " \"@'/ .. \\`@\"\n"
2379 " /_| \\__/ |_\\\n"
2380 " \\__U_/\n");
2381 
2382  printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2383  notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2384  __asm__ __volatile__("flushw");
2385  show_regs(regs);
2387  if (regs->tstate & TSTATE_PRIV) {
2388  struct thread_info *tp = current_thread_info();
2389  struct reg_window *rw = (struct reg_window *)
2390  (regs->u_regs[UREG_FP] + STACK_BIAS);
2391 
2392  /* Stop the back trace when we hit userland or we
2393  * find some badly aligned kernel stack.
2394  */
2395  while (rw &&
2396  count++ < 30 &&
2397  kstack_valid(tp, (unsigned long) rw)) {
2398  printk("Caller[%016lx]: %pS\n", rw->ins[7],
2399  (void *) rw->ins[7]);
2400 
2401  rw = kernel_stack_up(rw);
2402  }
2403  instruction_dump ((unsigned int *) regs->tpc);
2404  } else {
2405  if (test_thread_flag(TIF_32BIT)) {
2406  regs->tpc &= 0xffffffff;
2407  regs->tnpc &= 0xffffffff;
2408  }
2409  user_instruction_dump ((unsigned int __user *) regs->tpc);
2410  }
2411  if (regs->tstate & TSTATE_PRIV)
2412  do_exit(SIGKILL);
2413  do_exit(SIGSEGV);
2414 }
2416 
2417 #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2418 #define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19))
2419 
2420 extern int handle_popc(u32 insn, struct pt_regs *regs);
2421 extern int handle_ldf_stq(u32 insn, struct pt_regs *regs);
2422 
2424 {
2425  unsigned long pc = regs->tpc;
2426  unsigned long tstate = regs->tstate;
2427  u32 insn;
2428  siginfo_t info;
2429 
2430  if (notify_die(DIE_TRAP, "illegal instruction", regs,
2431  0, 0x10, SIGILL) == NOTIFY_STOP)
2432  return;
2433 
2434  if (tstate & TSTATE_PRIV)
2435  die_if_kernel("Kernel illegal instruction", regs);
2436  if (test_thread_flag(TIF_32BIT))
2437  pc = (u32)pc;
2438  if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2439  if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2440  if (handle_popc(insn, regs))
2441  return;
2442  } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2443  if (handle_ldf_stq(insn, regs))
2444  return;
2445  } else if (tlb_type == hypervisor) {
2446  if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2447  if (!vis_emul(regs, insn))
2448  return;
2449  } else {
2450  struct fpustate *f = FPUSTATE;
2451 
2452  /* On UltraSPARC T2 and later, FPU insns which
2453  * are not implemented in HW signal an illegal
2454  * instruction trap and do not set the FP Trap
2455  * Trap in the %fsr to unimplemented_FPop.
2456  */
2457  if (do_mathemu(regs, f, true))
2458  return;
2459  }
2460  }
2461  }
2462  info.si_signo = SIGILL;
2463  info.si_errno = 0;
2464  info.si_code = ILL_ILLOPC;
2465  info.si_addr = (void __user *)pc;
2466  info.si_trapno = 0;
2467  force_sig_info(SIGILL, &info, current);
2468 }
2469 
2470 extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn);
2471 
2472 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2473 {
2474  siginfo_t info;
2475 
2476  if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2477  0, 0x34, SIGSEGV) == NOTIFY_STOP)
2478  return;
2479 
2480  if (regs->tstate & TSTATE_PRIV) {
2481  kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2482  return;
2483  }
2484  info.si_signo = SIGBUS;
2485  info.si_errno = 0;
2486  info.si_code = BUS_ADRALN;
2487  info.si_addr = (void __user *)sfar;
2488  info.si_trapno = 0;
2489  force_sig_info(SIGBUS, &info, current);
2490 }
2491 
2492 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2493 {
2494  siginfo_t info;
2495 
2496  if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2497  0, 0x34, SIGSEGV) == NOTIFY_STOP)
2498  return;
2499 
2500  if (regs->tstate & TSTATE_PRIV) {
2501  kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2502  return;
2503  }
2504  info.si_signo = SIGBUS;
2505  info.si_errno = 0;
2506  info.si_code = BUS_ADRALN;
2507  info.si_addr = (void __user *) addr;
2508  info.si_trapno = 0;
2509  force_sig_info(SIGBUS, &info, current);
2510 }
2511 
2512 void do_privop(struct pt_regs *regs)
2513 {
2514  siginfo_t info;
2515 
2516  if (notify_die(DIE_TRAP, "privileged operation", regs,
2517  0, 0x11, SIGILL) == NOTIFY_STOP)
2518  return;
2519 
2520  if (test_thread_flag(TIF_32BIT)) {
2521  regs->tpc &= 0xffffffff;
2522  regs->tnpc &= 0xffffffff;
2523  }
2524  info.si_signo = SIGILL;
2525  info.si_errno = 0;
2526  info.si_code = ILL_PRVOPC;
2527  info.si_addr = (void __user *)regs->tpc;
2528  info.si_trapno = 0;
2529  force_sig_info(SIGILL, &info, current);
2530 }
2531 
2532 void do_privact(struct pt_regs *regs)
2533 {
2534  do_privop(regs);
2535 }
2536 
2537 /* Trap level 1 stuff or other traps we should never see... */
2538 void do_cee(struct pt_regs *regs)
2539 {
2540  die_if_kernel("TL0: Cache Error Exception", regs);
2541 }
2542 
2543 void do_cee_tl1(struct pt_regs *regs)
2544 {
2545  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2546  die_if_kernel("TL1: Cache Error Exception", regs);
2547 }
2548 
2549 void do_dae_tl1(struct pt_regs *regs)
2550 {
2551  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2552  die_if_kernel("TL1: Data Access Exception", regs);
2553 }
2554 
2555 void do_iae_tl1(struct pt_regs *regs)
2556 {
2557  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2558  die_if_kernel("TL1: Instruction Access Exception", regs);
2559 }
2560 
2561 void do_div0_tl1(struct pt_regs *regs)
2562 {
2563  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2564  die_if_kernel("TL1: DIV0 Exception", regs);
2565 }
2566 
2567 void do_fpdis_tl1(struct pt_regs *regs)
2568 {
2569  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2570  die_if_kernel("TL1: FPU Disabled", regs);
2571 }
2572 
2573 void do_fpieee_tl1(struct pt_regs *regs)
2574 {
2575  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2576  die_if_kernel("TL1: FPU IEEE Exception", regs);
2577 }
2578 
2579 void do_fpother_tl1(struct pt_regs *regs)
2580 {
2581  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2582  die_if_kernel("TL1: FPU Other Exception", regs);
2583 }
2584 
2585 void do_ill_tl1(struct pt_regs *regs)
2586 {
2587  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2588  die_if_kernel("TL1: Illegal Instruction Exception", regs);
2589 }
2590 
2591 void do_irq_tl1(struct pt_regs *regs)
2592 {
2593  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2594  die_if_kernel("TL1: IRQ Exception", regs);
2595 }
2596 
2597 void do_lddfmna_tl1(struct pt_regs *regs)
2598 {
2599  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2600  die_if_kernel("TL1: LDDF Exception", regs);
2601 }
2602 
2603 void do_stdfmna_tl1(struct pt_regs *regs)
2604 {
2605  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2606  die_if_kernel("TL1: STDF Exception", regs);
2607 }
2608 
2609 void do_paw(struct pt_regs *regs)
2610 {
2611  die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2612 }
2613 
2614 void do_paw_tl1(struct pt_regs *regs)
2615 {
2616  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2617  die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2618 }
2619 
2620 void do_vaw(struct pt_regs *regs)
2621 {
2622  die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2623 }
2624 
2625 void do_vaw_tl1(struct pt_regs *regs)
2626 {
2627  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2628  die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2629 }
2630 
2631 void do_tof_tl1(struct pt_regs *regs)
2632 {
2633  dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2634  die_if_kernel("TL1: Tag Overflow Exception", regs);
2635 }
2636 
2637 void do_getpsr(struct pt_regs *regs)
2638 {
2639  regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2640  regs->tpc = regs->tnpc;
2641  regs->tnpc += 4;
2642  if (test_thread_flag(TIF_32BIT)) {
2643  regs->tpc &= 0xffffffff;
2644  regs->tnpc &= 0xffffffff;
2645  }
2646 }
2647 
2650 
2651 /* This can get invoked before sched_init() so play it super safe
2652  * and use hard_smp_processor_id().
2653  */
2655 {
2656  int cpu = hard_smp_processor_id();
2657  struct trap_per_cpu *p = &trap_block[cpu];
2658 
2659  p->thread = t;
2660  p->pgd_paddr = 0;
2661 }
2662 
2663 extern void thread_info_offsets_are_bolixed_dave(void);
2664 extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2665 extern void tsb_config_offsets_are_bolixed_dave(void);
2666 
2667 /* Only invoked on boot processor. */
2668 void __init trap_init(void)
2669 {
2670  /* Compile time sanity check. */
2671  BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2672  TI_FLAGS != offsetof(struct thread_info, flags) ||
2673  TI_CPU != offsetof(struct thread_info, cpu) ||
2674  TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2675  TI_KSP != offsetof(struct thread_info, ksp) ||
2676  TI_FAULT_ADDR != offsetof(struct thread_info,
2677  fault_address) ||
2678  TI_KREGS != offsetof(struct thread_info, kregs) ||
2679  TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2680  TI_EXEC_DOMAIN != offsetof(struct thread_info,
2681  exec_domain) ||
2682  TI_REG_WINDOW != offsetof(struct thread_info,
2683  reg_window) ||
2684  TI_RWIN_SPTRS != offsetof(struct thread_info,
2685  rwbuf_stkptrs) ||
2686  TI_GSR != offsetof(struct thread_info, gsr) ||
2687  TI_XFSR != offsetof(struct thread_info, xfsr) ||
2688  TI_PRE_COUNT != offsetof(struct thread_info,
2689  preempt_count) ||
2690  TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2691  TI_SYS_NOERROR != offsetof(struct thread_info,
2692  syscall_noerror) ||
2693  TI_RESTART_BLOCK != offsetof(struct thread_info,
2694  restart_block) ||
2695  TI_KUNA_REGS != offsetof(struct thread_info,
2696  kern_una_regs) ||
2697  TI_KUNA_INSN != offsetof(struct thread_info,
2698  kern_una_insn) ||
2699  TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2700  (TI_FPREGS & (64 - 1)));
2701 
2703  thread) ||
2705  offsetof(struct trap_per_cpu, pgd_paddr)) ||
2707  offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2709  offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2711  offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2719  offsetof(struct trap_per_cpu, fault_info)) ||
2723  offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2725  offsetof(struct trap_per_cpu, tsb_huge)) ||
2727  offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2735  offsetof(struct trap_per_cpu, resum_qmask)) ||
2737  offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2740 
2742  offsetof(struct tsb_config, tsb)) ||
2744  offsetof(struct tsb_config, tsb_rss_limit)) ||
2746  offsetof(struct tsb_config, tsb_nentries)) ||
2747  (TSB_CONFIG_REG_VAL !=
2748  offsetof(struct tsb_config, tsb_reg_val)) ||
2750  offsetof(struct tsb_config, tsb_map_vaddr)) ||
2751  (TSB_CONFIG_MAP_PTE !=
2752  offsetof(struct tsb_config, tsb_map_pte)));
2753 
2754  /* Attach to the address space of init_task. On SMP we
2755  * do this in smp.c:smp_callin for other cpus.
2756  */
2757  atomic_inc(&init_mm.mm_count);
2758  current->active_mm = &init_mm;
2759 }