Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spi-atmel.c
Go to the documentation of this file.
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 
23 #include <asm/io.h>
24 #include <mach/board.h>
25 #include <asm/gpio.h>
26 #include <mach/cpu.h>
27 
28 /* SPI register offsets */
29 #define SPI_CR 0x0000
30 #define SPI_MR 0x0004
31 #define SPI_RDR 0x0008
32 #define SPI_TDR 0x000c
33 #define SPI_SR 0x0010
34 #define SPI_IER 0x0014
35 #define SPI_IDR 0x0018
36 #define SPI_IMR 0x001c
37 #define SPI_CSR0 0x0030
38 #define SPI_CSR1 0x0034
39 #define SPI_CSR2 0x0038
40 #define SPI_CSR3 0x003c
41 #define SPI_RPR 0x0100
42 #define SPI_RCR 0x0104
43 #define SPI_TPR 0x0108
44 #define SPI_TCR 0x010c
45 #define SPI_RNPR 0x0110
46 #define SPI_RNCR 0x0114
47 #define SPI_TNPR 0x0118
48 #define SPI_TNCR 0x011c
49 #define SPI_PTCR 0x0120
50 #define SPI_PTSR 0x0124
51 
52 /* Bitfields in CR */
53 #define SPI_SPIEN_OFFSET 0
54 #define SPI_SPIEN_SIZE 1
55 #define SPI_SPIDIS_OFFSET 1
56 #define SPI_SPIDIS_SIZE 1
57 #define SPI_SWRST_OFFSET 7
58 #define SPI_SWRST_SIZE 1
59 #define SPI_LASTXFER_OFFSET 24
60 #define SPI_LASTXFER_SIZE 1
61 
62 /* Bitfields in MR */
63 #define SPI_MSTR_OFFSET 0
64 #define SPI_MSTR_SIZE 1
65 #define SPI_PS_OFFSET 1
66 #define SPI_PS_SIZE 1
67 #define SPI_PCSDEC_OFFSET 2
68 #define SPI_PCSDEC_SIZE 1
69 #define SPI_FDIV_OFFSET 3
70 #define SPI_FDIV_SIZE 1
71 #define SPI_MODFDIS_OFFSET 4
72 #define SPI_MODFDIS_SIZE 1
73 #define SPI_LLB_OFFSET 7
74 #define SPI_LLB_SIZE 1
75 #define SPI_PCS_OFFSET 16
76 #define SPI_PCS_SIZE 4
77 #define SPI_DLYBCS_OFFSET 24
78 #define SPI_DLYBCS_SIZE 8
79 
80 /* Bitfields in RDR */
81 #define SPI_RD_OFFSET 0
82 #define SPI_RD_SIZE 16
83 
84 /* Bitfields in TDR */
85 #define SPI_TD_OFFSET 0
86 #define SPI_TD_SIZE 16
87 
88 /* Bitfields in SR */
89 #define SPI_RDRF_OFFSET 0
90 #define SPI_RDRF_SIZE 1
91 #define SPI_TDRE_OFFSET 1
92 #define SPI_TDRE_SIZE 1
93 #define SPI_MODF_OFFSET 2
94 #define SPI_MODF_SIZE 1
95 #define SPI_OVRES_OFFSET 3
96 #define SPI_OVRES_SIZE 1
97 #define SPI_ENDRX_OFFSET 4
98 #define SPI_ENDRX_SIZE 1
99 #define SPI_ENDTX_OFFSET 5
100 #define SPI_ENDTX_SIZE 1
101 #define SPI_RXBUFF_OFFSET 6
102 #define SPI_RXBUFF_SIZE 1
103 #define SPI_TXBUFE_OFFSET 7
104 #define SPI_TXBUFE_SIZE 1
105 #define SPI_NSSR_OFFSET 8
106 #define SPI_NSSR_SIZE 1
107 #define SPI_TXEMPTY_OFFSET 9
108 #define SPI_TXEMPTY_SIZE 1
109 #define SPI_SPIENS_OFFSET 16
110 #define SPI_SPIENS_SIZE 1
111 
112 /* Bitfields in CSR0 */
113 #define SPI_CPOL_OFFSET 0
114 #define SPI_CPOL_SIZE 1
115 #define SPI_NCPHA_OFFSET 1
116 #define SPI_NCPHA_SIZE 1
117 #define SPI_CSAAT_OFFSET 3
118 #define SPI_CSAAT_SIZE 1
119 #define SPI_BITS_OFFSET 4
120 #define SPI_BITS_SIZE 4
121 #define SPI_SCBR_OFFSET 8
122 #define SPI_SCBR_SIZE 8
123 #define SPI_DLYBS_OFFSET 16
124 #define SPI_DLYBS_SIZE 8
125 #define SPI_DLYBCT_OFFSET 24
126 #define SPI_DLYBCT_SIZE 8
127 
128 /* Bitfields in RCR */
129 #define SPI_RXCTR_OFFSET 0
130 #define SPI_RXCTR_SIZE 16
131 
132 /* Bitfields in TCR */
133 #define SPI_TXCTR_OFFSET 0
134 #define SPI_TXCTR_SIZE 16
135 
136 /* Bitfields in RNCR */
137 #define SPI_RXNCR_OFFSET 0
138 #define SPI_RXNCR_SIZE 16
139 
140 /* Bitfields in TNCR */
141 #define SPI_TXNCR_OFFSET 0
142 #define SPI_TXNCR_SIZE 16
143 
144 /* Bitfields in PTCR */
145 #define SPI_RXTEN_OFFSET 0
146 #define SPI_RXTEN_SIZE 1
147 #define SPI_RXTDIS_OFFSET 1
148 #define SPI_RXTDIS_SIZE 1
149 #define SPI_TXTEN_OFFSET 8
150 #define SPI_TXTEN_SIZE 1
151 #define SPI_TXTDIS_OFFSET 9
152 #define SPI_TXTDIS_SIZE 1
153 
154 /* Constants for BITS */
155 #define SPI_BITS_8_BPT 0
156 #define SPI_BITS_9_BPT 1
157 #define SPI_BITS_10_BPT 2
158 #define SPI_BITS_11_BPT 3
159 #define SPI_BITS_12_BPT 4
160 #define SPI_BITS_13_BPT 5
161 #define SPI_BITS_14_BPT 6
162 #define SPI_BITS_15_BPT 7
163 #define SPI_BITS_16_BPT 8
164 
165 /* Bit manipulation macros */
166 #define SPI_BIT(name) \
167  (1 << SPI_##name##_OFFSET)
168 #define SPI_BF(name,value) \
169  (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
170 #define SPI_BFEXT(name,value) \
171  (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
172 #define SPI_BFINS(name,value,old) \
173  ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
174  | SPI_BF(name,value))
175 
176 /* Register access macros */
177 #define spi_readl(port,reg) \
178  __raw_readl((port)->regs + SPI_##reg)
179 #define spi_writel(port,reg,value) \
180  __raw_writel((value), (port)->regs + SPI_##reg)
181 
182 
183 /*
184  * The core SPI transfer engine just talks to a register bank to set up
185  * DMA transfers; transfer queue progress is driven by IRQs. The clock
186  * framework provides the base clock, subdivided for each spi_device.
187  */
188 struct atmel_spi {
190 
191  void __iomem *regs;
192  int irq;
193  struct clk *clk;
195  struct spi_device *stay;
196 
198  struct list_head queue;
200  unsigned long current_remaining_bytes;
202  unsigned long next_remaining_bytes;
203 
204  void *buffer;
206 };
207 
208 /* Controller-specific per-slave state */
210  unsigned int npcs_pin;
212 };
213 
214 #define BUFFER_SIZE PAGE_SIZE
215 #define INVALID_DMA_ADDRESS 0xffffffff
216 
217 /*
218  * Version 2 of the SPI controller has
219  * - CR.LASTXFER
220  * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
221  * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
222  * - SPI_CSRx.CSAAT
223  * - SPI_CSRx.SBCR allows faster clocking
224  *
225  * We can determine the controller version by reading the VERSION
226  * register, but I haven't checked that it exists on all chips, and
227  * this is cheaper anyway.
228  */
229 static bool atmel_spi_is_v2(void)
230 {
231  return !cpu_is_at91rm9200();
232 }
233 
234 /*
235  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
236  * they assume that spi slave device state will not change on deselect, so
237  * that automagic deselection is OK. ("NPCSx rises if no data is to be
238  * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
239  * controllers have CSAAT and friends.
240  *
241  * Since the CSAAT functionality is a bit weird on newer controllers as
242  * well, we use GPIO to control nCSx pins on all controllers, updating
243  * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
244  * support active-high chipselects despite the controller's belief that
245  * only active-low devices/systems exists.
246  *
247  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
248  * right when driven with GPIO. ("Mode Fault does not allow more than one
249  * Master on Chip Select 0.") No workaround exists for that ... so for
250  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
251  * and (c) will trigger that first erratum in some cases.
252  *
253  * TODO: Test if the atmel_spi_is_v2() branch below works on
254  * AT91RM9200 if we use some other register than CSR0. However, don't
255  * do this unconditionally since AP7000 has an errata where the BITS
256  * field in CSR0 overrides all other CSRs.
257  */
258 
259 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
260 {
261  struct atmel_spi_device *asd = spi->controller_state;
262  unsigned active = spi->mode & SPI_CS_HIGH;
263  u32 mr;
264 
265  if (atmel_spi_is_v2()) {
266  /*
267  * Always use CSR0. This ensures that the clock
268  * switches to the correct idle polarity before we
269  * toggle the CS.
270  */
271  spi_writel(as, CSR0, asd->csr);
272  spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
273  | SPI_BIT(MSTR));
274  mr = spi_readl(as, MR);
275  gpio_set_value(asd->npcs_pin, active);
276  } else {
277  u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
278  int i;
279  u32 csr;
280 
281  /* Make sure clock polarity is correct */
282  for (i = 0; i < spi->master->num_chipselect; i++) {
283  csr = spi_readl(as, CSR0 + 4 * i);
284  if ((csr ^ cpol) & SPI_BIT(CPOL))
285  spi_writel(as, CSR0 + 4 * i,
286  csr ^ SPI_BIT(CPOL));
287  }
288 
289  mr = spi_readl(as, MR);
290  mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
291  if (spi->chip_select != 0)
292  gpio_set_value(asd->npcs_pin, active);
293  spi_writel(as, MR, mr);
294  }
295 
296  dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
297  asd->npcs_pin, active ? " (high)" : "",
298  mr);
299 }
300 
301 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
302 {
303  struct atmel_spi_device *asd = spi->controller_state;
304  unsigned active = spi->mode & SPI_CS_HIGH;
305  u32 mr;
306 
307  /* only deactivate *this* device; sometimes transfers to
308  * another device may be active when this routine is called.
309  */
310  mr = spi_readl(as, MR);
311  if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
312  mr = SPI_BFINS(PCS, 0xf, mr);
313  spi_writel(as, MR, mr);
314  }
315 
316  dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
317  asd->npcs_pin, active ? " (low)" : "",
318  mr);
319 
320  if (atmel_spi_is_v2() || spi->chip_select != 0)
321  gpio_set_value(asd->npcs_pin, !active);
322 }
323 
324 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
325  struct spi_transfer *xfer)
326 {
327  return msg->transfers.prev == &xfer->transfer_list;
328 }
329 
330 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
331 {
332  return xfer->delay_usecs == 0 && !xfer->cs_change;
333 }
334 
335 static void atmel_spi_next_xfer_data(struct spi_master *master,
336  struct spi_transfer *xfer,
339  u32 *plen)
340 {
341  struct atmel_spi *as = spi_master_get_devdata(master);
342  u32 len = *plen;
343 
344  /* use scratch buffer only when rx or tx data is unspecified */
345  if (xfer->rx_buf)
346  *rx_dma = xfer->rx_dma + xfer->len - *plen;
347  else {
348  *rx_dma = as->buffer_dma;
349  if (len > BUFFER_SIZE)
350  len = BUFFER_SIZE;
351  }
352  if (xfer->tx_buf)
353  *tx_dma = xfer->tx_dma + xfer->len - *plen;
354  else {
355  *tx_dma = as->buffer_dma;
356  if (len > BUFFER_SIZE)
357  len = BUFFER_SIZE;
358  memset(as->buffer, 0, len);
360  as->buffer_dma, len, DMA_TO_DEVICE);
361  }
362 
363  *plen = len;
364 }
365 
366 /*
367  * Submit next transfer for DMA.
368  * lock is held, spi irq is blocked
369  */
370 static void atmel_spi_next_xfer(struct spi_master *master,
371  struct spi_message *msg)
372 {
373  struct atmel_spi *as = spi_master_get_devdata(master);
374  struct spi_transfer *xfer;
375  u32 len, remaining;
376  u32 ieval;
378 
379  if (!as->current_transfer)
380  xfer = list_entry(msg->transfers.next,
381  struct spi_transfer, transfer_list);
382  else if (!as->next_transfer)
383  xfer = list_entry(as->current_transfer->transfer_list.next,
384  struct spi_transfer, transfer_list);
385  else
386  xfer = NULL;
387 
388  if (xfer) {
389  spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
390 
391  len = xfer->len;
392  atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
393  remaining = xfer->len - len;
394 
395  spi_writel(as, RPR, rx_dma);
396  spi_writel(as, TPR, tx_dma);
397 
398  if (msg->spi->bits_per_word > 8)
399  len >>= 1;
400  spi_writel(as, RCR, len);
401  spi_writel(as, TCR, len);
402 
403  dev_dbg(&msg->spi->dev,
404  " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
405  xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
406  xfer->rx_buf, xfer->rx_dma);
407  } else {
408  xfer = as->next_transfer;
409  remaining = as->next_remaining_bytes;
410  }
411 
412  as->current_transfer = xfer;
413  as->current_remaining_bytes = remaining;
414 
415  if (remaining > 0)
416  len = remaining;
417  else if (!atmel_spi_xfer_is_last(msg, xfer)
418  && atmel_spi_xfer_can_be_chained(xfer)) {
419  xfer = list_entry(xfer->transfer_list.next,
420  struct spi_transfer, transfer_list);
421  len = xfer->len;
422  } else
423  xfer = NULL;
424 
425  as->next_transfer = xfer;
426 
427  if (xfer) {
428  u32 total;
429 
430  total = len;
431  atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
432  as->next_remaining_bytes = total - len;
433 
434  spi_writel(as, RNPR, rx_dma);
435  spi_writel(as, TNPR, tx_dma);
436 
437  if (msg->spi->bits_per_word > 8)
438  len >>= 1;
439  spi_writel(as, RNCR, len);
440  spi_writel(as, TNCR, len);
441 
442  dev_dbg(&msg->spi->dev,
443  " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
444  xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
445  xfer->rx_buf, xfer->rx_dma);
446  ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
447  } else {
448  spi_writel(as, RNCR, 0);
449  spi_writel(as, TNCR, 0);
450  ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
451  }
452 
453  /* REVISIT: We're waiting for ENDRX before we start the next
454  * transfer because we need to handle some difficult timing
455  * issues otherwise. If we wait for ENDTX in one transfer and
456  * then starts waiting for ENDRX in the next, it's difficult
457  * to tell the difference between the ENDRX interrupt we're
458  * actually waiting for and the ENDRX interrupt of the
459  * previous transfer.
460  *
461  * It should be doable, though. Just not now...
462  */
463  spi_writel(as, IER, ieval);
464  spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
465 }
466 
467 static void atmel_spi_next_message(struct spi_master *master)
468 {
469  struct atmel_spi *as = spi_master_get_devdata(master);
470  struct spi_message *msg;
471  struct spi_device *spi;
472 
474 
475  msg = list_entry(as->queue.next, struct spi_message, queue);
476  spi = msg->spi;
477 
478  dev_dbg(master->dev.parent, "start message %p for %s\n",
479  msg, dev_name(&spi->dev));
480 
481  /* select chip if it's not still active */
482  if (as->stay) {
483  if (as->stay != spi) {
484  cs_deactivate(as, as->stay);
485  cs_activate(as, spi);
486  }
487  as->stay = NULL;
488  } else
489  cs_activate(as, spi);
490 
491  atmel_spi_next_xfer(master, msg);
492 }
493 
494 /*
495  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
496  * - The buffer is either valid for CPU access, else NULL
497  * - If the buffer is valid, so is its DMA address
498  *
499  * This driver manages the dma address unless message->is_dma_mapped.
500  */
501 static int
502 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
503 {
504  struct device *dev = &as->pdev->dev;
505 
506  xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
507  if (xfer->tx_buf) {
508  /* tx_buf is a const void* where we need a void * for the dma
509  * mapping */
510  void *nonconst_tx = (void *)xfer->tx_buf;
511 
512  xfer->tx_dma = dma_map_single(dev,
513  nonconst_tx, xfer->len,
514  DMA_TO_DEVICE);
515  if (dma_mapping_error(dev, xfer->tx_dma))
516  return -ENOMEM;
517  }
518  if (xfer->rx_buf) {
519  xfer->rx_dma = dma_map_single(dev,
520  xfer->rx_buf, xfer->len,
522  if (dma_mapping_error(dev, xfer->rx_dma)) {
523  if (xfer->tx_buf)
524  dma_unmap_single(dev,
525  xfer->tx_dma, xfer->len,
526  DMA_TO_DEVICE);
527  return -ENOMEM;
528  }
529  }
530  return 0;
531 }
532 
533 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
534  struct spi_transfer *xfer)
535 {
536  if (xfer->tx_dma != INVALID_DMA_ADDRESS)
537  dma_unmap_single(master->dev.parent, xfer->tx_dma,
538  xfer->len, DMA_TO_DEVICE);
539  if (xfer->rx_dma != INVALID_DMA_ADDRESS)
540  dma_unmap_single(master->dev.parent, xfer->rx_dma,
541  xfer->len, DMA_FROM_DEVICE);
542 }
543 
544 static void
545 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
546  struct spi_message *msg, int status, int stay)
547 {
548  if (!stay || status < 0)
549  cs_deactivate(as, msg->spi);
550  else
551  as->stay = msg->spi;
552 
553  list_del(&msg->queue);
554  msg->status = status;
555 
556  dev_dbg(master->dev.parent,
557  "xfer complete: %u bytes transferred\n",
558  msg->actual_length);
559 
560  spin_unlock(&as->lock);
561  msg->complete(msg->context);
562  spin_lock(&as->lock);
563 
564  as->current_transfer = NULL;
565  as->next_transfer = NULL;
566 
567  /* continue if needed */
568  if (list_empty(&as->queue) || as->stopping)
569  spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
570  else
571  atmel_spi_next_message(master);
572 }
573 
574 static irqreturn_t
575 atmel_spi_interrupt(int irq, void *dev_id)
576 {
577  struct spi_master *master = dev_id;
578  struct atmel_spi *as = spi_master_get_devdata(master);
579  struct spi_message *msg;
580  struct spi_transfer *xfer;
581  u32 status, pending, imr;
582  int ret = IRQ_NONE;
583 
584  spin_lock(&as->lock);
585 
586  xfer = as->current_transfer;
587  msg = list_entry(as->queue.next, struct spi_message, queue);
588 
589  imr = spi_readl(as, IMR);
590  status = spi_readl(as, SR);
591  pending = status & imr;
592 
593  if (pending & SPI_BIT(OVRES)) {
594  int timeout;
595 
596  ret = IRQ_HANDLED;
597 
598  spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
599  | SPI_BIT(OVRES)));
600 
601  /*
602  * When we get an overrun, we disregard the current
603  * transfer. Data will not be copied back from any
604  * bounce buffer and msg->actual_len will not be
605  * updated with the last xfer.
606  *
607  * We will also not process any remaning transfers in
608  * the message.
609  *
610  * First, stop the transfer and unmap the DMA buffers.
611  */
612  spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
613  if (!msg->is_dma_mapped)
614  atmel_spi_dma_unmap_xfer(master, xfer);
615 
616  /* REVISIT: udelay in irq is unfriendly */
617  if (xfer->delay_usecs)
618  udelay(xfer->delay_usecs);
619 
620  dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
621  spi_readl(as, TCR), spi_readl(as, RCR));
622 
623  /*
624  * Clean up DMA registers and make sure the data
625  * registers are empty.
626  */
627  spi_writel(as, RNCR, 0);
628  spi_writel(as, TNCR, 0);
629  spi_writel(as, RCR, 0);
630  spi_writel(as, TCR, 0);
631  for (timeout = 1000; timeout; timeout--)
632  if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
633  break;
634  if (!timeout)
635  dev_warn(master->dev.parent,
636  "timeout waiting for TXEMPTY");
637  while (spi_readl(as, SR) & SPI_BIT(RDRF))
638  spi_readl(as, RDR);
639 
640  /* Clear any overrun happening while cleaning up */
641  spi_readl(as, SR);
642 
643  atmel_spi_msg_done(master, as, msg, -EIO, 0);
644  } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
645  ret = IRQ_HANDLED;
646 
647  spi_writel(as, IDR, pending);
648 
649  if (as->current_remaining_bytes == 0) {
650  msg->actual_length += xfer->len;
651 
652  if (!msg->is_dma_mapped)
653  atmel_spi_dma_unmap_xfer(master, xfer);
654 
655  /* REVISIT: udelay in irq is unfriendly */
656  if (xfer->delay_usecs)
657  udelay(xfer->delay_usecs);
658 
659  if (atmel_spi_xfer_is_last(msg, xfer)) {
660  /* report completed message */
661  atmel_spi_msg_done(master, as, msg, 0,
662  xfer->cs_change);
663  } else {
664  if (xfer->cs_change) {
665  cs_deactivate(as, msg->spi);
666  udelay(1);
667  cs_activate(as, msg->spi);
668  }
669 
670  /*
671  * Not done yet. Submit the next transfer.
672  *
673  * FIXME handle protocol options for xfer
674  */
675  atmel_spi_next_xfer(master, msg);
676  }
677  } else {
678  /*
679  * Keep going, we still have data to send in
680  * the current transfer.
681  */
682  atmel_spi_next_xfer(master, msg);
683  }
684  }
685 
686  spin_unlock(&as->lock);
687 
688  return ret;
689 }
690 
691 static int atmel_spi_setup(struct spi_device *spi)
692 {
693  struct atmel_spi *as;
694  struct atmel_spi_device *asd;
695  u32 scbr, csr;
696  unsigned int bits = spi->bits_per_word;
697  unsigned long bus_hz;
698  unsigned int npcs_pin;
699  int ret;
700 
701  as = spi_master_get_devdata(spi->master);
702 
703  if (as->stopping)
704  return -ESHUTDOWN;
705 
706  if (spi->chip_select > spi->master->num_chipselect) {
707  dev_dbg(&spi->dev,
708  "setup: invalid chipselect %u (%u defined)\n",
709  spi->chip_select, spi->master->num_chipselect);
710  return -EINVAL;
711  }
712 
713  if (bits < 8 || bits > 16) {
714  dev_dbg(&spi->dev,
715  "setup: invalid bits_per_word %u (8 to 16)\n",
716  bits);
717  return -EINVAL;
718  }
719 
720  /* see notes above re chipselect */
721  if (!atmel_spi_is_v2()
722  && spi->chip_select == 0
723  && (spi->mode & SPI_CS_HIGH)) {
724  dev_dbg(&spi->dev, "setup: can't be active-high\n");
725  return -EINVAL;
726  }
727 
728  /* v1 chips start out at half the peripheral bus speed. */
729  bus_hz = clk_get_rate(as->clk);
730  if (!atmel_spi_is_v2())
731  bus_hz /= 2;
732 
733  if (spi->max_speed_hz) {
734  /*
735  * Calculate the lowest divider that satisfies the
736  * constraint, assuming div32/fdiv/mbz == 0.
737  */
738  scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
739 
740  /*
741  * If the resulting divider doesn't fit into the
742  * register bitfield, we can't satisfy the constraint.
743  */
744  if (scbr >= (1 << SPI_SCBR_SIZE)) {
745  dev_dbg(&spi->dev,
746  "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
747  spi->max_speed_hz, scbr, bus_hz/255);
748  return -EINVAL;
749  }
750  } else
751  /* speed zero means "as slow as possible" */
752  scbr = 0xff;
753 
754  csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
755  if (spi->mode & SPI_CPOL)
756  csr |= SPI_BIT(CPOL);
757  if (!(spi->mode & SPI_CPHA))
758  csr |= SPI_BIT(NCPHA);
759 
760  /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
761  *
762  * DLYBCT would add delays between words, slowing down transfers.
763  * It could potentially be useful to cope with DMA bottlenecks, but
764  * in those cases it's probably best to just use a lower bitrate.
765  */
766  csr |= SPI_BF(DLYBS, 0);
767  csr |= SPI_BF(DLYBCT, 0);
768 
769  /* chipselect must have been muxed as GPIO (e.g. in board setup) */
770  npcs_pin = (unsigned int)spi->controller_data;
771  asd = spi->controller_state;
772  if (!asd) {
773  asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
774  if (!asd)
775  return -ENOMEM;
776 
777  ret = gpio_request(npcs_pin, dev_name(&spi->dev));
778  if (ret) {
779  kfree(asd);
780  return ret;
781  }
782 
783  asd->npcs_pin = npcs_pin;
784  spi->controller_state = asd;
785  gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
786  } else {
787  unsigned long flags;
788 
789  spin_lock_irqsave(&as->lock, flags);
790  if (as->stay == spi)
791  as->stay = NULL;
792  cs_deactivate(as, spi);
793  spin_unlock_irqrestore(&as->lock, flags);
794  }
795 
796  asd->csr = csr;
797 
798  dev_dbg(&spi->dev,
799  "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
800  bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
801 
802  if (!atmel_spi_is_v2())
803  spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
804 
805  return 0;
806 }
807 
808 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
809 {
810  struct atmel_spi *as;
811  struct spi_transfer *xfer;
812  unsigned long flags;
813  struct device *controller = spi->master->dev.parent;
814  u8 bits;
815  struct atmel_spi_device *asd;
816 
817  as = spi_master_get_devdata(spi->master);
818 
819  dev_dbg(controller, "new message %p submitted for %s\n",
820  msg, dev_name(&spi->dev));
821 
822  if (unlikely(list_empty(&msg->transfers)))
823  return -EINVAL;
824 
825  if (as->stopping)
826  return -ESHUTDOWN;
827 
828  list_for_each_entry(xfer, &msg->transfers, transfer_list) {
829  if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
830  dev_dbg(&spi->dev, "missing rx or tx buf\n");
831  return -EINVAL;
832  }
833 
834  if (xfer->bits_per_word) {
835  asd = spi->controller_state;
836  bits = (asd->csr >> 4) & 0xf;
837  if (bits != xfer->bits_per_word - 8) {
838  dev_dbg(&spi->dev, "you can't yet change "
839  "bits_per_word in transfers\n");
840  return -ENOPROTOOPT;
841  }
842  }
843 
844  /* FIXME implement these protocol options!! */
845  if (xfer->speed_hz) {
846  dev_dbg(&spi->dev, "no protocol options yet\n");
847  return -ENOPROTOOPT;
848  }
849 
850  /*
851  * DMA map early, for performance (empties dcache ASAP) and
852  * better fault reporting. This is a DMA-only driver.
853  *
854  * NOTE that if dma_unmap_single() ever starts to do work on
855  * platforms supported by this driver, we would need to clean
856  * up mappings for previously-mapped transfers.
857  */
858  if (!msg->is_dma_mapped) {
859  if (atmel_spi_dma_map_xfer(as, xfer) < 0)
860  return -ENOMEM;
861  }
862  }
863 
864 #ifdef VERBOSE
865  list_for_each_entry(xfer, &msg->transfers, transfer_list) {
866  dev_dbg(controller,
867  " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
868  xfer, xfer->len,
869  xfer->tx_buf, xfer->tx_dma,
870  xfer->rx_buf, xfer->rx_dma);
871  }
872 #endif
873 
874  msg->status = -EINPROGRESS;
875  msg->actual_length = 0;
876 
877  spin_lock_irqsave(&as->lock, flags);
878  list_add_tail(&msg->queue, &as->queue);
879  if (!as->current_transfer)
880  atmel_spi_next_message(spi->master);
881  spin_unlock_irqrestore(&as->lock, flags);
882 
883  return 0;
884 }
885 
886 static void atmel_spi_cleanup(struct spi_device *spi)
887 {
888  struct atmel_spi *as = spi_master_get_devdata(spi->master);
889  struct atmel_spi_device *asd = spi->controller_state;
890  unsigned gpio = (unsigned) spi->controller_data;
891  unsigned long flags;
892 
893  if (!asd)
894  return;
895 
896  spin_lock_irqsave(&as->lock, flags);
897  if (as->stay == spi) {
898  as->stay = NULL;
899  cs_deactivate(as, spi);
900  }
901  spin_unlock_irqrestore(&as->lock, flags);
902 
903  spi->controller_state = NULL;
904  gpio_free(gpio);
905  kfree(asd);
906 }
907 
908 /*-------------------------------------------------------------------------*/
909 
910 static int __devinit atmel_spi_probe(struct platform_device *pdev)
911 {
912  struct resource *regs;
913  int irq;
914  struct clk *clk;
915  int ret;
916  struct spi_master *master;
917  struct atmel_spi *as;
918 
919  regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
920  if (!regs)
921  return -ENXIO;
922 
923  irq = platform_get_irq(pdev, 0);
924  if (irq < 0)
925  return irq;
926 
927  clk = clk_get(&pdev->dev, "spi_clk");
928  if (IS_ERR(clk))
929  return PTR_ERR(clk);
930 
931  /* setup spi core then atmel-specific driver state */
932  ret = -ENOMEM;
933  master = spi_alloc_master(&pdev->dev, sizeof *as);
934  if (!master)
935  goto out_free;
936 
937  /* the spi->mode bits understood by this driver: */
938  master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
939 
940  master->bus_num = pdev->id;
941  master->num_chipselect = 4;
942  master->setup = atmel_spi_setup;
943  master->transfer = atmel_spi_transfer;
944  master->cleanup = atmel_spi_cleanup;
945  platform_set_drvdata(pdev, master);
946 
947  as = spi_master_get_devdata(master);
948 
949  /*
950  * Scratch buffer is used for throwaway rx and tx data.
951  * It's coherent to minimize dcache pollution.
952  */
954  &as->buffer_dma, GFP_KERNEL);
955  if (!as->buffer)
956  goto out_free;
957 
958  spin_lock_init(&as->lock);
959  INIT_LIST_HEAD(&as->queue);
960  as->pdev = pdev;
961  as->regs = ioremap(regs->start, resource_size(regs));
962  if (!as->regs)
963  goto out_free_buffer;
964  as->irq = irq;
965  as->clk = clk;
966 
967  ret = request_irq(irq, atmel_spi_interrupt, 0,
968  dev_name(&pdev->dev), master);
969  if (ret)
970  goto out_unmap_regs;
971 
972  /* Initialize the hardware */
973  clk_enable(clk);
974  spi_writel(as, CR, SPI_BIT(SWRST));
975  spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
976  spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
977  spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
978  spi_writel(as, CR, SPI_BIT(SPIEN));
979 
980  /* go! */
981  dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
982  (unsigned long)regs->start, irq);
983 
984  ret = spi_register_master(master);
985  if (ret)
986  goto out_reset_hw;
987 
988  return 0;
989 
990 out_reset_hw:
991  spi_writel(as, CR, SPI_BIT(SWRST));
992  spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
993  clk_disable(clk);
994  free_irq(irq, master);
995 out_unmap_regs:
996  iounmap(as->regs);
997 out_free_buffer:
999  as->buffer_dma);
1000 out_free:
1001  clk_put(clk);
1002  spi_master_put(master);
1003  return ret;
1004 }
1005 
1006 static int __devexit atmel_spi_remove(struct platform_device *pdev)
1007 {
1008  struct spi_master *master = platform_get_drvdata(pdev);
1009  struct atmel_spi *as = spi_master_get_devdata(master);
1010  struct spi_message *msg;
1011 
1012  /* reset the hardware and block queue progress */
1013  spin_lock_irq(&as->lock);
1014  as->stopping = 1;
1015  spi_writel(as, CR, SPI_BIT(SWRST));
1016  spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017  spi_readl(as, SR);
1018  spin_unlock_irq(&as->lock);
1019 
1020  /* Terminate remaining queued transfers */
1021  list_for_each_entry(msg, &as->queue, queue) {
1022  /* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023  * but we shouldn't depend on that...
1024  */
1025  msg->status = -ESHUTDOWN;
1026  msg->complete(msg->context);
1027  }
1028 
1029  dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030  as->buffer_dma);
1031 
1032  clk_disable(as->clk);
1033  clk_put(as->clk);
1034  free_irq(as->irq, master);
1035  iounmap(as->regs);
1036 
1037  spi_unregister_master(master);
1038 
1039  return 0;
1040 }
1041 
1042 #ifdef CONFIG_PM
1043 
1044 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1045 {
1046  struct spi_master *master = platform_get_drvdata(pdev);
1047  struct atmel_spi *as = spi_master_get_devdata(master);
1048 
1049  clk_disable(as->clk);
1050  return 0;
1051 }
1052 
1053 static int atmel_spi_resume(struct platform_device *pdev)
1054 {
1055  struct spi_master *master = platform_get_drvdata(pdev);
1056  struct atmel_spi *as = spi_master_get_devdata(master);
1057 
1058  clk_enable(as->clk);
1059  return 0;
1060 }
1061 
1062 #else
1063 #define atmel_spi_suspend NULL
1064 #define atmel_spi_resume NULL
1065 #endif
1066 
1067 
1068 static struct platform_driver atmel_spi_driver = {
1069  .driver = {
1070  .name = "atmel_spi",
1071  .owner = THIS_MODULE,
1072  },
1073  .suspend = atmel_spi_suspend,
1074  .resume = atmel_spi_resume,
1075  .probe = atmel_spi_probe,
1076  .remove = __exit_p(atmel_spi_remove),
1077 };
1078 module_platform_driver(atmel_spi_driver);
1079 
1080 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1081 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1082 MODULE_LICENSE("GPL");
1083 MODULE_ALIAS("platform:atmel_spi");