Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spi-ppc4xx.c
Go to the documentation of this file.
1 /*
2  * SPI_PPC4XX SPI controller driver.
3  *
4  * Copyright (C) 2007 Gary Jennejohn <[email protected]>
5  * Copyright 2008 Stefan Roese <[email protected]>, DENX Software Engineering
6  * Copyright 2009 Harris Corporation, Steven A. Falco <[email protected]>
7  *
8  * Based in part on drivers/spi/spi_s3c24xx.c
9  *
10  * Copyright (c) 2006 Ben Dooks
11  * Copyright (c) 2006 Simtec Electronics
12  * Ben Dooks <[email protected]>
13  *
14  * This program is free software; you can redistribute it and/or modify it
15  * under the terms of the GNU General Public License version 2 as published
16  * by the Free Software Foundation.
17  */
18 
19 /*
20  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
21  * generate an interrupt to the CPU. This can cause high CPU utilization.
22  * This driver allows platforms to reduce the interrupt load on the CPU
23  * during SPI transfers by setting max_speed_hz via the device tree.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/errno.h>
31 #include <linux/wait.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_gpio.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 
37 #include <linux/gpio.h>
38 #include <linux/spi/spi.h>
39 #include <linux/spi/spi_bitbang.h>
40 
41 #include <asm/io.h>
42 #include <asm/dcr.h>
43 #include <asm/dcr-regs.h>
44 
45 /* bits in mode register - bit 0 is MSb */
46 
47 /*
48  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
49  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
50  * Note: This is the inverse of CPHA.
51  */
52 #define SPI_PPC4XX_MODE_SCP (0x80 >> 3)
53 
54 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
55 #define SPI_PPC4XX_MODE_SPE (0x80 >> 4)
56 
57 /*
58  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
59  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
60  * Note: This is identical to SPI_LSB_FIRST.
61  */
62 #define SPI_PPC4XX_MODE_RD (0x80 >> 5)
63 
64 /*
65  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
66  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
67  * Note: This is identical to CPOL.
68  */
69 #define SPI_PPC4XX_MODE_CI (0x80 >> 6)
70 
71 /*
72  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
73  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
74  */
75 #define SPI_PPC4XX_MODE_IL (0x80 >> 7)
76 
77 /* bits in control register */
78 /* starts a transfer when set */
79 #define SPI_PPC4XX_CR_STR (0x80 >> 7)
80 
81 /* bits in status register */
82 /* port is busy with a transfer */
83 #define SPI_PPC4XX_SR_BSY (0x80 >> 6)
84 /* RxD ready */
85 #define SPI_PPC4XX_SR_RBR (0x80 >> 7)
86 
87 /* clock settings (SCP and CI) for various SPI modes */
88 #define SPI_CLK_MODE0 (SPI_PPC4XX_MODE_SCP | 0)
89 #define SPI_CLK_MODE1 (0 | 0)
90 #define SPI_CLK_MODE2 (SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
91 #define SPI_CLK_MODE3 (0 | SPI_PPC4XX_MODE_CI)
92 
93 #define DRIVER_NAME "spi_ppc4xx_of"
94 
99  u8 cr;
102  /*
103  * Clock divisor modulus register
104  * This uses the following formula:
105  * SCPClkOut = OPBCLK/(4(CDM + 1))
106  * or
107  * CDM = (OPBCLK/4*SCPClkOut) - 1
108  * bit 0 is the MSb!
109  */
111 };
112 
113 /* SPI Controller driver's private data. */
114 struct ppc4xx_spi {
115  /* bitbang has to be first */
117  struct completion done;
118 
121  int irqnum;
122  /* need this to set the SPI clock */
123  unsigned int opb_freq;
124 
125  /* for transfers */
126  int len;
127  int count;
128  /* data buffers */
129  const unsigned char *tx;
130  unsigned char *rx;
131 
132  int *gpios;
133 
134  struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
136  struct device *dev;
137 };
138 
139 /* need this so we can set the clock in the chipselect routine */
142 };
143 
144 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
145 {
146  struct ppc4xx_spi *hw;
147  u8 data;
148 
149  dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
150  t->tx_buf, t->rx_buf, t->len);
151 
152  hw = spi_master_get_devdata(spi->master);
153 
154  hw->tx = t->tx_buf;
155  hw->rx = t->rx_buf;
156  hw->len = t->len;
157  hw->count = 0;
158 
159  /* send the first byte */
160  data = hw->tx ? hw->tx[0] : 0;
161  out_8(&hw->regs->txd, data);
162  out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
164 
165  return hw->count;
166 }
167 
168 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
169 {
170  struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
171  struct spi_ppc4xx_cs *cs = spi->controller_state;
172  int scr;
173  u8 cdm = 0;
174  u32 speed;
175  u8 bits_per_word;
176 
177  /* Start with the generic configuration for this device. */
178  bits_per_word = spi->bits_per_word;
179  speed = spi->max_speed_hz;
180 
181  /*
182  * Modify the configuration if the transfer overrides it. Do not allow
183  * the transfer to overwrite the generic configuration with zeros.
184  */
185  if (t) {
186  if (t->bits_per_word)
187  bits_per_word = t->bits_per_word;
188 
189  if (t->speed_hz)
190  speed = min(t->speed_hz, spi->max_speed_hz);
191  }
192 
193  if (bits_per_word != 8) {
194  dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
195  bits_per_word);
196  return -EINVAL;
197  }
198 
199  if (!speed || (speed > spi->max_speed_hz)) {
200  dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
201  return -EINVAL;
202  }
203 
204  /* Write new configuration */
205  out_8(&hw->regs->mode, cs->mode);
206 
207  /* Set the clock */
208  /* opb_freq was already divided by 4 */
209  scr = (hw->opb_freq / speed) - 1;
210  if (scr > 0)
211  cdm = min(scr, 0xff);
212 
213  dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
214 
215  if (in_8(&hw->regs->cdm) != cdm)
216  out_8(&hw->regs->cdm, cdm);
217 
218  spin_lock(&hw->bitbang.lock);
219  if (!hw->bitbang.busy) {
220  hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
221  /* Need to ndelay here? */
222  }
223  spin_unlock(&hw->bitbang.lock);
224 
225  return 0;
226 }
227 
228 static int spi_ppc4xx_setup(struct spi_device *spi)
229 {
230  struct spi_ppc4xx_cs *cs = spi->controller_state;
231 
232  if (spi->bits_per_word != 8) {
233  dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
234  spi->bits_per_word);
235  return -EINVAL;
236  }
237 
238  if (!spi->max_speed_hz) {
239  dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
240  return -EINVAL;
241  }
242 
243  if (cs == NULL) {
244  cs = kzalloc(sizeof *cs, GFP_KERNEL);
245  if (!cs)
246  return -ENOMEM;
247  spi->controller_state = cs;
248  }
249 
250  /*
251  * We set all bits of the SPI0_MODE register, so,
252  * no need to read-modify-write
253  */
255 
256  switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
257  case SPI_MODE_0:
258  cs->mode |= SPI_CLK_MODE0;
259  break;
260  case SPI_MODE_1:
261  cs->mode |= SPI_CLK_MODE1;
262  break;
263  case SPI_MODE_2:
264  cs->mode |= SPI_CLK_MODE2;
265  break;
266  case SPI_MODE_3:
267  cs->mode |= SPI_CLK_MODE3;
268  break;
269  }
270 
271  if (spi->mode & SPI_LSB_FIRST)
272  cs->mode |= SPI_PPC4XX_MODE_RD;
273 
274  return 0;
275 }
276 
277 static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
278 {
279  struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
280  unsigned int cs = spi->chip_select;
281  unsigned int cspol;
282 
283  /*
284  * If there are no chip selects at all, or if this is the special
285  * case of a non-existent (dummy) chip select, do nothing.
286  */
287 
288  if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
289  return;
290 
291  cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
292  if (value == BITBANG_CS_INACTIVE)
293  cspol = !cspol;
294 
295  gpio_set_value(hw->gpios[cs], cspol);
296 }
297 
298 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
299 {
300  struct ppc4xx_spi *hw;
301  u8 status;
302  u8 data;
303  unsigned int count;
304 
305  hw = (struct ppc4xx_spi *)dev_id;
306 
307  status = in_8(&hw->regs->sr);
308  if (!status)
309  return IRQ_NONE;
310 
311  /*
312  * BSY de-asserts one cycle after the transfer is complete. The
313  * interrupt is asserted after the transfer is complete. The exact
314  * relationship is not documented, hence this code.
315  */
316 
317  if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
318  u8 lstatus;
319  int cnt = 0;
320 
321  dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
322  do {
323  ndelay(10);
324  lstatus = in_8(&hw->regs->sr);
325  } while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
326 
327  if (cnt >= 100) {
328  dev_err(hw->dev, "busywait: too many loops!\n");
329  complete(&hw->done);
330  return IRQ_HANDLED;
331  } else {
332  /* status is always 1 (RBR) here */
333  status = in_8(&hw->regs->sr);
334  dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
335  }
336  }
337 
338  count = hw->count;
339  hw->count++;
340 
341  /* RBR triggered this interrupt. Therefore, data must be ready. */
342  data = in_8(&hw->regs->rxd);
343  if (hw->rx)
344  hw->rx[count] = data;
345 
346  count++;
347 
348  if (count < hw->len) {
349  data = hw->tx ? hw->tx[count] : 0;
350  out_8(&hw->regs->txd, data);
351  out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
352  } else {
353  complete(&hw->done);
354  }
355 
356  return IRQ_HANDLED;
357 }
358 
359 static void spi_ppc4xx_cleanup(struct spi_device *spi)
360 {
361  kfree(spi->controller_state);
362 }
363 
364 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
365 {
366  /*
367  * On all 4xx PPC's the SPI bus is shared/multiplexed with
368  * the 2nd I2C bus. We need to enable the the SPI bus before
369  * using it.
370  */
371 
372  /* need to clear bit 14 to enable SPC */
373  dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
374 }
375 
376 static void free_gpios(struct ppc4xx_spi *hw)
377 {
378  if (hw->master->num_chipselect) {
379  int i;
380  for (i = 0; i < hw->master->num_chipselect; i++)
381  if (gpio_is_valid(hw->gpios[i]))
382  gpio_free(hw->gpios[i]);
383 
384  kfree(hw->gpios);
385  hw->gpios = NULL;
386  }
387 }
388 
389 /*
390  * platform_device layer stuff...
391  */
392 static int __init spi_ppc4xx_of_probe(struct platform_device *op)
393 {
394  struct ppc4xx_spi *hw;
395  struct spi_master *master;
396  struct spi_bitbang *bbp;
397  struct resource resource;
398  struct device_node *np = op->dev.of_node;
399  struct device *dev = &op->dev;
400  struct device_node *opbnp;
401  int ret;
402  int num_gpios;
403  const unsigned int *clk;
404 
405  master = spi_alloc_master(dev, sizeof *hw);
406  if (master == NULL)
407  return -ENOMEM;
408  master->dev.of_node = np;
409  dev_set_drvdata(dev, master);
410  hw = spi_master_get_devdata(master);
411  hw->master = spi_master_get(master);
412  hw->dev = dev;
413 
414  init_completion(&hw->done);
415 
416  /*
417  * A count of zero implies a single SPI device without any chip-select.
418  * Note that of_gpio_count counts all gpios assigned to this spi master.
419  * This includes both "null" gpio's and real ones.
420  */
421  num_gpios = of_gpio_count(np);
422  if (num_gpios) {
423  int i;
424 
425  hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
426  if (!hw->gpios) {
427  ret = -ENOMEM;
428  goto free_master;
429  }
430 
431  for (i = 0; i < num_gpios; i++) {
432  int gpio;
433  enum of_gpio_flags flags;
434 
435  gpio = of_get_gpio_flags(np, i, &flags);
436  hw->gpios[i] = gpio;
437 
438  if (gpio_is_valid(gpio)) {
439  /* Real CS - set the initial state. */
440  ret = gpio_request(gpio, np->name);
441  if (ret < 0) {
442  dev_err(dev, "can't request gpio "
443  "#%d: %d\n", i, ret);
444  goto free_gpios;
445  }
446 
448  !!(flags & OF_GPIO_ACTIVE_LOW));
449  } else if (gpio == -EEXIST) {
450  ; /* No CS, but that's OK. */
451  } else {
452  dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
453  ret = -EINVAL;
454  goto free_gpios;
455  }
456  }
457  }
458 
459  /* Setup the state for the bitbang driver */
460  bbp = &hw->bitbang;
461  bbp->master = hw->master;
462  bbp->setup_transfer = spi_ppc4xx_setupxfer;
463  bbp->chipselect = spi_ppc4xx_chipsel;
464  bbp->txrx_bufs = spi_ppc4xx_txrx;
465  bbp->use_dma = 0;
466  bbp->master->setup = spi_ppc4xx_setup;
467  bbp->master->cleanup = spi_ppc4xx_cleanup;
468 
469  /* the spi->mode bits understood by this driver: */
470  bbp->master->mode_bits =
472 
473  /* this many pins in all GPIO controllers */
474  bbp->master->num_chipselect = num_gpios;
475 
476  /* Get the clock for the OPB */
477  opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
478  if (opbnp == NULL) {
479  dev_err(dev, "OPB: cannot find node\n");
480  ret = -ENODEV;
481  goto free_gpios;
482  }
483  /* Get the clock (Hz) for the OPB */
484  clk = of_get_property(opbnp, "clock-frequency", NULL);
485  if (clk == NULL) {
486  dev_err(dev, "OPB: no clock-frequency property set\n");
487  of_node_put(opbnp);
488  ret = -ENODEV;
489  goto free_gpios;
490  }
491  hw->opb_freq = *clk;
492  hw->opb_freq >>= 2;
493  of_node_put(opbnp);
494 
495  ret = of_address_to_resource(np, 0, &resource);
496  if (ret) {
497  dev_err(dev, "error while parsing device node resource\n");
498  goto free_gpios;
499  }
500  hw->mapbase = resource.start;
501  hw->mapsize = resource_size(&resource);
502 
503  /* Sanity check */
504  if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
505  dev_err(dev, "too small to map registers\n");
506  ret = -EINVAL;
507  goto free_gpios;
508  }
509 
510  /* Request IRQ */
511  hw->irqnum = irq_of_parse_and_map(np, 0);
512  ret = request_irq(hw->irqnum, spi_ppc4xx_int,
513  0, "spi_ppc4xx_of", (void *)hw);
514  if (ret) {
515  dev_err(dev, "unable to allocate interrupt\n");
516  goto free_gpios;
517  }
518 
519  if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
520  dev_err(dev, "resource unavailable\n");
521  ret = -EBUSY;
522  goto request_mem_error;
523  }
524 
525  hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
526 
527  if (!hw->regs) {
528  dev_err(dev, "unable to memory map registers\n");
529  ret = -ENXIO;
530  goto map_io_error;
531  }
532 
533  spi_ppc4xx_enable(hw);
534 
535  /* Finally register our spi controller */
536  dev->dma_mask = 0;
537  ret = spi_bitbang_start(bbp);
538  if (ret) {
539  dev_err(dev, "failed to register SPI master\n");
540  goto unmap_regs;
541  }
542 
543  dev_info(dev, "driver initialized\n");
544 
545  return 0;
546 
547 unmap_regs:
548  iounmap(hw->regs);
549 map_io_error:
551 request_mem_error:
552  free_irq(hw->irqnum, hw);
553 free_gpios:
554  free_gpios(hw);
555 free_master:
556  dev_set_drvdata(dev, NULL);
557  spi_master_put(master);
558 
559  dev_err(dev, "initialization failed\n");
560  return ret;
561 }
562 
563 static int __exit spi_ppc4xx_of_remove(struct platform_device *op)
564 {
565  struct spi_master *master = dev_get_drvdata(&op->dev);
566  struct ppc4xx_spi *hw = spi_master_get_devdata(master);
567 
569  dev_set_drvdata(&op->dev, NULL);
571  free_irq(hw->irqnum, hw);
572  iounmap(hw->regs);
573  free_gpios(hw);
574  return 0;
575 }
576 
577 static const struct of_device_id spi_ppc4xx_of_match[] = {
578  { .compatible = "ibm,ppc4xx-spi", },
579  {},
580 };
581 
582 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
583 
584 static struct platform_driver spi_ppc4xx_of_driver = {
585  .probe = spi_ppc4xx_of_probe,
586  .remove = __exit_p(spi_ppc4xx_of_remove),
587  .driver = {
588  .name = DRIVER_NAME,
589  .owner = THIS_MODULE,
590  .of_match_table = spi_ppc4xx_of_match,
591  },
592 };
593 module_platform_driver(spi_ppc4xx_of_driver);
594 
595 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
596 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
597 MODULE_LICENSE("GPL");