Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
stv0900_core.c
Go to the documentation of this file.
1 /*
2  * stv0900_core.c
3  *
4  * Driver for ST STV0900 satellite demodulator IC.
5  *
6  * Copyright (C) ST Microelectronics.
7  * Copyright (C) 2009 NetUP Inc.
8  * Copyright (C) 2009 Igor M. Liplianin <[email protected]>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  *
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/i2c.h>
31 
32 #include "stv0900.h"
33 #include "stv0900_reg.h"
34 #include "stv0900_priv.h"
35 #include "stv0900_init.h"
36 
37 int stvdebug = 1;
38 module_param_named(debug, stvdebug, int, 0644);
39 
40 /* internal params node */
41 struct stv0900_inode {
42  /* pointer for internal params, one for each pair of demods */
43  struct stv0900_internal *internal;
45 };
46 
47 /* first internal params */
48 static struct stv0900_inode *stv0900_first_inode;
49 
50 /* find chip by i2c adapter and i2c address */
51 static struct stv0900_inode *find_inode(struct i2c_adapter *i2c_adap,
52  u8 i2c_addr)
53 {
54  struct stv0900_inode *temp_chip = stv0900_first_inode;
55 
56  if (temp_chip != NULL) {
57  /*
58  Search of the last stv0900 chip or
59  find it by i2c adapter and i2c address */
60  while ((temp_chip != NULL) &&
61  ((temp_chip->internal->i2c_adap != i2c_adap) ||
62  (temp_chip->internal->i2c_addr != i2c_addr)))
63 
64  temp_chip = temp_chip->next_inode;
65 
66  }
67 
68  return temp_chip;
69 }
70 
71 /* deallocating chip */
72 static void remove_inode(struct stv0900_internal *internal)
73 {
74  struct stv0900_inode *prev_node = stv0900_first_inode;
75  struct stv0900_inode *del_node = find_inode(internal->i2c_adap,
76  internal->i2c_addr);
77 
78  if (del_node != NULL) {
79  if (del_node == stv0900_first_inode) {
80  stv0900_first_inode = del_node->next_inode;
81  } else {
82  while (prev_node->next_inode != del_node)
83  prev_node = prev_node->next_inode;
84 
85  if (del_node->next_inode == NULL)
86  prev_node->next_inode = NULL;
87  else
88  prev_node->next_inode =
89  prev_node->next_inode->next_inode;
90  }
91 
92  kfree(del_node);
93  }
94 }
95 
96 /* allocating new chip */
97 static struct stv0900_inode *append_internal(struct stv0900_internal *internal)
98 {
99  struct stv0900_inode *new_node = stv0900_first_inode;
100 
101  if (new_node == NULL) {
102  new_node = kmalloc(sizeof(struct stv0900_inode), GFP_KERNEL);
103  stv0900_first_inode = new_node;
104  } else {
105  while (new_node->next_inode != NULL)
106  new_node = new_node->next_inode;
107 
108  new_node->next_inode = kmalloc(sizeof(struct stv0900_inode),
109  GFP_KERNEL);
110  if (new_node->next_inode != NULL)
111  new_node = new_node->next_inode;
112  else
113  new_node = NULL;
114  }
115 
116  if (new_node != NULL) {
117  new_node->internal = internal;
118  new_node->next_inode = NULL;
119  }
120 
121  return new_node;
122 }
123 
125 {
126  if (width == 32)
127  return a;
128  else
129  return (a >= (1 << (width - 1))) ? (a - (1 << width)) : a;
130 }
131 
133  u8 reg_data)
134 {
135  u8 data[3];
136  int ret;
137  struct i2c_msg i2cmsg = {
138  .addr = intp->i2c_addr,
139  .flags = 0,
140  .len = 3,
141  .buf = data,
142  };
143 
144  data[0] = MSB(reg_addr);
145  data[1] = LSB(reg_addr);
146  data[2] = reg_data;
147 
148  ret = i2c_transfer(intp->i2c_adap, &i2cmsg, 1);
149  if (ret != 1)
150  dprintk("%s: i2c error %d\n", __func__, ret);
151 }
152 
154 {
155  int ret;
156  u8 b0[] = { MSB(reg), LSB(reg) };
157  u8 buf = 0;
158  struct i2c_msg msg[] = {
159  {
160  .addr = intp->i2c_addr,
161  .flags = 0,
162  .buf = b0,
163  .len = 2,
164  }, {
165  .addr = intp->i2c_addr,
166  .flags = I2C_M_RD,
167  .buf = &buf,
168  .len = 1,
169  },
170  };
171 
172  ret = i2c_transfer(intp->i2c_adap, msg, 2);
173  if (ret != 2)
174  dprintk("%s: i2c error %d, reg[0x%02x]\n",
175  __func__, ret, reg);
176 
177  return buf;
178 }
179 
180 static void extract_mask_pos(u32 label, u8 *mask, u8 *pos)
181 {
182  u8 position = 0, i = 0;
183 
184  (*mask) = label & 0xff;
185 
186  while ((position == 0) && (i < 8)) {
187  position = ((*mask) >> i) & 0x01;
188  i++;
189  }
190 
191  (*pos) = (i - 1);
192 }
193 
194 void stv0900_write_bits(struct stv0900_internal *intp, u32 label, u8 val)
195 {
196  u8 reg, mask, pos;
197 
198  reg = stv0900_read_reg(intp, (label >> 16) & 0xffff);
199  extract_mask_pos(label, &mask, &pos);
200 
201  val = mask & (val << pos);
202 
203  reg = (reg & (~mask)) | val;
204  stv0900_write_reg(intp, (label >> 16) & 0xffff, reg);
205 
206 }
207 
209 {
210  u8 val = 0xff;
211  u8 mask, pos;
212 
213  extract_mask_pos(label, &mask, &pos);
214 
215  val = stv0900_read_reg(intp, label >> 16);
216  val = (val & mask) >> pos;
217 
218  return val;
219 }
220 
221 static enum fe_stv0900_error stv0900_initialize(struct stv0900_internal *intp)
222 {
223  s32 i;
224 
225  if (intp == NULL)
226  return STV0900_INVALID_HANDLE;
227 
228  intp->chip_id = stv0900_read_reg(intp, R0900_MID);
229 
230  if (intp->errs != STV0900_NO_ERROR)
231  return intp->errs;
232 
233  /*Startup sequence*/
236  msleep(3);
237  stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x6c);
238  stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x6f);
239  stv0900_write_reg(intp, R0900_P1_I2CRPT, 0x20);
240  stv0900_write_reg(intp, R0900_P2_I2CRPT, 0x20);
241  stv0900_write_reg(intp, R0900_NCOARSE, 0x13);
242  msleep(3);
243  stv0900_write_reg(intp, R0900_I2CCFG, 0x08);
244 
245  switch (intp->clkmode) {
246  case 0:
247  case 2:
249  | intp->clkmode);
250  break;
251  default:
252  /* preserve SELOSCI bit */
253  i = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
254  stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | i);
255  break;
256  }
257 
258  msleep(3);
259  for (i = 0; i < 181; i++)
260  stv0900_write_reg(intp, STV0900_InitVal[i][0],
261  STV0900_InitVal[i][1]);
262 
263  if (stv0900_read_reg(intp, R0900_MID) >= 0x20) {
264  stv0900_write_reg(intp, R0900_TSGENERAL, 0x0c);
265  for (i = 0; i < 32; i++)
266  stv0900_write_reg(intp, STV0900_Cut20_AddOnVal[i][0],
267  STV0900_Cut20_AddOnVal[i][1]);
268  }
269 
270  stv0900_write_reg(intp, R0900_P1_FSPYCFG, 0x6c);
271  stv0900_write_reg(intp, R0900_P2_FSPYCFG, 0x6c);
272 
275 
278 
279  stv0900_write_reg(intp, R0900_TSTRES0, 0x80);
280  stv0900_write_reg(intp, R0900_TSTRES0, 0x00);
281 
282  return STV0900_NO_ERROR;
283 }
284 
285 static u32 stv0900_get_mclk_freq(struct stv0900_internal *intp, u32 ext_clk)
286 {
287  u32 mclk = 90000000, div = 0, ad_div = 0;
288 
290  ad_div = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
291 
292  mclk = (div + 1) * ext_clk / ad_div;
293 
294  dprintk("%s: Calculated Mclk = %d\n", __func__, mclk);
295 
296  return mclk;
297 }
298 
299 static enum fe_stv0900_error stv0900_set_mclk(struct stv0900_internal *intp, u32 mclk)
300 {
301  u32 m_div, clk_sel;
302 
303  if (intp == NULL)
304  return STV0900_INVALID_HANDLE;
305 
306  if (intp->errs)
307  return STV0900_I2C_ERROR;
308 
309  dprintk("%s: Mclk set to %d, Quartz = %d\n", __func__, mclk,
310  intp->quartz);
311 
312  clk_sel = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
313  m_div = ((clk_sel * mclk) / intp->quartz) - 1;
314  stv0900_write_bits(intp, F0900_M_DIV, m_div);
315  intp->mclk = stv0900_get_mclk_freq(intp,
316  intp->quartz);
317 
318  /*Set the DiseqC frequency to 22KHz */
319  /*
320  Formula:
321  DiseqC_TX_Freq= MasterClock/(32*F22TX_Reg)
322  DiseqC_RX_Freq= MasterClock/(32*F22RX_Reg)
323  */
324  m_div = intp->mclk / 704000;
325  stv0900_write_reg(intp, R0900_P1_F22TX, m_div);
326  stv0900_write_reg(intp, R0900_P1_F22RX, m_div);
327 
328  stv0900_write_reg(intp, R0900_P2_F22TX, m_div);
329  stv0900_write_reg(intp, R0900_P2_F22RX, m_div);
330 
331  if ((intp->errs))
332  return STV0900_I2C_ERROR;
333 
334  return STV0900_NO_ERROR;
335 }
336 
337 static u32 stv0900_get_err_count(struct stv0900_internal *intp, int cntr,
338  enum fe_stv0900_demod_num demod)
339 {
340  u32 lsb, msb, hsb, err_val;
341 
342  switch (cntr) {
343  case 0:
344  default:
345  hsb = stv0900_get_bits(intp, ERR_CNT12);
346  msb = stv0900_get_bits(intp, ERR_CNT11);
347  lsb = stv0900_get_bits(intp, ERR_CNT10);
348  break;
349  case 1:
350  hsb = stv0900_get_bits(intp, ERR_CNT22);
351  msb = stv0900_get_bits(intp, ERR_CNT21);
352  lsb = stv0900_get_bits(intp, ERR_CNT20);
353  break;
354  }
355 
356  err_val = (hsb << 16) + (msb << 8) + (lsb);
357 
358  return err_val;
359 }
360 
361 static int stv0900_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
362 {
363  struct stv0900_state *state = fe->demodulator_priv;
364  struct stv0900_internal *intp = state->internal;
365  enum fe_stv0900_demod_num demod = state->demod;
366 
367  stv0900_write_bits(intp, I2CT_ON, enable);
368 
369  return 0;
370 }
371 
372 static void stv0900_set_ts_parallel_serial(struct stv0900_internal *intp,
373  enum fe_stv0900_clock_type path1_ts,
374  enum fe_stv0900_clock_type path2_ts)
375 {
376 
377  dprintk("%s\n", __func__);
378 
379  if (intp->chip_id >= 0x20) {
380  switch (path1_ts) {
382  case STV0900_DVBCI_CLOCK:
383  switch (path2_ts) {
386  default:
388  0x00);
389  break;
391  case STV0900_DVBCI_CLOCK:
393  0x06);
394  stv0900_write_bits(intp,
396  stv0900_write_bits(intp,
398  stv0900_write_reg(intp,
399  R0900_P1_TSSPEED, 0x14);
400  stv0900_write_reg(intp,
401  R0900_P2_TSSPEED, 0x28);
402  break;
403  }
404  break;
407  default:
408  switch (path2_ts) {
411  default:
412  stv0900_write_reg(intp,
413  R0900_TSGENERAL, 0x0C);
414  break;
416  case STV0900_DVBCI_CLOCK:
417  stv0900_write_reg(intp,
418  R0900_TSGENERAL, 0x0A);
419  dprintk("%s: 0x0a\n", __func__);
420  break;
421  }
422  break;
423  }
424  } else {
425  switch (path1_ts) {
427  case STV0900_DVBCI_CLOCK:
428  switch (path2_ts) {
431  default:
433  0x10);
434  break;
436  case STV0900_DVBCI_CLOCK:
438  0x16);
439  stv0900_write_bits(intp,
441  stv0900_write_bits(intp,
444  0x14);
446  0x28);
447  break;
448  }
449 
450  break;
453  default:
454  switch (path2_ts) {
457  default:
459  0x14);
460  break;
462  case STV0900_DVBCI_CLOCK:
464  0x12);
465  dprintk("%s: 0x12\n", __func__);
466  break;
467  }
468 
469  break;
470  }
471  }
472 
473  switch (path1_ts) {
477  break;
478  case STV0900_DVBCI_CLOCK:
481  break;
485  break;
489  break;
490  default:
491  break;
492  }
493 
494  switch (path2_ts) {
498  break;
499  case STV0900_DVBCI_CLOCK:
502  break;
506  break;
510  break;
511  default:
512  break;
513  }
514 
519 }
520 
522  u32 bandwidth)
523 {
524  struct dvb_frontend_ops *frontend_ops = NULL;
525  struct dvb_tuner_ops *tuner_ops = NULL;
526 
527  if (&fe->ops)
528  frontend_ops = &fe->ops;
529 
530  if (&frontend_ops->tuner_ops)
531  tuner_ops = &frontend_ops->tuner_ops;
532 
533  if (tuner_ops->set_frequency) {
534  if ((tuner_ops->set_frequency(fe, frequency)) < 0)
535  dprintk("%s: Invalid parameter\n", __func__);
536  else
537  dprintk("%s: Frequency=%d\n", __func__, frequency);
538 
539  }
540 
541  if (tuner_ops->set_bandwidth) {
542  if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
543  dprintk("%s: Invalid parameter\n", __func__);
544  else
545  dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
546 
547  }
548 }
549 
551 {
552  struct dvb_frontend_ops *frontend_ops = NULL;
553  struct dvb_tuner_ops *tuner_ops = NULL;
554 
555  if (&fe->ops)
556  frontend_ops = &fe->ops;
557 
558  if (&frontend_ops->tuner_ops)
559  tuner_ops = &frontend_ops->tuner_ops;
560 
561  if (tuner_ops->set_bandwidth) {
562  if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
563  dprintk("%s: Invalid parameter\n", __func__);
564  else
565  dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
566 
567  }
568 }
569 
571 {
572  u32 freq, round;
573  /* Formulat :
574  Tuner_Frequency(MHz) = Regs / 64
575  Tuner_granularity(MHz) = Regs / 2048
576  real_Tuner_Frequency = Tuner_Frequency(MHz) - Tuner_granularity(MHz)
577  */
578  freq = (stv0900_get_bits(intp, TUN_RFFREQ2) << 10) +
579  (stv0900_get_bits(intp, TUN_RFFREQ1) << 2) +
581 
582  freq = (freq * 1000) / 64;
583 
584  round = (stv0900_get_bits(intp, TUN_RFRESTE1) >> 2) +
586 
587  round = (round * 1000) / 2048;
588 
589  return freq + round;
590 }
591 
592 void stv0900_set_tuner_auto(struct stv0900_internal *intp, u32 Frequency,
593  u32 Bandwidth, int demod)
594 {
595  u32 tunerFrequency;
596  /* Formulat:
597  Tuner_frequency_reg= Frequency(MHz)*64
598  */
599  tunerFrequency = (Frequency * 64) / 1000;
600 
601  stv0900_write_bits(intp, TUN_RFFREQ2, (tunerFrequency >> 10));
602  stv0900_write_bits(intp, TUN_RFFREQ1, (tunerFrequency >> 2) & 0xff);
603  stv0900_write_bits(intp, TUN_RFFREQ0, (tunerFrequency & 0x03));
604  /* Low Pass Filter = BW /2 (MHz)*/
605  stv0900_write_bits(intp, TUN_BW, Bandwidth / 2000000);
606  /* Tuner Write trig */
607  stv0900_write_reg(intp, TNRLD, 1);
608 }
609 
610 static s32 stv0900_get_rf_level(struct stv0900_internal *intp,
611  const struct stv0900_table *lookup,
612  enum fe_stv0900_demod_num demod)
613 {
614  s32 agc_gain = 0,
615  imin,
616  imax,
617  i,
618  rf_lvl = 0;
619 
620  dprintk("%s\n", __func__);
621 
622  if ((lookup == NULL) || (lookup->size <= 0))
623  return 0;
624 
625  agc_gain = MAKEWORD(stv0900_get_bits(intp, AGCIQ_VALUE1),
627 
628  imin = 0;
629  imax = lookup->size - 1;
630  if (INRANGE(lookup->table[imin].regval, agc_gain,
631  lookup->table[imax].regval)) {
632  while ((imax - imin) > 1) {
633  i = (imax + imin) >> 1;
634 
635  if (INRANGE(lookup->table[imin].regval,
636  agc_gain,
637  lookup->table[i].regval))
638  imax = i;
639  else
640  imin = i;
641  }
642 
643  rf_lvl = (s32)agc_gain - lookup->table[imin].regval;
644  rf_lvl *= (lookup->table[imax].realval -
645  lookup->table[imin].realval);
646  rf_lvl /= (lookup->table[imax].regval -
647  lookup->table[imin].regval);
648  rf_lvl += lookup->table[imin].realval;
649  } else if (agc_gain > lookup->table[0].regval)
650  rf_lvl = 5;
651  else if (agc_gain < lookup->table[lookup->size-1].regval)
652  rf_lvl = -100;
653 
654  dprintk("%s: RFLevel = %d\n", __func__, rf_lvl);
655 
656  return rf_lvl;
657 }
658 
659 static int stv0900_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
660 {
661  struct stv0900_state *state = fe->demodulator_priv;
662  struct stv0900_internal *internal = state->internal;
663  s32 rflevel = stv0900_get_rf_level(internal, &stv0900_rf,
664  state->demod);
665 
666  rflevel = (rflevel + 100) * (65535 / 70);
667  if (rflevel < 0)
668  rflevel = 0;
669 
670  if (rflevel > 65535)
671  rflevel = 65535;
672 
673  *strength = rflevel;
674 
675  return 0;
676 }
677 
678 static s32 stv0900_carr_get_quality(struct dvb_frontend *fe,
679  const struct stv0900_table *lookup)
680 {
681  struct stv0900_state *state = fe->demodulator_priv;
682  struct stv0900_internal *intp = state->internal;
683  enum fe_stv0900_demod_num demod = state->demod;
684 
685  s32 c_n = -100,
686  regval,
687  imin,
688  imax,
689  i,
690  noise_field1,
691  noise_field0;
692 
693  dprintk("%s\n", __func__);
694 
695  if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
696  noise_field1 = NOSPLHT_NORMED1;
697  noise_field0 = NOSPLHT_NORMED0;
698  } else {
699  noise_field1 = NOSDATAT_NORMED1;
700  noise_field0 = NOSDATAT_NORMED0;
701  }
702 
703  if (stv0900_get_bits(intp, LOCK_DEFINITIF)) {
704  if ((lookup != NULL) && lookup->size) {
705  regval = 0;
706  msleep(5);
707  for (i = 0; i < 16; i++) {
709  noise_field1),
710  stv0900_get_bits(intp,
711  noise_field0));
712  msleep(1);
713  }
714 
715  regval /= 16;
716  imin = 0;
717  imax = lookup->size - 1;
718  if (INRANGE(lookup->table[imin].regval,
719  regval,
720  lookup->table[imax].regval)) {
721  while ((imax - imin) > 1) {
722  i = (imax + imin) >> 1;
723  if (INRANGE(lookup->table[imin].regval,
724  regval,
725  lookup->table[i].regval))
726  imax = i;
727  else
728  imin = i;
729  }
730 
731  c_n = ((regval - lookup->table[imin].regval)
732  * (lookup->table[imax].realval
733  - lookup->table[imin].realval)
734  / (lookup->table[imax].regval
735  - lookup->table[imin].regval))
736  + lookup->table[imin].realval;
737  } else if (regval < lookup->table[imin].regval)
738  c_n = 1000;
739  }
740  }
741 
742  return c_n;
743 }
744 
745 static int stv0900_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
746 {
747  struct stv0900_state *state = fe->demodulator_priv;
748  struct stv0900_internal *intp = state->internal;
749  enum fe_stv0900_demod_num demod = state->demod;
750  u8 err_val1, err_val0;
751  u32 header_err_val = 0;
752 
753  *ucblocks = 0x0;
754  if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
755  /* DVB-S2 delineator errors count */
756 
757  /* retreiving number for errnous headers */
758  err_val1 = stv0900_read_reg(intp, BBFCRCKO1);
759  err_val0 = stv0900_read_reg(intp, BBFCRCKO0);
760  header_err_val = (err_val1 << 8) | err_val0;
761 
762  /* retreiving number for errnous packets */
763  err_val1 = stv0900_read_reg(intp, UPCRCKO1);
764  err_val0 = stv0900_read_reg(intp, UPCRCKO0);
765  *ucblocks = (err_val1 << 8) | err_val0;
766  *ucblocks += header_err_val;
767  }
768 
769  return 0;
770 }
771 
772 static int stv0900_read_snr(struct dvb_frontend *fe, u16 *snr)
773 {
774  s32 snrlcl = stv0900_carr_get_quality(fe,
775  (const struct stv0900_table *)&stv0900_s2_cn);
776  snrlcl = (snrlcl + 30) * 384;
777  if (snrlcl < 0)
778  snrlcl = 0;
779 
780  if (snrlcl > 65535)
781  snrlcl = 65535;
782 
783  *snr = snrlcl;
784 
785  return 0;
786 }
787 
788 static u32 stv0900_get_ber(struct stv0900_internal *intp,
789  enum fe_stv0900_demod_num demod)
790 {
791  u32 ber = 10000000, i;
792  s32 demod_state;
793 
794  demod_state = stv0900_get_bits(intp, HEADER_MODE);
795 
796  switch (demod_state) {
797  case STV0900_SEARCH:
799  default:
800  ber = 10000000;
801  break;
802  case STV0900_DVBS_FOUND:
803  ber = 0;
804  for (i = 0; i < 5; i++) {
805  msleep(5);
806  ber += stv0900_get_err_count(intp, 0, demod);
807  }
808 
809  ber /= 5;
810  if (stv0900_get_bits(intp, PRFVIT)) {
811  ber *= 9766;
812  ber = ber >> 13;
813  }
814 
815  break;
816  case STV0900_DVBS2_FOUND:
817  ber = 0;
818  for (i = 0; i < 5; i++) {
819  msleep(5);
820  ber += stv0900_get_err_count(intp, 0, demod);
821  }
822 
823  ber /= 5;
824  if (stv0900_get_bits(intp, PKTDELIN_LOCK)) {
825  ber *= 9766;
826  ber = ber >> 13;
827  }
828 
829  break;
830  }
831 
832  return ber;
833 }
834 
835 static int stv0900_read_ber(struct dvb_frontend *fe, u32 *ber)
836 {
837  struct stv0900_state *state = fe->demodulator_priv;
838  struct stv0900_internal *internal = state->internal;
839 
840  *ber = stv0900_get_ber(internal, state->demod);
841 
842  return 0;
843 }
844 
846  enum fe_stv0900_demod_num demod, s32 time_out)
847 {
848  s32 timer = 0,
849  lock = 0;
850 
851  enum fe_stv0900_search_state dmd_state;
852 
853  while ((timer < time_out) && (lock == 0)) {
854  dmd_state = stv0900_get_bits(intp, HEADER_MODE);
855  dprintk("Demod State = %d\n", dmd_state);
856  switch (dmd_state) {
857  case STV0900_SEARCH:
859  default:
860  lock = 0;
861  break;
862  case STV0900_DVBS2_FOUND:
863  case STV0900_DVBS_FOUND:
865  break;
866  }
867 
868  if (lock == 0)
869  msleep(10);
870 
871  timer += 10;
872  }
873 
874  if (lock)
875  dprintk("DEMOD LOCK OK\n");
876  else
877  dprintk("DEMOD LOCK FAIL\n");
878 
879  return lock;
880 }
881 
883  enum fe_stv0900_demod_num demod)
884 {
885  s32 regflist,
886  i;
887 
888  dprintk("%s\n", __func__);
889 
890  regflist = MODCODLST0;
891 
892  for (i = 0; i < 16; i++)
893  stv0900_write_reg(intp, regflist + i, 0xff);
894 }
895 
897  enum fe_stv0900_demod_num demod)
898 {
899  u32 matype,
900  mod_code,
901  fmod,
902  reg_index,
903  field_index;
904 
905  dprintk("%s\n", __func__);
906 
907  if (intp->chip_id <= 0x11) {
908  msleep(5);
909 
910  mod_code = stv0900_read_reg(intp, PLHMODCOD);
911  matype = mod_code & 0x3;
912  mod_code = (mod_code & 0x7f) >> 2;
913 
914  reg_index = MODCODLSTF - mod_code / 2;
915  field_index = mod_code % 2;
916 
917  switch (matype) {
918  case 0:
919  default:
920  fmod = 14;
921  break;
922  case 1:
923  fmod = 13;
924  break;
925  case 2:
926  fmod = 11;
927  break;
928  case 3:
929  fmod = 7;
930  break;
931  }
932 
933  if ((INRANGE(STV0900_QPSK_12, mod_code, STV0900_8PSK_910))
934  && (matype <= 1)) {
935  if (field_index == 0)
936  stv0900_write_reg(intp, reg_index,
937  0xf0 | fmod);
938  else
939  stv0900_write_reg(intp, reg_index,
940  (fmod << 4) | 0xf);
941  }
942 
943  } else if (intp->chip_id >= 0x12) {
944  for (reg_index = 0; reg_index < 7; reg_index++)
945  stv0900_write_reg(intp, MODCODLST0 + reg_index, 0xff);
946 
947  stv0900_write_reg(intp, MODCODLSTE, 0xff);
948  stv0900_write_reg(intp, MODCODLSTF, 0xcf);
949  for (reg_index = 0; reg_index < 8; reg_index++)
950  stv0900_write_reg(intp, MODCODLST7 + reg_index, 0xcc);
951 
952 
953  }
954 }
955 
957  enum fe_stv0900_demod_num demod)
958 {
959  u32 reg_index;
960 
961  dprintk("%s\n", __func__);
962 
963  stv0900_write_reg(intp, MODCODLST0, 0xff);
964  stv0900_write_reg(intp, MODCODLST1, 0xf0);
965  stv0900_write_reg(intp, MODCODLSTF, 0x0f);
966  for (reg_index = 0; reg_index < 13; reg_index++)
967  stv0900_write_reg(intp, MODCODLST2 + reg_index, 0);
968 
969 }
970 
971 static enum dvbfe_algo stv0900_frontend_algo(struct dvb_frontend *fe)
972 {
973  return DVBFE_ALGO_CUSTOM;
974 }
975 
977  enum fe_stv0900_demod_num demod)
978 {
979  u32 freq;
980  s16 freq_s16 ;
981 
982  stv0900_write_bits(intp, DEMOD_MODE, 0x1f);
983  if (intp->chip_id == 0x10)
984  stv0900_write_reg(intp, CORRELEXP, 0xaa);
985 
986  if (intp->chip_id < 0x20)
987  stv0900_write_reg(intp, CARHDR, 0x55);
988 
989  if (intp->chip_id <= 0x20) {
990  if (intp->symbol_rate[0] <= 5000000) {
991  stv0900_write_reg(intp, CARCFG, 0x44);
992  stv0900_write_reg(intp, CFRUP1, 0x0f);
993  stv0900_write_reg(intp, CFRUP0, 0xff);
994  stv0900_write_reg(intp, CFRLOW1, 0xf0);
995  stv0900_write_reg(intp, CFRLOW0, 0x00);
996  stv0900_write_reg(intp, RTCS2, 0x68);
997  } else {
998  stv0900_write_reg(intp, CARCFG, 0xc4);
999  stv0900_write_reg(intp, RTCS2, 0x44);
1000  }
1001 
1002  } else { /*cut 3.0 above*/
1003  if (intp->symbol_rate[demod] <= 5000000)
1004  stv0900_write_reg(intp, RTCS2, 0x68);
1005  else
1006  stv0900_write_reg(intp, RTCS2, 0x44);
1007 
1008  stv0900_write_reg(intp, CARCFG, 0x46);
1009  if (intp->srch_algo[demod] == STV0900_WARM_START) {
1010  freq = 1000 << 16;
1011  freq /= (intp->mclk / 1000);
1012  freq_s16 = (s16)freq;
1013  } else {
1014  freq = (intp->srch_range[demod] / 2000);
1015  if (intp->symbol_rate[demod] <= 5000000)
1016  freq += 80;
1017  else
1018  freq += 600;
1019 
1020  freq = freq << 16;
1021  freq /= (intp->mclk / 1000);
1022  freq_s16 = (s16)freq;
1023  }
1024 
1025  stv0900_write_bits(intp, CFR_UP1, MSB(freq_s16));
1026  stv0900_write_bits(intp, CFR_UP0, LSB(freq_s16));
1027  freq_s16 *= (-1);
1028  stv0900_write_bits(intp, CFR_LOW1, MSB(freq_s16));
1029  stv0900_write_bits(intp, CFR_LOW0, LSB(freq_s16));
1030  }
1031 
1032  stv0900_write_reg(intp, CFRINIT1, 0);
1033  stv0900_write_reg(intp, CFRINIT0, 0);
1034 
1035  if (intp->chip_id >= 0x20) {
1036  stv0900_write_reg(intp, EQUALCFG, 0x41);
1037  stv0900_write_reg(intp, FFECFG, 0x41);
1038 
1039  if ((intp->srch_standard[demod] == STV0900_SEARCH_DVBS1) ||
1040  (intp->srch_standard[demod] == STV0900_SEARCH_DSS) ||
1041  (intp->srch_standard[demod] == STV0900_AUTO_SEARCH)) {
1043  0x82);
1044  stv0900_write_reg(intp, VAVSRVIT, 0x0);
1045  }
1046  }
1047 
1048  stv0900_write_reg(intp, SFRSTEP, 0x00);
1049  stv0900_write_reg(intp, TMGTHRISE, 0xe0);
1050  stv0900_write_reg(intp, TMGTHFALL, 0xc0);
1051  stv0900_write_bits(intp, SCAN_ENABLE, 0);
1052  stv0900_write_bits(intp, CFR_AUTOSCAN, 0);
1054  stv0900_write_reg(intp, RTC, 0x88);
1055  if (intp->chip_id >= 0x20) {
1056  if (intp->symbol_rate[demod] < 2000000) {
1057  if (intp->chip_id <= 0x20)
1058  stv0900_write_reg(intp, CARFREQ, 0x39);
1059  else /*cut 3.0*/
1060  stv0900_write_reg(intp, CARFREQ, 0x89);
1061 
1062  stv0900_write_reg(intp, CARHDR, 0x40);
1063  } else if (intp->symbol_rate[demod] < 10000000) {
1064  stv0900_write_reg(intp, CARFREQ, 0x4c);
1065  stv0900_write_reg(intp, CARHDR, 0x20);
1066  } else {
1067  stv0900_write_reg(intp, CARFREQ, 0x4b);
1068  stv0900_write_reg(intp, CARHDR, 0x20);
1069  }
1070 
1071  } else {
1072  if (intp->symbol_rate[demod] < 10000000)
1073  stv0900_write_reg(intp, CARFREQ, 0xef);
1074  else
1075  stv0900_write_reg(intp, CARFREQ, 0xed);
1076  }
1077 
1078  switch (intp->srch_algo[demod]) {
1079  case STV0900_WARM_START:
1080  stv0900_write_reg(intp, DMDISTATE, 0x1f);
1081  stv0900_write_reg(intp, DMDISTATE, 0x18);
1082  break;
1083  case STV0900_COLD_START:
1084  stv0900_write_reg(intp, DMDISTATE, 0x1f);
1085  stv0900_write_reg(intp, DMDISTATE, 0x15);
1086  break;
1087  default:
1088  break;
1089  }
1090 }
1091 
1093  s32 pilot, u8 chip_id)
1094 {
1095  u8 aclc_value = 0x29;
1096  s32 i;
1097  const struct stv0900_car_loop_optim *cls2, *cllqs2, *cllas2;
1098 
1099  dprintk("%s\n", __func__);
1100 
1101  if (chip_id <= 0x12) {
1102  cls2 = FE_STV0900_S2CarLoop;
1103  cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
1104  cllas2 = FE_STV0900_S2APSKCarLoopCut30;
1105  } else if (chip_id == 0x20) {
1106  cls2 = FE_STV0900_S2CarLoopCut20;
1107  cllqs2 = FE_STV0900_S2LowQPCarLoopCut20;
1108  cllas2 = FE_STV0900_S2APSKCarLoopCut20;
1109  } else {
1110  cls2 = FE_STV0900_S2CarLoopCut30;
1111  cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
1112  cllas2 = FE_STV0900_S2APSKCarLoopCut30;
1113  }
1114 
1115  if (modcode < STV0900_QPSK_12) {
1116  i = 0;
1117  while ((i < 3) && (modcode != cllqs2[i].modcode))
1118  i++;
1119 
1120  if (i >= 3)
1121  i = 2;
1122  } else {
1123  i = 0;
1124  while ((i < 14) && (modcode != cls2[i].modcode))
1125  i++;
1126 
1127  if (i >= 14) {
1128  i = 0;
1129  while ((i < 11) && (modcode != cllas2[i].modcode))
1130  i++;
1131 
1132  if (i >= 11)
1133  i = 10;
1134  }
1135  }
1136 
1137  if (modcode <= STV0900_QPSK_25) {
1138  if (pilot) {
1139  if (srate <= 3000000)
1140  aclc_value = cllqs2[i].car_loop_pilots_on_2;
1141  else if (srate <= 7000000)
1142  aclc_value = cllqs2[i].car_loop_pilots_on_5;
1143  else if (srate <= 15000000)
1144  aclc_value = cllqs2[i].car_loop_pilots_on_10;
1145  else if (srate <= 25000000)
1146  aclc_value = cllqs2[i].car_loop_pilots_on_20;
1147  else
1148  aclc_value = cllqs2[i].car_loop_pilots_on_30;
1149  } else {
1150  if (srate <= 3000000)
1151  aclc_value = cllqs2[i].car_loop_pilots_off_2;
1152  else if (srate <= 7000000)
1153  aclc_value = cllqs2[i].car_loop_pilots_off_5;
1154  else if (srate <= 15000000)
1155  aclc_value = cllqs2[i].car_loop_pilots_off_10;
1156  else if (srate <= 25000000)
1157  aclc_value = cllqs2[i].car_loop_pilots_off_20;
1158  else
1159  aclc_value = cllqs2[i].car_loop_pilots_off_30;
1160  }
1161 
1162  } else if (modcode <= STV0900_8PSK_910) {
1163  if (pilot) {
1164  if (srate <= 3000000)
1165  aclc_value = cls2[i].car_loop_pilots_on_2;
1166  else if (srate <= 7000000)
1167  aclc_value = cls2[i].car_loop_pilots_on_5;
1168  else if (srate <= 15000000)
1169  aclc_value = cls2[i].car_loop_pilots_on_10;
1170  else if (srate <= 25000000)
1171  aclc_value = cls2[i].car_loop_pilots_on_20;
1172  else
1173  aclc_value = cls2[i].car_loop_pilots_on_30;
1174  } else {
1175  if (srate <= 3000000)
1176  aclc_value = cls2[i].car_loop_pilots_off_2;
1177  else if (srate <= 7000000)
1178  aclc_value = cls2[i].car_loop_pilots_off_5;
1179  else if (srate <= 15000000)
1180  aclc_value = cls2[i].car_loop_pilots_off_10;
1181  else if (srate <= 25000000)
1182  aclc_value = cls2[i].car_loop_pilots_off_20;
1183  else
1184  aclc_value = cls2[i].car_loop_pilots_off_30;
1185  }
1186 
1187  } else {
1188  if (srate <= 3000000)
1189  aclc_value = cllas2[i].car_loop_pilots_on_2;
1190  else if (srate <= 7000000)
1191  aclc_value = cllas2[i].car_loop_pilots_on_5;
1192  else if (srate <= 15000000)
1193  aclc_value = cllas2[i].car_loop_pilots_on_10;
1194  else if (srate <= 25000000)
1195  aclc_value = cllas2[i].car_loop_pilots_on_20;
1196  else
1197  aclc_value = cllas2[i].car_loop_pilots_on_30;
1198  }
1199 
1200  return aclc_value;
1201 }
1202 
1204  enum fe_stv0900_modulation modulation,
1205  u8 chip_id)
1206 {
1207  const struct stv0900_short_frames_car_loop_optim *s2scl;
1208  const struct stv0900_short_frames_car_loop_optim_vs_mod *s2sclc30;
1209  s32 mod_index = 0;
1210  u8 aclc_value = 0x0b;
1211 
1212  dprintk("%s\n", __func__);
1213 
1214  s2scl = FE_STV0900_S2ShortCarLoop;
1215  s2sclc30 = FE_STV0900_S2ShortCarLoopCut30;
1216 
1217  switch (modulation) {
1218  case STV0900_QPSK:
1219  default:
1220  mod_index = 0;
1221  break;
1222  case STV0900_8PSK:
1223  mod_index = 1;
1224  break;
1225  case STV0900_16APSK:
1226  mod_index = 2;
1227  break;
1228  case STV0900_32APSK:
1229  mod_index = 3;
1230  break;
1231  }
1232 
1233  if (chip_id >= 0x30) {
1234  if (srate <= 3000000)
1235  aclc_value = s2sclc30[mod_index].car_loop_2;
1236  else if (srate <= 7000000)
1237  aclc_value = s2sclc30[mod_index].car_loop_5;
1238  else if (srate <= 15000000)
1239  aclc_value = s2sclc30[mod_index].car_loop_10;
1240  else if (srate <= 25000000)
1241  aclc_value = s2sclc30[mod_index].car_loop_20;
1242  else
1243  aclc_value = s2sclc30[mod_index].car_loop_30;
1244 
1245  } else if (chip_id >= 0x20) {
1246  if (srate <= 3000000)
1247  aclc_value = s2scl[mod_index].car_loop_cut20_2;
1248  else if (srate <= 7000000)
1249  aclc_value = s2scl[mod_index].car_loop_cut20_5;
1250  else if (srate <= 15000000)
1251  aclc_value = s2scl[mod_index].car_loop_cut20_10;
1252  else if (srate <= 25000000)
1253  aclc_value = s2scl[mod_index].car_loop_cut20_20;
1254  else
1255  aclc_value = s2scl[mod_index].car_loop_cut20_30;
1256 
1257  } else {
1258  if (srate <= 3000000)
1259  aclc_value = s2scl[mod_index].car_loop_cut12_2;
1260  else if (srate <= 7000000)
1261  aclc_value = s2scl[mod_index].car_loop_cut12_5;
1262  else if (srate <= 15000000)
1263  aclc_value = s2scl[mod_index].car_loop_cut12_10;
1264  else if (srate <= 25000000)
1265  aclc_value = s2scl[mod_index].car_loop_cut12_20;
1266  else
1267  aclc_value = s2scl[mod_index].car_loop_cut12_30;
1268 
1269  }
1270 
1271  return aclc_value;
1272 }
1273 
1274 static
1275 enum fe_stv0900_error stv0900_st_dvbs2_single(struct stv0900_internal *intp,
1276  enum fe_stv0900_demod_mode LDPC_Mode,
1277  enum fe_stv0900_demod_num demod)
1278 {
1280  s32 reg_ind;
1281 
1282  dprintk("%s\n", __func__);
1283 
1284  switch (LDPC_Mode) {
1285  case STV0900_DUAL:
1286  default:
1287  if ((intp->demod_mode != STV0900_DUAL)
1288  || (stv0900_get_bits(intp, F0900_DDEMOD) != 1)) {
1289  stv0900_write_reg(intp, R0900_GENCFG, 0x1d);
1290 
1291  intp->demod_mode = STV0900_DUAL;
1292 
1295 
1296  for (reg_ind = 0; reg_ind < 7; reg_ind++)
1297  stv0900_write_reg(intp,
1298  R0900_P1_MODCODLST0 + reg_ind,
1299  0xff);
1300  for (reg_ind = 0; reg_ind < 8; reg_ind++)
1301  stv0900_write_reg(intp,
1302  R0900_P1_MODCODLST7 + reg_ind,
1303  0xcc);
1304 
1307 
1308  for (reg_ind = 0; reg_ind < 7; reg_ind++)
1309  stv0900_write_reg(intp,
1310  R0900_P2_MODCODLST0 + reg_ind,
1311  0xff);
1312  for (reg_ind = 0; reg_ind < 8; reg_ind++)
1313  stv0900_write_reg(intp,
1314  R0900_P2_MODCODLST7 + reg_ind,
1315  0xcc);
1316 
1319  }
1320 
1321  break;
1322  case STV0900_SINGLE:
1323  if (demod == STV0900_DEMOD_2) {
1326  STV0900_DEMOD_2);
1327  stv0900_write_reg(intp, R0900_GENCFG, 0x06);
1328  } else {
1331  STV0900_DEMOD_1);
1332  stv0900_write_reg(intp, R0900_GENCFG, 0x04);
1333  }
1334 
1335  intp->demod_mode = STV0900_SINGLE;
1336 
1343  break;
1344  }
1345 
1346  return error;
1347 }
1348 
1349 static enum fe_stv0900_error stv0900_init_internal(struct dvb_frontend *fe,
1350  struct stv0900_init_params *p_init)
1351 {
1352  struct stv0900_state *state = fe->demodulator_priv;
1353  enum fe_stv0900_error error = STV0900_NO_ERROR;
1354  enum fe_stv0900_error demodError = STV0900_NO_ERROR;
1355  struct stv0900_internal *intp = NULL;
1356  int selosci, i;
1357 
1358  struct stv0900_inode *temp_int = find_inode(state->i2c_adap,
1359  state->config->demod_address);
1360 
1361  dprintk("%s\n", __func__);
1362 
1363  if ((temp_int != NULL) && (p_init->demod_mode == STV0900_DUAL)) {
1364  state->internal = temp_int->internal;
1365  (state->internal->dmds_used)++;
1366  dprintk("%s: Find Internal Structure!\n", __func__);
1367  return STV0900_NO_ERROR;
1368  } else {
1369  state->internal = kmalloc(sizeof(struct stv0900_internal),
1370  GFP_KERNEL);
1371  if (state->internal == NULL)
1372  return STV0900_INVALID_HANDLE;
1373  temp_int = append_internal(state->internal);
1374  if (temp_int == NULL) {
1375  kfree(state->internal);
1376  state->internal = NULL;
1377  return STV0900_INVALID_HANDLE;
1378  }
1379  state->internal->dmds_used = 1;
1380  state->internal->i2c_adap = state->i2c_adap;
1381  state->internal->i2c_addr = state->config->demod_address;
1382  state->internal->clkmode = state->config->clkmode;
1383  state->internal->errs = STV0900_NO_ERROR;
1384  dprintk("%s: Create New Internal Structure!\n", __func__);
1385  }
1386 
1387  if (state->internal == NULL) {
1388  error = STV0900_INVALID_HANDLE;
1389  return error;
1390  }
1391 
1392  demodError = stv0900_initialize(state->internal);
1393  if (demodError == STV0900_NO_ERROR) {
1394  error = STV0900_NO_ERROR;
1395  } else {
1396  if (demodError == STV0900_INVALID_HANDLE)
1397  error = STV0900_INVALID_HANDLE;
1398  else
1399  error = STV0900_I2C_ERROR;
1400 
1401  return error;
1402  }
1403 
1404  intp = state->internal;
1405 
1406  intp->demod_mode = p_init->demod_mode;
1407  stv0900_st_dvbs2_single(intp, intp->demod_mode, STV0900_DEMOD_1);
1408  intp->chip_id = stv0900_read_reg(intp, R0900_MID);
1409  intp->rolloff = p_init->rolloff;
1410  intp->quartz = p_init->dmd_ref_clk;
1411 
1414 
1415  intp->ts_config = p_init->ts_config;
1416  if (intp->ts_config == NULL)
1417  stv0900_set_ts_parallel_serial(intp,
1418  p_init->path1_ts_clock,
1419  p_init->path2_ts_clock);
1420  else {
1421  for (i = 0; intp->ts_config[i].addr != 0xffff; i++)
1422  stv0900_write_reg(intp,
1423  intp->ts_config[i].addr,
1424  intp->ts_config[i].val);
1425 
1430  }
1431 
1432  intp->tuner_type[0] = p_init->tuner1_type;
1433  intp->tuner_type[1] = p_init->tuner2_type;
1434  /* tuner init */
1435  switch (p_init->tuner1_type) {
1436  case 3: /*FE_AUTO_STB6100:*/
1437  stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x3c);
1439  stv0900_write_reg(intp, R0900_P1_TNRCFG3, 0x18);
1440  stv0900_write_reg(intp, R0900_P1_TNRXTAL, 27); /* 27MHz */
1441  stv0900_write_reg(intp, R0900_P1_TNRSTEPS, 0x05);
1442  stv0900_write_reg(intp, R0900_P1_TNRGAIN, 0x17);
1443  stv0900_write_reg(intp, R0900_P1_TNRADJ, 0x1f);
1444  stv0900_write_reg(intp, R0900_P1_TNRCTL2, 0x0);
1446  break;
1447  /* case FE_SW_TUNER: */
1448  default:
1450  break;
1451  }
1452 
1454  switch (p_init->tuner1_adc) {
1455  case 1:
1456  stv0900_write_reg(intp, R0900_TSTTNR1, 0x26);
1457  break;
1458  default:
1459  break;
1460  }
1461 
1462  stv0900_write_reg(intp, R0900_P1_TNRLD, 1); /* hw tuner */
1463 
1464  /* tuner init */
1465  switch (p_init->tuner2_type) {
1466  case 3: /*FE_AUTO_STB6100:*/
1467  stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x3c);
1469  stv0900_write_reg(intp, R0900_P2_TNRCFG3, 0x18);
1470  stv0900_write_reg(intp, R0900_P2_TNRXTAL, 27); /* 27MHz */
1471  stv0900_write_reg(intp, R0900_P2_TNRSTEPS, 0x05);
1472  stv0900_write_reg(intp, R0900_P2_TNRGAIN, 0x17);
1473  stv0900_write_reg(intp, R0900_P2_TNRADJ, 0x1f);
1474  stv0900_write_reg(intp, R0900_P2_TNRCTL2, 0x0);
1476  break;
1477  /* case FE_SW_TUNER: */
1478  default:
1480  break;
1481  }
1482 
1484  switch (p_init->tuner2_adc) {
1485  case 1:
1486  stv0900_write_reg(intp, R0900_TSTTNR3, 0x26);
1487  break;
1488  default:
1489  break;
1490  }
1491 
1492  stv0900_write_reg(intp, R0900_P2_TNRLD, 1); /* hw tuner */
1493 
1496  stv0900_set_mclk(intp, 135000000);
1497  msleep(3);
1498 
1499  switch (intp->clkmode) {
1500  case 0:
1501  case 2:
1502  stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | intp->clkmode);
1503  break;
1504  default:
1505  selosci = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
1506  stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | selosci);
1507  break;
1508  }
1509  msleep(3);
1510 
1511  intp->mclk = stv0900_get_mclk_freq(intp, intp->quartz);
1512  if (intp->errs)
1513  error = STV0900_I2C_ERROR;
1514 
1515  return error;
1516 }
1517 
1518 static int stv0900_status(struct stv0900_internal *intp,
1519  enum fe_stv0900_demod_num demod)
1520 {
1521  enum fe_stv0900_search_state demod_state;
1522  int locked = FALSE;
1523  u8 tsbitrate0_val, tsbitrate1_val;
1524  s32 bitrate;
1525 
1526  demod_state = stv0900_get_bits(intp, HEADER_MODE);
1527  switch (demod_state) {
1528  case STV0900_SEARCH:
1529  case STV0900_PLH_DETECTED:
1530  default:
1531  locked = FALSE;
1532  break;
1533  case STV0900_DVBS2_FOUND:
1534  locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
1537  break;
1538  case STV0900_DVBS_FOUND:
1539  locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
1540  stv0900_get_bits(intp, LOCKEDVIT) &&
1542  break;
1543  }
1544 
1545  dprintk("%s: locked = %d\n", __func__, locked);
1546 
1547  if (stvdebug) {
1548  /* Print TS bitrate */
1549  tsbitrate0_val = stv0900_read_reg(intp, TSBITRATE0);
1550  tsbitrate1_val = stv0900_read_reg(intp, TSBITRATE1);
1551  /* Formula Bit rate = Mclk * px_tsfifo_bitrate / 16384 */
1552  bitrate = (stv0900_get_mclk_freq(intp, intp->quartz)/1000000)
1553  * (tsbitrate1_val << 8 | tsbitrate0_val);
1554  bitrate /= 16384;
1555  dprintk("TS bitrate = %d Mbit/sec\n", bitrate);
1556  }
1557 
1558  return locked;
1559 }
1560 
1561 static enum dvbfe_search stv0900_search(struct dvb_frontend *fe)
1562 {
1563  struct stv0900_state *state = fe->demodulator_priv;
1564  struct stv0900_internal *intp = state->internal;
1565  enum fe_stv0900_demod_num demod = state->demod;
1567 
1568  struct stv0900_search_params p_search;
1569  struct stv0900_signal_info p_result = intp->result[demod];
1570 
1571  enum fe_stv0900_error error = STV0900_NO_ERROR;
1572 
1573  dprintk("%s: ", __func__);
1574 
1575  if (!(INRANGE(100000, c->symbol_rate, 70000000)))
1576  return DVBFE_ALGO_SEARCH_FAILED;
1577 
1578  if (state->config->set_ts_params)
1579  state->config->set_ts_params(fe, 0);
1580 
1581  p_result.locked = FALSE;
1582  p_search.path = demod;
1583  p_search.frequency = c->frequency;
1584  p_search.symbol_rate = c->symbol_rate;
1585  p_search.search_range = 10000000;
1586  p_search.fec = STV0900_FEC_UNKNOWN;
1587  p_search.standard = STV0900_AUTO_SEARCH;
1588  p_search.iq_inversion = STV0900_IQ_AUTO;
1589  p_search.search_algo = STV0900_BLIND_SEARCH;
1590  /* Speeds up DVB-S searching */
1591  if (c->delivery_system == SYS_DVBS)
1592  p_search.standard = STV0900_SEARCH_DVBS1;
1593 
1594  intp->srch_standard[demod] = p_search.standard;
1595  intp->symbol_rate[demod] = p_search.symbol_rate;
1596  intp->srch_range[demod] = p_search.search_range;
1597  intp->freq[demod] = p_search.frequency;
1598  intp->srch_algo[demod] = p_search.search_algo;
1599  intp->srch_iq_inv[demod] = p_search.iq_inversion;
1600  intp->fec[demod] = p_search.fec;
1601  if ((stv0900_algo(fe) == STV0900_RANGEOK) &&
1602  (intp->errs == STV0900_NO_ERROR)) {
1603  p_result.locked = intp->result[demod].locked;
1604  p_result.standard = intp->result[demod].standard;
1605  p_result.frequency = intp->result[demod].frequency;
1606  p_result.symbol_rate = intp->result[demod].symbol_rate;
1607  p_result.fec = intp->result[demod].fec;
1608  p_result.modcode = intp->result[demod].modcode;
1609  p_result.pilot = intp->result[demod].pilot;
1610  p_result.frame_len = intp->result[demod].frame_len;
1611  p_result.spectrum = intp->result[demod].spectrum;
1612  p_result.rolloff = intp->result[demod].rolloff;
1613  p_result.modulation = intp->result[demod].modulation;
1614  } else {
1615  p_result.locked = FALSE;
1616  switch (intp->err[demod]) {
1617  case STV0900_I2C_ERROR:
1618  error = STV0900_I2C_ERROR;
1619  break;
1620  case STV0900_NO_ERROR:
1621  default:
1622  error = STV0900_SEARCH_FAILED;
1623  break;
1624  }
1625  }
1626 
1627  if ((p_result.locked == TRUE) && (error == STV0900_NO_ERROR)) {
1628  dprintk("Search Success\n");
1630  } else {
1631  dprintk("Search Fail\n");
1632  return DVBFE_ALGO_SEARCH_FAILED;
1633  }
1634 
1635 }
1636 
1637 static int stv0900_read_status(struct dvb_frontend *fe, enum fe_status *status)
1638 {
1639  struct stv0900_state *state = fe->demodulator_priv;
1640 
1641  dprintk("%s: ", __func__);
1642 
1643  if ((stv0900_status(state->internal, state->demod)) == TRUE) {
1644  dprintk("DEMOD LOCK OK\n");
1645  *status = FE_HAS_CARRIER
1646  | FE_HAS_VITERBI
1647  | FE_HAS_SYNC
1648  | FE_HAS_LOCK;
1649  if (state->config->set_lock_led)
1650  state->config->set_lock_led(fe, 1);
1651  } else {
1652  *status = 0;
1653  if (state->config->set_lock_led)
1654  state->config->set_lock_led(fe, 0);
1655  dprintk("DEMOD LOCK FAIL\n");
1656  }
1657 
1658  return 0;
1659 }
1660 
1661 static int stv0900_stop_ts(struct dvb_frontend *fe, int stop_ts)
1662 {
1663 
1664  struct stv0900_state *state = fe->demodulator_priv;
1665  struct stv0900_internal *intp = state->internal;
1666  enum fe_stv0900_demod_num demod = state->demod;
1667 
1668  if (stop_ts == TRUE)
1669  stv0900_write_bits(intp, RST_HWARE, 1);
1670  else
1671  stv0900_write_bits(intp, RST_HWARE, 0);
1672 
1673  return 0;
1674 }
1675 
1676 static int stv0900_diseqc_init(struct dvb_frontend *fe)
1677 {
1678  struct stv0900_state *state = fe->demodulator_priv;
1679  struct stv0900_internal *intp = state->internal;
1680  enum fe_stv0900_demod_num demod = state->demod;
1681 
1682  stv0900_write_bits(intp, DISTX_MODE, state->config->diseqc_mode);
1683  stv0900_write_bits(intp, DISEQC_RESET, 1);
1684  stv0900_write_bits(intp, DISEQC_RESET, 0);
1685 
1686  return 0;
1687 }
1688 
1689 static int stv0900_init(struct dvb_frontend *fe)
1690 {
1691  dprintk("%s\n", __func__);
1692 
1693  stv0900_stop_ts(fe, 1);
1694  stv0900_diseqc_init(fe);
1695 
1696  return 0;
1697 }
1698 
1699 static int stv0900_diseqc_send(struct stv0900_internal *intp , u8 *data,
1700  u32 NbData, enum fe_stv0900_demod_num demod)
1701 {
1702  s32 i = 0;
1703 
1705  while (i < NbData) {
1706  while (stv0900_get_bits(intp, FIFO_FULL))
1707  ;/* checkpatch complains */
1708  stv0900_write_reg(intp, DISTXDATA, data[i]);
1709  i++;
1710  }
1711 
1713  i = 0;
1714  while ((stv0900_get_bits(intp, TX_IDLE) != 1) && (i < 10)) {
1715  msleep(10);
1716  i++;
1717  }
1718 
1719  return 0;
1720 }
1721 
1722 static int stv0900_send_master_cmd(struct dvb_frontend *fe,
1723  struct dvb_diseqc_master_cmd *cmd)
1724 {
1725  struct stv0900_state *state = fe->demodulator_priv;
1726 
1727  return stv0900_diseqc_send(state->internal,
1728  cmd->msg,
1729  cmd->msg_len,
1730  state->demod);
1731 }
1732 
1733 static int stv0900_send_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
1734 {
1735  struct stv0900_state *state = fe->demodulator_priv;
1736  struct stv0900_internal *intp = state->internal;
1737  enum fe_stv0900_demod_num demod = state->demod;
1738  u8 data;
1739 
1740 
1741  switch (burst) {
1742  case SEC_MINI_A:
1743  stv0900_write_bits(intp, DISTX_MODE, 3);/* Unmodulated */
1744  data = 0x00;
1745  stv0900_diseqc_send(intp, &data, 1, state->demod);
1746  break;
1747  case SEC_MINI_B:
1748  stv0900_write_bits(intp, DISTX_MODE, 2);/* Modulated */
1749  data = 0xff;
1750  stv0900_diseqc_send(intp, &data, 1, state->demod);
1751  break;
1752  }
1753 
1754  return 0;
1755 }
1756 
1757 static int stv0900_recv_slave_reply(struct dvb_frontend *fe,
1758  struct dvb_diseqc_slave_reply *reply)
1759 {
1760  struct stv0900_state *state = fe->demodulator_priv;
1761  struct stv0900_internal *intp = state->internal;
1762  enum fe_stv0900_demod_num demod = state->demod;
1763  s32 i = 0;
1764 
1765  reply->msg_len = 0;
1766 
1767  while ((stv0900_get_bits(intp, RX_END) != 1) && (i < 10)) {
1768  msleep(10);
1769  i++;
1770  }
1771 
1772  if (stv0900_get_bits(intp, RX_END)) {
1773  reply->msg_len = stv0900_get_bits(intp, FIFO_BYTENBR);
1774 
1775  for (i = 0; i < reply->msg_len; i++)
1776  reply->msg[i] = stv0900_read_reg(intp, DISRXDATA);
1777  }
1778 
1779  return 0;
1780 }
1781 
1782 static int stv0900_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t toneoff)
1783 {
1784  struct stv0900_state *state = fe->demodulator_priv;
1785  struct stv0900_internal *intp = state->internal;
1786  enum fe_stv0900_demod_num demod = state->demod;
1787 
1788  dprintk("%s: %s\n", __func__, ((toneoff == 0) ? "On" : "Off"));
1789 
1790  switch (toneoff) {
1791  case SEC_TONE_ON:
1792  /*Set the DiseqC mode to 22Khz _continues_ tone*/
1793  stv0900_write_bits(intp, DISTX_MODE, 0);
1794  stv0900_write_bits(intp, DISEQC_RESET, 1);
1795  /*release DiseqC reset to enable the 22KHz tone*/
1796  stv0900_write_bits(intp, DISEQC_RESET, 0);
1797  break;
1798  case SEC_TONE_OFF:
1799  /*return diseqc mode to config->diseqc_mode.
1800  Usually it's without _continues_ tone */
1802  state->config->diseqc_mode);
1803  /*maintain the DiseqC reset to disable the 22KHz tone*/
1804  stv0900_write_bits(intp, DISEQC_RESET, 1);
1805  stv0900_write_bits(intp, DISEQC_RESET, 0);
1806  break;
1807  default:
1808  return -EINVAL;
1809  }
1810 
1811  return 0;
1812 }
1813 
1814 static void stv0900_release(struct dvb_frontend *fe)
1815 {
1816  struct stv0900_state *state = fe->demodulator_priv;
1817 
1818  dprintk("%s\n", __func__);
1819 
1820  if (state->config->set_lock_led)
1821  state->config->set_lock_led(fe, 0);
1822 
1823  if ((--(state->internal->dmds_used)) <= 0) {
1824 
1825  dprintk("%s: Actually removing\n", __func__);
1826 
1827  remove_inode(state->internal);
1828  kfree(state->internal);
1829  }
1830 
1831  kfree(state);
1832 }
1833 
1834 static int stv0900_sleep(struct dvb_frontend *fe)
1835 {
1836  struct stv0900_state *state = fe->demodulator_priv;
1837 
1838  dprintk("%s\n", __func__);
1839 
1840  if (state->config->set_lock_led)
1841  state->config->set_lock_led(fe, 0);
1842 
1843  return 0;
1844 }
1845 
1846 static int stv0900_get_frontend(struct dvb_frontend *fe)
1847 {
1849  struct stv0900_state *state = fe->demodulator_priv;
1850  struct stv0900_internal *intp = state->internal;
1851  enum fe_stv0900_demod_num demod = state->demod;
1852  struct stv0900_signal_info p_result = intp->result[demod];
1853 
1854  p->frequency = p_result.locked ? p_result.frequency : 0;
1855  p->symbol_rate = p_result.locked ? p_result.symbol_rate : 0;
1856  return 0;
1857 }
1858 
1859 static struct dvb_frontend_ops stv0900_ops = {
1860  .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1861  .info = {
1862  .name = "STV0900 frontend",
1863  .frequency_min = 950000,
1864  .frequency_max = 2150000,
1865  .frequency_stepsize = 125,
1866  .frequency_tolerance = 0,
1867  .symbol_rate_min = 1000000,
1868  .symbol_rate_max = 45000000,
1869  .symbol_rate_tolerance = 500,
1870  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1875  },
1876  .release = stv0900_release,
1877  .init = stv0900_init,
1878  .get_frontend = stv0900_get_frontend,
1879  .sleep = stv0900_sleep,
1880  .get_frontend_algo = stv0900_frontend_algo,
1881  .i2c_gate_ctrl = stv0900_i2c_gate_ctrl,
1882  .diseqc_send_master_cmd = stv0900_send_master_cmd,
1883  .diseqc_send_burst = stv0900_send_burst,
1884  .diseqc_recv_slave_reply = stv0900_recv_slave_reply,
1885  .set_tone = stv0900_set_tone,
1886  .search = stv0900_search,
1887  .read_status = stv0900_read_status,
1888  .read_ber = stv0900_read_ber,
1889  .read_signal_strength = stv0900_read_signal_strength,
1890  .read_snr = stv0900_read_snr,
1891  .read_ucblocks = stv0900_read_ucblocks,
1892 };
1893 
1895  struct i2c_adapter *i2c,
1896  int demod)
1897 {
1898  struct stv0900_state *state = NULL;
1899  struct stv0900_init_params init_params;
1900  enum fe_stv0900_error err_stv0900;
1901 
1902  state = kzalloc(sizeof(struct stv0900_state), GFP_KERNEL);
1903  if (state == NULL)
1904  goto error;
1905 
1906  state->demod = demod;
1907  state->config = config;
1908  state->i2c_adap = i2c;
1909 
1910  memcpy(&state->frontend.ops, &stv0900_ops,
1911  sizeof(struct dvb_frontend_ops));
1912  state->frontend.demodulator_priv = state;
1913 
1914  switch (demod) {
1915  case 0:
1916  case 1:
1917  init_params.dmd_ref_clk = config->xtal;
1918  init_params.demod_mode = config->demod_mode;
1919  init_params.rolloff = STV0900_35;
1920  init_params.path1_ts_clock = config->path1_mode;
1921  init_params.tun1_maddress = config->tun1_maddress;
1922  init_params.tun1_iq_inv = STV0900_IQ_NORMAL;
1923  init_params.tuner1_adc = config->tun1_adc;
1924  init_params.tuner1_type = config->tun1_type;
1925  init_params.path2_ts_clock = config->path2_mode;
1926  init_params.ts_config = config->ts_config_regs;
1927  init_params.tun2_maddress = config->tun2_maddress;
1928  init_params.tuner2_adc = config->tun2_adc;
1929  init_params.tuner2_type = config->tun2_type;
1930  init_params.tun2_iq_inv = STV0900_IQ_SWAPPED;
1931 
1932  err_stv0900 = stv0900_init_internal(&state->frontend,
1933  &init_params);
1934 
1935  if (err_stv0900)
1936  goto error;
1937 
1938  break;
1939  default:
1940  goto error;
1941  break;
1942  }
1943 
1944  dprintk("%s: Attaching STV0900 demodulator(%d) \n", __func__, demod);
1945  return &state->frontend;
1946 
1947 error:
1948  dprintk("%s: Failed to attach STV0900 demodulator(%d) \n",
1949  __func__, demod);
1950  kfree(state);
1951  return NULL;
1952 }
1954 
1955 MODULE_PARM_DESC(debug, "Set debug");
1956 
1957 MODULE_AUTHOR("Igor M. Liplianin");
1958 MODULE_DESCRIPTION("ST STV0900 frontend");
1959 MODULE_LICENSE("GPL");