Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
t4.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses. You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  *
14  * - Redistributions of source code must retain the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer.
17  * - Redistributions in binary form must reproduce the above
18  * copyright notice, this list of conditions and the following
19  * disclaimer in the documentation and/or other materials
20  * provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
38 
39 #define T4_MAX_NUM_QP (1<<16)
40 #define T4_MAX_NUM_CQ (1<<15)
41 #define T4_MAX_NUM_PD (1<<15)
42 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
43 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
44 #define T4_MAX_IQ_SIZE (65520 - 1)
45 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
46 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
47 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
48 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
49 #define T4_MAX_NUM_STAG (1<<15)
50 #define T4_MAX_MR_SIZE (~0ULL - 1)
51 #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
52 #define T4_STAG_UNSET 0xffffffff
53 #define T4_FW_MAJ 0
54 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
55 #define A_PCIE_MA_SYNC 0x30b4
56 
58  __be32 rsvd1; /* flit 0 - hw owns */
63  u8 qp_err; /* flit 1 - sw owns */
69 };
70 
71 #define T4_EQ_ENTRY_SIZE 64
72 
73 #define T4_SQ_NUM_SLOTS 5
74 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
75 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
76  sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
77 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
78  sizeof(struct fw_ri_immd)))
79 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
80  sizeof(struct fw_ri_rdma_write_wr) - \
81  sizeof(struct fw_ri_immd)))
82 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
83  sizeof(struct fw_ri_rdma_write_wr) - \
84  sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
85 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
86  sizeof(struct fw_ri_immd)) & ~31UL)
87 #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
88 
89 #define T4_RQ_NUM_SLOTS 2
90 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
91 #define T4_MAX_RECV_SGE 4
92 
93 union t4_wr {
94  struct fw_ri_res_wr res;
95  struct fw_ri_wr ri;
104 };
105 
106 union t4_recv_wr {
110 };
111 
112 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
113  enum fw_wr_opcodes opcode, u8 flags, u8 len16)
114 {
115  wqe->send.opcode = (u8)opcode;
116  wqe->send.flags = flags;
117  wqe->send.wrid = wrid;
118  wqe->send.r1[0] = 0;
119  wqe->send.r1[1] = 0;
120  wqe->send.r1[2] = 0;
121  wqe->send.len16 = len16;
122 }
123 
124 /* CQE/AE status codes */
125 #define T4_ERR_SUCCESS 0x0
126 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
127  /* STAG is offlimt, being 0, */
128  /* or STAG_key mismatch */
129 #define T4_ERR_PDID 0x2 /* PDID mismatch */
130 #define T4_ERR_QPID 0x3 /* QPID mismatch */
131 #define T4_ERR_ACCESS 0x4 /* Invalid access right */
132 #define T4_ERR_WRAP 0x5 /* Wrap error */
133 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
134 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
135  /* shared memory region */
136 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
137  /* shared memory region */
138 #define T4_ERR_ECC 0x9 /* ECC error detected */
139 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
140  /* reading PSTAG for a MW */
141  /* Invalidate */
142 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
143  /* software error */
144 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
145 #define T4_ERR_CRC 0x10 /* CRC error */
146 #define T4_ERR_MARKER 0x11 /* Marker error */
147 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
148 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
149 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
150 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
151 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
152 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
153 #define T4_ERR_MSN 0x18 /* MSN error */
154 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
155 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
156  /* or READ_REQ */
157 #define T4_ERR_MSN_GAP 0x1B
158 #define T4_ERR_MSN_RANGE 0x1C
159 #define T4_ERR_IRD_OVERFLOW 0x1D
160 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
161  /* software error */
162 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
163  /* mismatch) */
164 /*
165  * CQE defs
166  */
167 struct t4_cqe {
170  union {
171  struct {
174  } rcqe;
175  struct {
179  } scqe;
180  struct {
183  } gen;
184  } u;
187 };
188 
189 /* macros for flit 0 of the cqe */
190 
191 #define S_CQE_QPID 12
192 #define M_CQE_QPID 0xFFFFF
193 #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
194 #define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
195 
196 #define S_CQE_SWCQE 11
197 #define M_CQE_SWCQE 0x1
198 #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
199 #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
200 
201 #define S_CQE_STATUS 5
202 #define M_CQE_STATUS 0x1F
203 #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
204 #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
205 
206 #define S_CQE_TYPE 4
207 #define M_CQE_TYPE 0x1
208 #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
209 #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
210 
211 #define S_CQE_OPCODE 0
212 #define M_CQE_OPCODE 0xF
213 #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
214 #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
215 
216 #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header)))
217 #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header)))
218 #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header)))
219 #define SQ_TYPE(x) (CQE_TYPE((x)))
220 #define RQ_TYPE(x) (!CQE_TYPE((x)))
221 #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header)))
222 #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header)))
223 
224 #define CQE_SEND_OPCODE(x)( \
225  (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
226  (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
227  (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
228  (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
229 
230 #define CQE_LEN(x) (be32_to_cpu((x)->len))
231 
232 /* used for RQ completion processing */
233 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
234 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
235 
236 /* used for SQ completion processing */
237 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
238 
239 /* generic accessor macros */
240 #define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi)
241 #define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low)
242 
243 /* macros for flit 3 of the cqe */
244 #define S_CQE_GENBIT 63
245 #define M_CQE_GENBIT 0x1
246 #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
247 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
248 
249 #define S_CQE_OVFBIT 62
250 #define M_CQE_OVFBIT 0x1
251 #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
252 
253 #define S_CQE_IQTYPE 60
254 #define M_CQE_IQTYPE 0x3
255 #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
256 
257 #define M_CQE_TS 0x0fffffffffffffffULL
258 #define G_CQE_TS(x) ((x) & M_CQE_TS)
259 
260 #define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
261 #define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
262 #define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
263 
264 struct t4_swsqe {
266  struct t4_cqe cqe;
267  int read_len;
268  int opcode;
269  int complete;
270  int signaled;
272 };
273 
274 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
275 {
276 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
277  return pgprot_writecombine(prot);
278 #else
279  return pgprot_noncached(prot);
280 #endif
281 }
282 
283 static inline int t4_ocqp_supported(void)
284 {
285 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
286  return 1;
287 #else
288  return 0;
289 #endif
290 }
291 
292 enum {
293  T4_SQ_ONCHIP = (1<<0),
294 };
295 
296 struct t4_sq {
297  union t4_wr *queue;
300  unsigned long phys_addr;
301  struct t4_swsqe *sw_sq;
304  size_t memsize;
312 };
313 
314 struct t4_swrqe {
316 };
317 
318 struct t4_rq {
322  struct t4_swrqe *sw_rq;
324  size_t memsize;
334 };
335 
336 struct t4_wq {
337  struct t4_sq sq;
338  struct t4_rq rq;
339  void __iomem *db;
340  void __iomem *gts;
341  struct c4iw_rdev *rdev;
342 };
343 
344 static inline int t4_rqes_posted(struct t4_wq *wq)
345 {
346  return wq->rq.in_use;
347 }
348 
349 static inline int t4_rq_empty(struct t4_wq *wq)
350 {
351  return wq->rq.in_use == 0;
352 }
353 
354 static inline int t4_rq_full(struct t4_wq *wq)
355 {
356  return wq->rq.in_use == (wq->rq.size - 1);
357 }
358 
359 static inline u32 t4_rq_avail(struct t4_wq *wq)
360 {
361  return wq->rq.size - 1 - wq->rq.in_use;
362 }
363 
364 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
365 {
366  wq->rq.in_use++;
367  if (++wq->rq.pidx == wq->rq.size)
368  wq->rq.pidx = 0;
369  wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
370  if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
371  wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
372 }
373 
374 static inline void t4_rq_consume(struct t4_wq *wq)
375 {
376  wq->rq.in_use--;
377  wq->rq.msn++;
378  if (++wq->rq.cidx == wq->rq.size)
379  wq->rq.cidx = 0;
380 }
381 
382 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
383 {
384  return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
385 }
386 
387 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
388 {
389  return wq->rq.size * T4_RQ_NUM_SLOTS;
390 }
391 
392 static inline int t4_sq_onchip(struct t4_sq *sq)
393 {
394  return sq->flags & T4_SQ_ONCHIP;
395 }
396 
397 static inline int t4_sq_empty(struct t4_wq *wq)
398 {
399  return wq->sq.in_use == 0;
400 }
401 
402 static inline int t4_sq_full(struct t4_wq *wq)
403 {
404  return wq->sq.in_use == (wq->sq.size - 1);
405 }
406 
407 static inline u32 t4_sq_avail(struct t4_wq *wq)
408 {
409  return wq->sq.size - 1 - wq->sq.in_use;
410 }
411 
412 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
413 {
414  wq->sq.in_use++;
415  if (++wq->sq.pidx == wq->sq.size)
416  wq->sq.pidx = 0;
417  wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
418  if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
419  wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
420 }
421 
422 static inline void t4_sq_consume(struct t4_wq *wq)
423 {
424  wq->sq.in_use--;
425  if (++wq->sq.cidx == wq->sq.size)
426  wq->sq.cidx = 0;
427 }
428 
429 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
430 {
431  return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
432 }
433 
434 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
435 {
436  return wq->sq.size * T4_SQ_NUM_SLOTS;
437 }
438 
439 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
440 {
441  wmb();
442  writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
443 }
444 
445 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
446 {
447  wmb();
448  writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
449 }
450 
451 static inline int t4_wq_in_error(struct t4_wq *wq)
452 {
453  return wq->rq.queue[wq->rq.size].status.qp_err;
454 }
455 
456 static inline void t4_set_wq_in_error(struct t4_wq *wq)
457 {
458  wq->rq.queue[wq->rq.size].status.qp_err = 1;
459 }
460 
461 static inline void t4_disable_wq_db(struct t4_wq *wq)
462 {
463  wq->rq.queue[wq->rq.size].status.db_off = 1;
464 }
465 
466 static inline void t4_enable_wq_db(struct t4_wq *wq)
467 {
468  wq->rq.queue[wq->rq.size].status.db_off = 0;
469 }
470 
471 static inline int t4_wq_db_enabled(struct t4_wq *wq)
472 {
473  return !wq->rq.queue[wq->rq.size].status.db_off;
474 }
475 
476 struct t4_cq {
477  struct t4_cqe *queue;
480  struct t4_cqe *sw_queue;
481  void __iomem *gts;
482  struct c4iw_rdev *rdev;
484  size_t memsize;
487  u16 size; /* including status page */
495 };
496 
497 static inline int t4_arm_cq(struct t4_cq *cq, int se)
498 {
499  u32 val;
500 
501  while (cq->cidx_inc > CIDXINC_MASK) {
502  val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
503  INGRESSQID(cq->cqid);
504  writel(val, cq->gts);
505  cq->cidx_inc -= CIDXINC_MASK;
506  }
507  val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
508  INGRESSQID(cq->cqid);
509  writel(val, cq->gts);
510  cq->cidx_inc = 0;
511  return 0;
512 }
513 
514 static inline void t4_swcq_produce(struct t4_cq *cq)
515 {
516  cq->sw_in_use++;
517  if (++cq->sw_pidx == cq->size)
518  cq->sw_pidx = 0;
519 }
520 
521 static inline void t4_swcq_consume(struct t4_cq *cq)
522 {
523  cq->sw_in_use--;
524  if (++cq->sw_cidx == cq->size)
525  cq->sw_cidx = 0;
526 }
527 
528 static inline void t4_hwcq_consume(struct t4_cq *cq)
529 {
530  cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
531  if (++cq->cidx_inc == (cq->size >> 4)) {
532  u32 val;
533 
534  val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
535  INGRESSQID(cq->cqid);
536  writel(val, cq->gts);
537  cq->cidx_inc = 0;
538  }
539  if (++cq->cidx == cq->size) {
540  cq->cidx = 0;
541  cq->gen ^= 1;
542  }
543 }
544 
545 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
546 {
547  return (CQE_GENBIT(cqe) == cq->gen);
548 }
549 
550 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
551 {
552  int ret;
553  u16 prev_cidx;
554 
555  if (cq->cidx == 0)
556  prev_cidx = cq->size - 1;
557  else
558  prev_cidx = cq->cidx - 1;
559 
560  if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
561  ret = -EOVERFLOW;
562  cq->error = 1;
563  printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
564  } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
565  *cqe = &cq->queue[cq->cidx];
566  ret = 0;
567  } else
568  ret = -ENODATA;
569  return ret;
570 }
571 
572 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
573 {
574  if (cq->sw_in_use)
575  return &cq->sw_queue[cq->sw_cidx];
576  return NULL;
577 }
578 
579 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
580 {
581  int ret = 0;
582 
583  if (cq->error)
584  ret = -ENODATA;
585  else if (cq->sw_in_use)
586  *cqe = &cq->sw_queue[cq->sw_cidx];
587  else
588  ret = t4_next_hw_cqe(cq, cqe);
589  return ret;
590 }
591 
592 static inline int t4_cq_in_error(struct t4_cq *cq)
593 {
594  return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
595 }
596 
597 static inline void t4_set_cq_in_error(struct t4_cq *cq)
598 {
599  ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
600 }
601 #endif