Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tegra-aes.c
Go to the documentation of this file.
1 /*
2  * drivers/crypto/tegra-aes.c
3  *
4  * Driver for NVIDIA Tegra AES hardware engine residing inside the
5  * Bit Stream Engine for Video (BSEV) hardware block.
6  *
7  * The programming sequence for this engine is with the help
8  * of commands which travel via a command queue residing between the
9  * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM)
10  * where the final input plaintext, keys and the IV have to be copied
11  * before starting the encrypt/decrypt operation.
12  *
13  * Copyright (c) 2010, NVIDIA Corporation.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful, but WITHOUT
21  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
22  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
23  * more details.
24  *
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, write to the Free Software Foundation, Inc.,
27  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/clk.h>
35 #include <linux/platform_device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/io.h>
39 #include <linux/mutex.h>
40 #include <linux/interrupt.h>
41 #include <linux/completion.h>
42 #include <linux/workqueue.h>
43 
44 #include <mach/clk.h>
45 
46 #include <crypto/scatterwalk.h>
47 #include <crypto/aes.h>
48 #include <crypto/internal/rng.h>
49 
50 #include "tegra-aes.h"
51 
52 #define FLAGS_MODE_MASK 0x00FF
53 #define FLAGS_ENCRYPT BIT(0)
54 #define FLAGS_CBC BIT(1)
55 #define FLAGS_GIV BIT(2)
56 #define FLAGS_RNG BIT(3)
57 #define FLAGS_OFB BIT(4)
58 #define FLAGS_NEW_KEY BIT(5)
59 #define FLAGS_NEW_IV BIT(6)
60 #define FLAGS_INIT BIT(7)
61 #define FLAGS_FAST BIT(8)
62 #define FLAGS_BUSY 9
63 
64 /*
65  * Defines AES engine Max process bytes size in one go, which takes 1 msec.
66  * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte
67  * The duration CPU can use the BSE to 1 msec, then the number of available
68  * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB
69  * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB.
70  */
71 #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000
72 
73 /*
74  * The key table length is 64 bytes
75  * (This includes first upto 32 bytes key + 16 bytes original initial vector
76  * and 16 bytes updated initial vector)
77  */
78 #define AES_HW_KEY_TABLE_LENGTH_BYTES 64
79 
80 /*
81  * The memory being used is divides as follows:
82  * 1. Key - 32 bytes
83  * 2. Original IV - 16 bytes
84  * 3. Updated IV - 16 bytes
85  * 4. Key schedule - 256 bytes
86  *
87  * 1+2+3 constitute the hw key table.
88  */
89 #define AES_HW_IV_SIZE 16
90 #define AES_HW_KEYSCHEDULE_LEN 256
91 #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN)
92 
93 /* Define commands required for AES operation */
94 enum {
96  CMD_DMASETUP = 0x10,
98  CMD_SETTABLE = 0x15,
99  CMD_MEMDMAVD = 0x22,
100 };
101 
102 /* Define sub-commands */
103 enum {
107 };
108 
109 /* memdma_vd command */
110 #define MEMDMA_DIR_DTOVRAM 0 /* sdram -> vram */
111 #define MEMDMA_DIR_VTODRAM 1 /* vram -> sdram */
112 #define MEMDMA_DIR_SHIFT 25
113 #define MEMDMA_NUM_WORDS_SHIFT 12
114 
115 /* command queue bit shifts */
116 enum {
122 };
123 
124 /*
125  * The secure key slot contains a unique secure key generated
126  * and loaded by the bootloader. This slot is marked as non-accessible
127  * to the kernel.
128  */
129 #define SSK_SLOT_NUM 4
130 
131 #define AES_NR_KEYSLOTS 8
132 #define TEGRA_AES_QUEUE_LENGTH 50
133 #define DEFAULT_RNG_BLK_SZ 16
134 
135 /* The command queue depth */
136 #define AES_HW_MAX_ICQ_LENGTH 5
137 
139  struct list_head node;
140  int slot_num;
141 };
142 
143 static struct tegra_aes_slot ssk = {
144  .slot_num = SSK_SLOT_NUM,
145 };
146 
148  unsigned long mode;
149 };
150 
152  struct device *dev;
156  struct clk *aes_clk;
158  int irq;
159  unsigned long flags;
165  u8 *iv;
167  int ivlen;
173  size_t total;
175  size_t in_offset;
177  size_t out_offset;
178 };
179 
180 static struct tegra_aes_dev *aes_dev;
181 
183  struct tegra_aes_dev *dd;
184  unsigned long flags;
187  size_t keylen;
188 };
189 
190 static struct tegra_aes_ctx rng_ctx = {
191  .flags = FLAGS_NEW_KEY,
192  .keylen = AES_KEYSIZE_128,
193 };
194 
195 /* keep registered devices data here */
196 static struct list_head dev_list;
197 static DEFINE_SPINLOCK(list_lock);
198 static DEFINE_MUTEX(aes_lock);
199 
200 static void aes_workqueue_handler(struct work_struct *work);
201 static DECLARE_WORK(aes_work, aes_workqueue_handler);
202 static struct workqueue_struct *aes_wq;
203 
204 extern unsigned long long tegra_chip_uid(void);
205 
206 static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset)
207 {
208  return readl(dd->io_base + offset);
209 }
210 
211 static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset)
212 {
213  writel(val, dd->io_base + offset);
214 }
215 
216 static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr,
217  int nblocks, int mode, bool upd_iv)
218 {
220  int i, eng_busy, icq_empty, ret;
221  u32 value;
222 
223  /* reset all the interrupt bits */
224  aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS);
225 
226  /* enable error, dma xfer complete interrupts */
227  aes_writel(dd, 0x33, TEGRA_AES_INT_ENB);
228 
229  cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT;
230  cmdq[1] = in_addr;
231  cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1);
232  cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT;
233 
234  value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL);
235  /* access SDRAM through AHB */
241  aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL);
242  dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value);
243 
244  value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) |
245  ((dd->ctx->keylen * 8) <<
248 
249  if (mode & FLAGS_CBC) {
250  value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3)
252  (((mode & FLAGS_ENCRYPT) ? 2 : 3)
254  ((mode & FLAGS_ENCRYPT) ? 1 : 0)
256  } else if (mode & FLAGS_OFB) {
257  value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) |
260  } else if (mode & FLAGS_RNG) {
261  value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
264  } else {
265  value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
267  }
268 
269  dev_dbg(dd->dev, "secure_in_sel=0x%x", value);
270  aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT);
271 
272  aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR);
274 
275  for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) {
276  do {
277  value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
278  eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
279  icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
280  } while (eng_busy & (!icq_empty));
281  aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR);
282  }
283 
285  msecs_to_jiffies(150));
286  if (ret == 0) {
287  dev_err(dd->dev, "timed out (0x%x)\n",
288  aes_readl(dd, TEGRA_AES_INTR_STATUS));
289  return -ETIMEDOUT;
290  }
291 
292  aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR);
293  return 0;
294 }
295 
296 static void aes_release_key_slot(struct tegra_aes_slot *slot)
297 {
298  if (slot->slot_num == SSK_SLOT_NUM)
299  return;
300 
301  spin_lock(&list_lock);
302  list_add_tail(&slot->node, &dev_list);
303  slot = NULL;
304  spin_unlock(&list_lock);
305 }
306 
307 static struct tegra_aes_slot *aes_find_key_slot(void)
308 {
309  struct tegra_aes_slot *slot = NULL;
310  struct list_head *new_head;
311  int empty;
312 
313  spin_lock(&list_lock);
314  empty = list_empty(&dev_list);
315  if (!empty) {
316  slot = list_entry(&dev_list, struct tegra_aes_slot, node);
317  new_head = dev_list.next;
318  list_del(&dev_list);
319  dev_list.next = new_head->next;
320  dev_list.prev = NULL;
321  }
322  spin_unlock(&list_lock);
323 
324  return slot;
325 }
326 
327 static int aes_set_key(struct tegra_aes_dev *dd)
328 {
329  u32 value, cmdq[2];
330  struct tegra_aes_ctx *ctx = dd->ctx;
331  int eng_busy, icq_empty, dma_busy;
332  bool use_ssk = false;
333 
334  /* use ssk? */
335  if (!dd->ctx->slot) {
336  dev_dbg(dd->dev, "using ssk");
337  dd->ctx->slot = &ssk;
338  use_ssk = true;
339  }
340 
341  /* enable key schedule generation in hardware */
342  value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT);
344  aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT);
345 
346  /* select the key slot */
347  value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG);
349  value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT);
350  aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG);
351 
352  if (use_ssk)
353  return 0;
354 
355  /* copy the key table from sdram to vram */
356  cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT |
360  cmdq[1] = (u32)dd->ivkey_phys_base;
361 
362  aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR);
363  aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR);
364 
365  do {
366  value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
367  eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
368  icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
369  dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD;
370  } while (eng_busy & (!icq_empty) & dma_busy);
371 
372  /* settable command to get key into internal registers */
373  value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT |
376  (SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) <<
378  aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR);
379 
380  do {
381  value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
382  eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
383  icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
384  } while (eng_busy & (!icq_empty));
385 
386  return 0;
387 }
388 
389 static int tegra_aes_handle_req(struct tegra_aes_dev *dd)
390 {
391  struct crypto_async_request *async_req, *backlog;
392  struct crypto_ablkcipher *tfm;
393  struct tegra_aes_ctx *ctx;
394  struct tegra_aes_reqctx *rctx;
395  struct ablkcipher_request *req;
396  unsigned long flags;
397  int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES;
398  int ret = 0, nblocks, total;
399  int count = 0;
400  dma_addr_t addr_in, addr_out;
401  struct scatterlist *in_sg, *out_sg;
402 
403  if (!dd)
404  return -EINVAL;
405 
406  spin_lock_irqsave(&dd->lock, flags);
407  backlog = crypto_get_backlog(&dd->queue);
408  async_req = crypto_dequeue_request(&dd->queue);
409  if (!async_req)
410  clear_bit(FLAGS_BUSY, &dd->flags);
411  spin_unlock_irqrestore(&dd->lock, flags);
412 
413  if (!async_req)
414  return -ENODATA;
415 
416  if (backlog)
417  backlog->complete(backlog, -EINPROGRESS);
418 
419  req = ablkcipher_request_cast(async_req);
420 
421  dev_dbg(dd->dev, "%s: get new req\n", __func__);
422 
423  if (!req->src || !req->dst)
424  return -EINVAL;
425 
426  /* take mutex to access the aes hw */
427  mutex_lock(&aes_lock);
428 
429  /* assign new request to device */
430  dd->req = req;
431  dd->total = req->nbytes;
432  dd->in_offset = 0;
433  dd->in_sg = req->src;
434  dd->out_offset = 0;
435  dd->out_sg = req->dst;
436 
437  in_sg = dd->in_sg;
438  out_sg = dd->out_sg;
439 
440  total = dd->total;
441 
442  tfm = crypto_ablkcipher_reqtfm(req);
443  rctx = ablkcipher_request_ctx(req);
444  ctx = crypto_ablkcipher_ctx(tfm);
445  rctx->mode &= FLAGS_MODE_MASK;
446  dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
447 
448  dd->iv = (u8 *)req->info;
449  dd->ivlen = crypto_ablkcipher_ivsize(tfm);
450 
451  /* assign new context to device */
452  ctx->dd = dd;
453  dd->ctx = ctx;
454 
455  if (ctx->flags & FLAGS_NEW_KEY) {
456  /* copy the key */
457  memcpy(dd->ivkey_base, ctx->key, ctx->keylen);
459  aes_set_key(dd);
460  ctx->flags &= ~FLAGS_NEW_KEY;
461  }
462 
463  if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) {
464  /* set iv to the aes hw slot
465  * Hw generates updated iv only after iv is set in slot.
466  * So key and iv is passed asynchronously.
467  */
468  memcpy(dd->buf_in, dd->iv, dd->ivlen);
469 
470  ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
471  dd->dma_buf_out, 1, FLAGS_CBC, false);
472  if (ret < 0) {
473  dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
474  goto out;
475  }
476  }
477 
478  while (total) {
479  dev_dbg(dd->dev, "remain: %d\n", total);
480  ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
481  if (!ret) {
482  dev_err(dd->dev, "dma_map_sg() error\n");
483  goto out;
484  }
485 
486  ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
487  if (!ret) {
488  dev_err(dd->dev, "dma_map_sg() error\n");
489  dma_unmap_sg(dd->dev, dd->in_sg,
490  1, DMA_TO_DEVICE);
491  goto out;
492  }
493 
494  addr_in = sg_dma_address(in_sg);
495  addr_out = sg_dma_address(out_sg);
496  dd->flags |= FLAGS_FAST;
497  count = min_t(int, sg_dma_len(in_sg), dma_max);
498  WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg));
499  nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE);
500 
501  ret = aes_start_crypt(dd, addr_in, addr_out, nblocks,
502  dd->flags, true);
503 
504  dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
505  dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
506 
507  if (ret < 0) {
508  dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
509  goto out;
510  }
511  dd->flags &= ~FLAGS_FAST;
512 
513  dev_dbg(dd->dev, "out: copied %d\n", count);
514  total -= count;
515  in_sg = sg_next(in_sg);
516  out_sg = sg_next(out_sg);
517  WARN_ON(((total != 0) && (!in_sg || !out_sg)));
518  }
519 
520 out:
521  mutex_unlock(&aes_lock);
522 
523  dd->total = total;
524 
525  if (dd->req->base.complete)
526  dd->req->base.complete(&dd->req->base, ret);
527 
528  dev_dbg(dd->dev, "%s: exit\n", __func__);
529  return ret;
530 }
531 
532 static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
533  unsigned int keylen)
534 {
535  struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
536  struct tegra_aes_dev *dd = aes_dev;
537  struct tegra_aes_slot *key_slot;
538 
539  if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) &&
540  (keylen != AES_KEYSIZE_256)) {
541  dev_err(dd->dev, "unsupported key size\n");
542  crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
543  return -EINVAL;
544  }
545 
546  dev_dbg(dd->dev, "keylen: %d\n", keylen);
547 
548  ctx->dd = dd;
549 
550  if (key) {
551  if (!ctx->slot) {
552  key_slot = aes_find_key_slot();
553  if (!key_slot) {
554  dev_err(dd->dev, "no empty slot\n");
555  return -ENOMEM;
556  }
557 
558  ctx->slot = key_slot;
559  }
560 
561  memcpy(ctx->key, key, keylen);
562  ctx->keylen = keylen;
563  }
564 
565  ctx->flags |= FLAGS_NEW_KEY;
566  dev_dbg(dd->dev, "done\n");
567  return 0;
568 }
569 
570 static void aes_workqueue_handler(struct work_struct *work)
571 {
572  struct tegra_aes_dev *dd = aes_dev;
573  int ret;
574 
575  ret = clk_prepare_enable(dd->aes_clk);
576  if (ret)
577  BUG_ON("clock enable failed");
578 
579  /* empty the crypto queue and then return */
580  do {
581  ret = tegra_aes_handle_req(dd);
582  } while (!ret);
583 
584  clk_disable_unprepare(dd->aes_clk);
585 }
586 
587 static irqreturn_t aes_irq(int irq, void *dev_id)
588 {
589  struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id;
590  u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
591  int busy = test_bit(FLAGS_BUSY, &dd->flags);
592 
593  if (!busy) {
594  dev_dbg(dd->dev, "spurious interrupt\n");
595  return IRQ_NONE;
596  }
597 
598  dev_dbg(dd->dev, "irq_stat: 0x%x\n", value);
599  if (value & TEGRA_AES_INT_ERROR_MASK)
600  aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS);
601 
602  if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD))
603  complete(&dd->op_complete);
604  else
605  return IRQ_NONE;
606 
607  return IRQ_HANDLED;
608 }
609 
610 static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
611 {
612  struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req);
613  struct tegra_aes_dev *dd = aes_dev;
614  unsigned long flags;
615  int err = 0;
616  int busy;
617 
618  dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n",
619  req->nbytes, !!(mode & FLAGS_ENCRYPT),
620  !!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB));
621 
622  rctx->mode = mode;
623 
624  spin_lock_irqsave(&dd->lock, flags);
625  err = ablkcipher_enqueue_request(&dd->queue, req);
626  busy = test_and_set_bit(FLAGS_BUSY, &dd->flags);
627  spin_unlock_irqrestore(&dd->lock, flags);
628 
629  if (!busy)
630  queue_work(aes_wq, &aes_work);
631 
632  return err;
633 }
634 
635 static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req)
636 {
637  return tegra_aes_crypt(req, FLAGS_ENCRYPT);
638 }
639 
640 static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req)
641 {
642  return tegra_aes_crypt(req, 0);
643 }
644 
645 static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req)
646 {
647  return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
648 }
649 
650 static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req)
651 {
652  return tegra_aes_crypt(req, FLAGS_CBC);
653 }
654 
655 static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req)
656 {
657  return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB);
658 }
659 
660 static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req)
661 {
662  return tegra_aes_crypt(req, FLAGS_OFB);
663 }
664 
665 static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata,
666  unsigned int dlen)
667 {
668  struct tegra_aes_dev *dd = aes_dev;
669  struct tegra_aes_ctx *ctx = &rng_ctx;
670  int ret, i;
671  u8 *dest = rdata, *dt = dd->dt;
672 
673  /* take mutex to access the aes hw */
674  mutex_lock(&aes_lock);
675 
676  ret = clk_prepare_enable(dd->aes_clk);
677  if (ret)
678  return ret;
679 
680  ctx->dd = dd;
681  dd->ctx = ctx;
682  dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
683 
684  memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ);
685 
686  ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
687  (u32)dd->dma_buf_out, 1, dd->flags, true);
688  if (ret < 0) {
689  dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
690  dlen = ret;
691  goto out;
692  }
693  memcpy(dest, dd->buf_out, dlen);
694 
695  /* update the DT */
696  for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) {
697  dt[i] += 1;
698  if (dt[i] != 0)
699  break;
700  }
701 
702 out:
703  clk_disable_unprepare(dd->aes_clk);
704  mutex_unlock(&aes_lock);
705 
706  dev_dbg(dd->dev, "%s: done\n", __func__);
707  return dlen;
708 }
709 
710 static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed,
711  unsigned int slen)
712 {
713  struct tegra_aes_dev *dd = aes_dev;
714  struct tegra_aes_ctx *ctx = &rng_ctx;
715  struct tegra_aes_slot *key_slot;
716  struct timespec ts;
717  int ret = 0;
718  u64 nsec, tmp[2];
719  u8 *dt;
720 
721  if (!ctx || !dd) {
722  dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n",
723  (unsigned int)ctx, (unsigned int)dd);
724  return -EINVAL;
725  }
726 
727  if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
728  dev_err(dd->dev, "seed size invalid");
729  return -ENOMEM;
730  }
731 
732  /* take mutex to access the aes hw */
733  mutex_lock(&aes_lock);
734 
735  if (!ctx->slot) {
736  key_slot = aes_find_key_slot();
737  if (!key_slot) {
738  dev_err(dd->dev, "no empty slot\n");
739  mutex_unlock(&aes_lock);
740  return -ENOMEM;
741  }
742  ctx->slot = key_slot;
743  }
744 
745  ctx->dd = dd;
746  dd->ctx = ctx;
747  dd->ctr = 0;
748 
749  ctx->keylen = AES_KEYSIZE_128;
750  ctx->flags |= FLAGS_NEW_KEY;
751 
752  /* copy the key to the key slot */
755 
756  dd->iv = seed;
757  dd->ivlen = slen;
758 
759  dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
760 
761  ret = clk_prepare_enable(dd->aes_clk);
762  if (ret)
763  return ret;
764 
765  aes_set_key(dd);
766 
767  /* set seed to the aes hw slot */
768  memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ);
769  ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
770  dd->dma_buf_out, 1, FLAGS_CBC, false);
771  if (ret < 0) {
772  dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
773  goto out;
774  }
775 
776  if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
778  } else {
779  getnstimeofday(&ts);
780  nsec = timespec_to_ns(&ts);
781  do_div(nsec, 1000);
782  nsec ^= dd->ctr << 56;
783  dd->ctr++;
784  tmp[0] = nsec;
785  tmp[1] = tegra_chip_uid();
786  dt = (u8 *)tmp;
787  }
788  memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ);
789 
790 out:
791  clk_disable_unprepare(dd->aes_clk);
792  mutex_unlock(&aes_lock);
793 
794  dev_dbg(dd->dev, "%s: done\n", __func__);
795  return ret;
796 }
797 
798 static int tegra_aes_cra_init(struct crypto_tfm *tfm)
799 {
800  tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx);
801 
802  return 0;
803 }
804 
806 {
807  struct tegra_aes_ctx *ctx =
808  crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm);
809 
810  if (ctx && ctx->slot)
811  aes_release_key_slot(ctx->slot);
812 }
813 
814 static struct crypto_alg algs[] = {
815  {
816  .cra_name = "ecb(aes)",
817  .cra_driver_name = "ecb-aes-tegra",
818  .cra_priority = 300,
820  .cra_blocksize = AES_BLOCK_SIZE,
821  .cra_alignmask = 3,
822  .cra_type = &crypto_ablkcipher_type,
823  .cra_u.ablkcipher = {
824  .min_keysize = AES_MIN_KEY_SIZE,
825  .max_keysize = AES_MAX_KEY_SIZE,
826  .setkey = tegra_aes_setkey,
827  .encrypt = tegra_aes_ecb_encrypt,
828  .decrypt = tegra_aes_ecb_decrypt,
829  },
830  }, {
831  .cra_name = "cbc(aes)",
832  .cra_driver_name = "cbc-aes-tegra",
833  .cra_priority = 300,
835  .cra_blocksize = AES_BLOCK_SIZE,
836  .cra_alignmask = 3,
837  .cra_type = &crypto_ablkcipher_type,
838  .cra_u.ablkcipher = {
839  .min_keysize = AES_MIN_KEY_SIZE,
840  .max_keysize = AES_MAX_KEY_SIZE,
841  .ivsize = AES_MIN_KEY_SIZE,
842  .setkey = tegra_aes_setkey,
843  .encrypt = tegra_aes_cbc_encrypt,
844  .decrypt = tegra_aes_cbc_decrypt,
845  }
846  }, {
847  .cra_name = "ofb(aes)",
848  .cra_driver_name = "ofb-aes-tegra",
849  .cra_priority = 300,
851  .cra_blocksize = AES_BLOCK_SIZE,
852  .cra_alignmask = 3,
853  .cra_type = &crypto_ablkcipher_type,
854  .cra_u.ablkcipher = {
855  .min_keysize = AES_MIN_KEY_SIZE,
856  .max_keysize = AES_MAX_KEY_SIZE,
857  .ivsize = AES_MIN_KEY_SIZE,
858  .setkey = tegra_aes_setkey,
859  .encrypt = tegra_aes_ofb_encrypt,
860  .decrypt = tegra_aes_ofb_decrypt,
861  }
862  }, {
863  .cra_name = "ansi_cprng",
864  .cra_driver_name = "rng-aes-tegra",
865  .cra_flags = CRYPTO_ALG_TYPE_RNG,
866  .cra_ctxsize = sizeof(struct tegra_aes_ctx),
867  .cra_type = &crypto_rng_type,
868  .cra_u.rng = {
869  .rng_make_random = tegra_aes_get_random,
870  .rng_reset = tegra_aes_rng_reset,
871  .seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ),
872  }
873  }
874 };
875 
876 static int tegra_aes_probe(struct platform_device *pdev)
877 {
878  struct device *dev = &pdev->dev;
879  struct tegra_aes_dev *dd;
880  struct resource *res;
881  int err = -ENOMEM, i = 0, j;
882 
883  dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL);
884  if (dd == NULL) {
885  dev_err(dev, "unable to alloc data struct.\n");
886  return err;
887  }
888 
889  dd->dev = dev;
890  platform_set_drvdata(pdev, dd);
891 
892  dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) *
894  if (dd->slots == NULL) {
895  dev_err(dev, "unable to alloc slot struct.\n");
896  goto out;
897  }
898 
899  spin_lock_init(&dd->lock);
901 
902  /* Get the module base address */
903  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
904  if (!res) {
905  dev_err(dev, "invalid resource type: base\n");
906  err = -ENODEV;
907  goto out;
908  }
909 
910  if (!devm_request_mem_region(&pdev->dev, res->start,
911  resource_size(res),
912  dev_name(&pdev->dev))) {
913  dev_err(&pdev->dev, "Couldn't request MEM resource\n");
914  return -ENODEV;
915  }
916 
917  dd->io_base = devm_ioremap(dev, res->start, resource_size(res));
918  if (!dd->io_base) {
919  dev_err(dev, "can't ioremap register space\n");
920  err = -ENOMEM;
921  goto out;
922  }
923 
924  /* Initialize the vde clock */
925  dd->aes_clk = clk_get(dev, "vde");
926  if (IS_ERR(dd->aes_clk)) {
927  dev_err(dev, "iclock intialization failed.\n");
928  err = -ENODEV;
929  goto out;
930  }
931 
932  err = clk_set_rate(dd->aes_clk, ULONG_MAX);
933  if (err) {
934  dev_err(dd->dev, "iclk set_rate fail(%d)\n", err);
935  goto out;
936  }
937 
938  /*
939  * the foll contiguous memory is allocated as follows -
940  * - hardware key table
941  * - key schedule
942  */
944  &dd->ivkey_phys_base,
945  GFP_KERNEL);
946  if (!dd->ivkey_base) {
947  dev_err(dev, "can not allocate iv/key buffer\n");
948  err = -ENOMEM;
949  goto out;
950  }
951 
953  &dd->dma_buf_in, GFP_KERNEL);
954  if (!dd->buf_in) {
955  dev_err(dev, "can not allocate dma-in buffer\n");
956  err = -ENOMEM;
957  goto out;
958  }
959 
961  &dd->dma_buf_out, GFP_KERNEL);
962  if (!dd->buf_out) {
963  dev_err(dev, "can not allocate dma-out buffer\n");
964  err = -ENOMEM;
965  goto out;
966  }
967 
968  init_completion(&dd->op_complete);
969  aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1);
970  if (!aes_wq) {
971  dev_err(dev, "alloc_workqueue failed\n");
972  err = -ENOMEM;
973  goto out;
974  }
975 
976  /* get the irq */
977  res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
978  if (!res) {
979  dev_err(dev, "invalid resource type: base\n");
980  err = -ENODEV;
981  goto out;
982  }
983  dd->irq = res->start;
984 
985  err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH |
986  IRQF_SHARED, "tegra-aes", dd);
987  if (err) {
988  dev_err(dev, "request_irq failed\n");
989  goto out;
990  }
991 
992  mutex_init(&aes_lock);
993  INIT_LIST_HEAD(&dev_list);
994 
996  spin_lock(&list_lock);
997  for (i = 0; i < AES_NR_KEYSLOTS; i++) {
998  if (i == SSK_SLOT_NUM)
999  continue;
1000  dd->slots[i].slot_num = i;
1001  INIT_LIST_HEAD(&dd->slots[i].node);
1002  list_add_tail(&dd->slots[i].node, &dev_list);
1003  }
1004  spin_unlock(&list_lock);
1005 
1006  aes_dev = dd;
1007  for (i = 0; i < ARRAY_SIZE(algs); i++) {
1008  algs[i].cra_priority = 300;
1009  algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx);
1010  algs[i].cra_module = THIS_MODULE;
1011  algs[i].cra_init = tegra_aes_cra_init;
1012  algs[i].cra_exit = tegra_aes_cra_exit;
1013 
1014  err = crypto_register_alg(&algs[i]);
1015  if (err)
1016  goto out;
1017  }
1018 
1019  dev_info(dev, "registered");
1020  return 0;
1021 
1022 out:
1023  for (j = 0; j < i; j++)
1024  crypto_unregister_alg(&algs[j]);
1025  if (dd->ivkey_base)
1027  dd->ivkey_base, dd->ivkey_phys_base);
1028  if (dd->buf_in)
1030  dd->buf_in, dd->dma_buf_in);
1031  if (dd->buf_out)
1033  dd->buf_out, dd->dma_buf_out);
1034  if (IS_ERR(dd->aes_clk))
1035  clk_put(dd->aes_clk);
1036  if (aes_wq)
1037  destroy_workqueue(aes_wq);
1038  spin_lock(&list_lock);
1039  list_del(&dev_list);
1040  spin_unlock(&list_lock);
1041 
1042  aes_dev = NULL;
1043 
1044  dev_err(dev, "%s: initialization failed.\n", __func__);
1045  return err;
1046 }
1047 
1048 static int __devexit tegra_aes_remove(struct platform_device *pdev)
1049 {
1050  struct device *dev = &pdev->dev;
1051  struct tegra_aes_dev *dd = platform_get_drvdata(pdev);
1052  int i;
1053 
1054  for (i = 0; i < ARRAY_SIZE(algs); i++)
1055  crypto_unregister_alg(&algs[i]);
1056 
1057  cancel_work_sync(&aes_work);
1058  destroy_workqueue(aes_wq);
1059  spin_lock(&list_lock);
1060  list_del(&dev_list);
1061  spin_unlock(&list_lock);
1062 
1064  dd->ivkey_base, dd->ivkey_phys_base);
1066  dd->buf_in, dd->dma_buf_in);
1068  dd->buf_out, dd->dma_buf_out);
1069  clk_put(dd->aes_clk);
1070  aes_dev = NULL;
1071 
1072  return 0;
1073 }
1074 
1075 static struct of_device_id tegra_aes_of_match[] __devinitdata = {
1076  { .compatible = "nvidia,tegra20-aes", },
1077  { .compatible = "nvidia,tegra30-aes", },
1078  { },
1079 };
1080 
1081 static struct platform_driver tegra_aes_driver = {
1082  .probe = tegra_aes_probe,
1083  .remove = __devexit_p(tegra_aes_remove),
1084  .driver = {
1085  .name = "tegra-aes",
1086  .owner = THIS_MODULE,
1087  .of_match_table = tegra_aes_of_match,
1088  },
1089 };
1090 
1091 module_platform_driver(tegra_aes_driver);
1092 
1093 MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support.");
1094 MODULE_AUTHOR("NVIDIA Corporation");
1095 MODULE_LICENSE("GPL v2");