Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vmscan.c
Go to the documentation of this file.
1 /*
2  * linux/mm/vmscan.c
3  *
4  * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5  *
6  * Swap reorganised 29.12.95, Stephen Tweedie.
7  * kswapd added: 7.1.96 sct
8  * Removed kswapd_ctl limits, and swap out as many pages as needed
9  * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]).
11  * Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27  buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 struct scan_control {
57  /* Incremented by the number of inactive pages that were scanned */
58  unsigned long nr_scanned;
59 
60  /* Number of pages freed so far during a call to shrink_zones() */
61  unsigned long nr_reclaimed;
62 
63  /* How many pages shrink_list() should reclaim */
64  unsigned long nr_to_reclaim;
65 
66  unsigned long hibernation_mode;
67 
68  /* This context's GFP mask */
70 
72 
73  /* Can mapped pages be reclaimed? */
74  int may_unmap;
75 
76  /* Can pages be swapped as part of reclaim? */
77  int may_swap;
78 
79  int order;
80 
81  /* Scan (total_size >> priority) pages at once */
82  int priority;
83 
84  /*
85  * The memory cgroup that hit its limit and as a result is the
86  * primary target of this reclaim invocation.
87  */
89 
90  /*
91  * Nodemask of nodes allowed by the caller. If NULL, all nodes
92  * are scanned.
93  */
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101  do { \
102  if ((_page)->lru.prev != _base) { \
103  struct page *prev; \
104  \
105  prev = lru_to_page(&(_page->lru)); \
106  prefetch(&prev->_field); \
107  } \
108  } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115  do { \
116  if ((_page)->lru.prev != _base) { \
117  struct page *prev; \
118  \
119  prev = lru_to_page(&(_page->lru)); \
120  prefetchw(&prev->_field); \
121  } \
122  } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100. Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139  return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144  return true;
145 }
146 #endif
147 
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150  if (!mem_cgroup_disabled())
151  return mem_cgroup_get_lru_size(lruvec, lru);
152 
153  return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155 
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
160 {
161  atomic_long_set(&shrinker->nr_in_batch, 0);
162  down_write(&shrinker_rwsem);
163  list_add_tail(&shrinker->list, &shrinker_list);
164  up_write(&shrinker_rwsem);
165 }
167 
168 /*
169  * Remove one
170  */
172 {
173  down_write(&shrinker_rwsem);
174  list_del(&shrinker->list);
175  up_write(&shrinker_rwsem);
176 }
178 
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180  struct shrink_control *sc,
181  unsigned long nr_to_scan)
182 {
183  sc->nr_to_scan = nr_to_scan;
184  return (*shrinker->shrink)(shrinker, sc);
185 }
186 
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object. With this in mind we age equal
193  * percentages of the lru and ageable caches. This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt. It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208  unsigned long nr_pages_scanned,
209  unsigned long lru_pages)
210 {
211  struct shrinker *shrinker;
212  unsigned long ret = 0;
213 
214  if (nr_pages_scanned == 0)
215  nr_pages_scanned = SWAP_CLUSTER_MAX;
216 
217  if (!down_read_trylock(&shrinker_rwsem)) {
218  /* Assume we'll be able to shrink next time */
219  ret = 1;
220  goto out;
221  }
222 
223  list_for_each_entry(shrinker, &shrinker_list, list) {
224  unsigned long long delta;
225  long total_scan;
226  long max_pass;
227  int shrink_ret = 0;
228  long nr;
229  long new_nr;
230  long batch_size = shrinker->batch ? shrinker->batch
231  : SHRINK_BATCH;
232 
233  max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234  if (max_pass <= 0)
235  continue;
236 
237  /*
238  * copy the current shrinker scan count into a local variable
239  * and zero it so that other concurrent shrinker invocations
240  * don't also do this scanning work.
241  */
242  nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 
244  total_scan = nr;
245  delta = (4 * nr_pages_scanned) / shrinker->seeks;
246  delta *= max_pass;
247  do_div(delta, lru_pages + 1);
248  total_scan += delta;
249  if (total_scan < 0) {
250  printk(KERN_ERR "shrink_slab: %pF negative objects to "
251  "delete nr=%ld\n",
252  shrinker->shrink, total_scan);
253  total_scan = max_pass;
254  }
255 
256  /*
257  * We need to avoid excessive windup on filesystem shrinkers
258  * due to large numbers of GFP_NOFS allocations causing the
259  * shrinkers to return -1 all the time. This results in a large
260  * nr being built up so when a shrink that can do some work
261  * comes along it empties the entire cache due to nr >>>
262  * max_pass. This is bad for sustaining a working set in
263  * memory.
264  *
265  * Hence only allow the shrinker to scan the entire cache when
266  * a large delta change is calculated directly.
267  */
268  if (delta < max_pass / 4)
269  total_scan = min(total_scan, max_pass / 2);
270 
271  /*
272  * Avoid risking looping forever due to too large nr value:
273  * never try to free more than twice the estimate number of
274  * freeable entries.
275  */
276  if (total_scan > max_pass * 2)
277  total_scan = max_pass * 2;
278 
279  trace_mm_shrink_slab_start(shrinker, shrink, nr,
280  nr_pages_scanned, lru_pages,
281  max_pass, delta, total_scan);
282 
283  while (total_scan >= batch_size) {
284  int nr_before;
285 
286  nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287  shrink_ret = do_shrinker_shrink(shrinker, shrink,
288  batch_size);
289  if (shrink_ret == -1)
290  break;
291  if (shrink_ret < nr_before)
292  ret += nr_before - shrink_ret;
293  count_vm_events(SLABS_SCANNED, batch_size);
294  total_scan -= batch_size;
295 
296  cond_resched();
297  }
298 
299  /*
300  * move the unused scan count back into the shrinker in a
301  * manner that handles concurrent updates. If we exhausted the
302  * scan, there is no need to do an update.
303  */
304  if (total_scan > 0)
305  new_nr = atomic_long_add_return(total_scan,
306  &shrinker->nr_in_batch);
307  else
308  new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 
310  trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311  }
312  up_read(&shrinker_rwsem);
313 out:
314  cond_resched();
315  return ret;
316 }
317 
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320  /*
321  * A freeable page cache page is referenced only by the caller
322  * that isolated the page, the page cache radix tree and
323  * optional buffer heads at page->private.
324  */
325  return page_count(page) - page_has_private(page) == 2;
326 }
327 
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329  struct scan_control *sc)
330 {
331  if (current->flags & PF_SWAPWRITE)
332  return 1;
333  if (!bdi_write_congested(bdi))
334  return 1;
335  if (bdi == current->backing_dev_info)
336  return 1;
337  return 0;
338 }
339 
340 /*
341  * We detected a synchronous write error writing a page out. Probably
342  * -ENOSPC. We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up. But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353  struct page *page, int error)
354 {
355  lock_page(page);
356  if (page_mapping(page) == mapping)
357  mapping_set_error(mapping, error);
358  unlock_page(page);
359 }
360 
361 /* possible outcome of pageout() */
362 typedef enum {
363  /* failed to write page out, page is locked */
365  /* move page to the active list, page is locked */
367  /* page has been sent to the disk successfully, page is unlocked */
369  /* page is clean and locked */
371 } pageout_t;
372 
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378  struct scan_control *sc)
379 {
380  /*
381  * If the page is dirty, only perform writeback if that write
382  * will be non-blocking. To prevent this allocation from being
383  * stalled by pagecache activity. But note that there may be
384  * stalls if we need to run get_block(). We could test
385  * PagePrivate for that.
386  *
387  * If this process is currently in __generic_file_aio_write() against
388  * this page's queue, we can perform writeback even if that
389  * will block.
390  *
391  * If the page is swapcache, write it back even if that would
392  * block, for some throttling. This happens by accident, because
393  * swap_backing_dev_info is bust: it doesn't reflect the
394  * congestion state of the swapdevs. Easy to fix, if needed.
395  */
396  if (!is_page_cache_freeable(page))
397  return PAGE_KEEP;
398  if (!mapping) {
399  /*
400  * Some data journaling orphaned pages can have
401  * page->mapping == NULL while being dirty with clean buffers.
402  */
403  if (page_has_private(page)) {
404  if (try_to_free_buffers(page)) {
405  ClearPageDirty(page);
406  printk("%s: orphaned page\n", __func__);
407  return PAGE_CLEAN;
408  }
409  }
410  return PAGE_KEEP;
411  }
412  if (mapping->a_ops->writepage == NULL)
413  return PAGE_ACTIVATE;
414  if (!may_write_to_queue(mapping->backing_dev_info, sc))
415  return PAGE_KEEP;
416 
417  if (clear_page_dirty_for_io(page)) {
418  int res;
419  struct writeback_control wbc = {
421  .nr_to_write = SWAP_CLUSTER_MAX,
422  .range_start = 0,
423  .range_end = LLONG_MAX,
424  .for_reclaim = 1,
425  };
426 
427  SetPageReclaim(page);
428  res = mapping->a_ops->writepage(page, &wbc);
429  if (res < 0)
430  handle_write_error(mapping, page, res);
431  if (res == AOP_WRITEPAGE_ACTIVATE) {
432  ClearPageReclaim(page);
433  return PAGE_ACTIVATE;
434  }
435 
436  if (!PageWriteback(page)) {
437  /* synchronous write or broken a_ops? */
438  ClearPageReclaim(page);
439  }
440  trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442  return PAGE_SUCCESS;
443  }
444 
445  return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454  BUG_ON(!PageLocked(page));
455  BUG_ON(mapping != page_mapping(page));
456 
457  spin_lock_irq(&mapping->tree_lock);
458  /*
459  * The non racy check for a busy page.
460  *
461  * Must be careful with the order of the tests. When someone has
462  * a ref to the page, it may be possible that they dirty it then
463  * drop the reference. So if PageDirty is tested before page_count
464  * here, then the following race may occur:
465  *
466  * get_user_pages(&page);
467  * [user mapping goes away]
468  * write_to(page);
469  * !PageDirty(page) [good]
470  * SetPageDirty(page);
471  * put_page(page);
472  * !page_count(page) [good, discard it]
473  *
474  * [oops, our write_to data is lost]
475  *
476  * Reversing the order of the tests ensures such a situation cannot
477  * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478  * load is not satisfied before that of page->_count.
479  *
480  * Note that if SetPageDirty is always performed via set_page_dirty,
481  * and thus under tree_lock, then this ordering is not required.
482  */
483  if (!page_freeze_refs(page, 2))
484  goto cannot_free;
485  /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486  if (unlikely(PageDirty(page))) {
487  page_unfreeze_refs(page, 2);
488  goto cannot_free;
489  }
490 
491  if (PageSwapCache(page)) {
492  swp_entry_t swap = { .val = page_private(page) };
494  spin_unlock_irq(&mapping->tree_lock);
495  swapcache_free(swap, page);
496  } else {
497  void (*freepage)(struct page *);
498 
499  freepage = mapping->a_ops->freepage;
500 
502  spin_unlock_irq(&mapping->tree_lock);
504 
505  if (freepage != NULL)
506  freepage(page);
507  }
508 
509  return 1;
510 
511 cannot_free:
512  spin_unlock_irq(&mapping->tree_lock);
513  return 0;
514 }
515 
516 /*
517  * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518  * someone else has a ref on the page, abort and return 0. If it was
519  * successfully detached, return 1. Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524  if (__remove_mapping(mapping, page)) {
525  /*
526  * Unfreezing the refcount with 1 rather than 2 effectively
527  * drops the pagecache ref for us without requiring another
528  * atomic operation.
529  */
530  page_unfreeze_refs(page, 1);
531  return 1;
532  }
533  return 0;
534 }
535 
545 void putback_lru_page(struct page *page)
546 {
547  int lru;
548  int active = !!TestClearPageActive(page);
549  int was_unevictable = PageUnevictable(page);
550 
551  VM_BUG_ON(PageLRU(page));
552 
553 redo:
554  ClearPageUnevictable(page);
555 
556  if (page_evictable(page)) {
557  /*
558  * For evictable pages, we can use the cache.
559  * In event of a race, worst case is we end up with an
560  * unevictable page on [in]active list.
561  * We know how to handle that.
562  */
563  lru = active + page_lru_base_type(page);
564  lru_cache_add_lru(page, lru);
565  } else {
566  /*
567  * Put unevictable pages directly on zone's unevictable
568  * list.
569  */
570  lru = LRU_UNEVICTABLE;
572  /*
573  * When racing with an mlock or AS_UNEVICTABLE clearing
574  * (page is unlocked) make sure that if the other thread
575  * does not observe our setting of PG_lru and fails
576  * isolation/check_move_unevictable_pages,
577  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578  * the page back to the evictable list.
579  *
580  * The other side is TestClearPageMlocked() or shmem_lock().
581  */
582  smp_mb();
583  }
584 
585  /*
586  * page's status can change while we move it among lru. If an evictable
587  * page is on unevictable list, it never be freed. To avoid that,
588  * check after we added it to the list, again.
589  */
590  if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591  if (!isolate_lru_page(page)) {
592  put_page(page);
593  goto redo;
594  }
595  /* This means someone else dropped this page from LRU
596  * So, it will be freed or putback to LRU again. There is
597  * nothing to do here.
598  */
599  }
600 
601  if (was_unevictable && lru != LRU_UNEVICTABLE)
602  count_vm_event(UNEVICTABLE_PGRESCUED);
603  else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604  count_vm_event(UNEVICTABLE_PGCULLED);
605 
606  put_page(page); /* drop ref from isolate */
607 }
608 
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617  struct scan_control *sc)
618 {
619  int referenced_ptes, referenced_page;
620  unsigned long vm_flags;
621 
622  referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623  &vm_flags);
624  referenced_page = TestClearPageReferenced(page);
625 
626  /*
627  * Mlock lost the isolation race with us. Let try_to_unmap()
628  * move the page to the unevictable list.
629  */
630  if (vm_flags & VM_LOCKED)
631  return PAGEREF_RECLAIM;
632 
633  if (referenced_ptes) {
634  if (PageSwapBacked(page))
635  return PAGEREF_ACTIVATE;
636  /*
637  * All mapped pages start out with page table
638  * references from the instantiating fault, so we need
639  * to look twice if a mapped file page is used more
640  * than once.
641  *
642  * Mark it and spare it for another trip around the
643  * inactive list. Another page table reference will
644  * lead to its activation.
645  *
646  * Note: the mark is set for activated pages as well
647  * so that recently deactivated but used pages are
648  * quickly recovered.
649  */
650  SetPageReferenced(page);
651 
652  if (referenced_page || referenced_ptes > 1)
653  return PAGEREF_ACTIVATE;
654 
655  /*
656  * Activate file-backed executable pages after first usage.
657  */
658  if (vm_flags & VM_EXEC)
659  return PAGEREF_ACTIVATE;
660 
661  return PAGEREF_KEEP;
662  }
663 
664  /* Reclaim if clean, defer dirty pages to writeback */
665  if (referenced_page && !PageSwapBacked(page))
666  return PAGEREF_RECLAIM_CLEAN;
667 
668  return PAGEREF_RECLAIM;
669 }
670 
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675  struct zone *zone,
676  struct scan_control *sc,
677  enum ttu_flags ttu_flags,
678  unsigned long *ret_nr_dirty,
679  unsigned long *ret_nr_writeback,
680  bool force_reclaim)
681 {
682  LIST_HEAD(ret_pages);
684  int pgactivate = 0;
685  unsigned long nr_dirty = 0;
686  unsigned long nr_congested = 0;
687  unsigned long nr_reclaimed = 0;
688  unsigned long nr_writeback = 0;
689 
690  cond_resched();
691 
693  while (!list_empty(page_list)) {
694  struct address_space *mapping;
695  struct page *page;
696  int may_enter_fs;
697  enum page_references references = PAGEREF_RECLAIM_CLEAN;
698 
699  cond_resched();
700 
701  page = lru_to_page(page_list);
702  list_del(&page->lru);
703 
704  if (!trylock_page(page))
705  goto keep;
706 
707  VM_BUG_ON(PageActive(page));
708  VM_BUG_ON(page_zone(page) != zone);
709 
710  sc->nr_scanned++;
711 
712  if (unlikely(!page_evictable(page)))
713  goto cull_mlocked;
714 
715  if (!sc->may_unmap && page_mapped(page))
716  goto keep_locked;
717 
718  /* Double the slab pressure for mapped and swapcache pages */
719  if (page_mapped(page) || PageSwapCache(page))
720  sc->nr_scanned++;
721 
722  may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723  (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724 
725  if (PageWriteback(page)) {
726  /*
727  * memcg doesn't have any dirty pages throttling so we
728  * could easily OOM just because too many pages are in
729  * writeback and there is nothing else to reclaim.
730  *
731  * Check __GFP_IO, certainly because a loop driver
732  * thread might enter reclaim, and deadlock if it waits
733  * on a page for which it is needed to do the write
734  * (loop masks off __GFP_IO|__GFP_FS for this reason);
735  * but more thought would probably show more reasons.
736  *
737  * Don't require __GFP_FS, since we're not going into
738  * the FS, just waiting on its writeback completion.
739  * Worryingly, ext4 gfs2 and xfs allocate pages with
740  * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741  * testing may_enter_fs here is liable to OOM on them.
742  */
743  if (global_reclaim(sc) ||
744  !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745  /*
746  * This is slightly racy - end_page_writeback()
747  * might have just cleared PageReclaim, then
748  * setting PageReclaim here end up interpreted
749  * as PageReadahead - but that does not matter
750  * enough to care. What we do want is for this
751  * page to have PageReclaim set next time memcg
752  * reclaim reaches the tests above, so it will
753  * then wait_on_page_writeback() to avoid OOM;
754  * and it's also appropriate in global reclaim.
755  */
756  SetPageReclaim(page);
757  nr_writeback++;
758  goto keep_locked;
759  }
760  wait_on_page_writeback(page);
761  }
762 
763  if (!force_reclaim)
764  references = page_check_references(page, sc);
765 
766  switch (references) {
767  case PAGEREF_ACTIVATE:
768  goto activate_locked;
769  case PAGEREF_KEEP:
770  goto keep_locked;
771  case PAGEREF_RECLAIM:
773  ; /* try to reclaim the page below */
774  }
775 
776  /*
777  * Anonymous process memory has backing store?
778  * Try to allocate it some swap space here.
779  */
780  if (PageAnon(page) && !PageSwapCache(page)) {
781  if (!(sc->gfp_mask & __GFP_IO))
782  goto keep_locked;
783  if (!add_to_swap(page))
784  goto activate_locked;
785  may_enter_fs = 1;
786  }
787 
788  mapping = page_mapping(page);
789 
790  /*
791  * The page is mapped into the page tables of one or more
792  * processes. Try to unmap it here.
793  */
794  if (page_mapped(page) && mapping) {
795  switch (try_to_unmap(page, ttu_flags)) {
796  case SWAP_FAIL:
797  goto activate_locked;
798  case SWAP_AGAIN:
799  goto keep_locked;
800  case SWAP_MLOCK:
801  goto cull_mlocked;
802  case SWAP_SUCCESS:
803  ; /* try to free the page below */
804  }
805  }
806 
807  if (PageDirty(page)) {
808  nr_dirty++;
809 
810  /*
811  * Only kswapd can writeback filesystem pages to
812  * avoid risk of stack overflow but do not writeback
813  * unless under significant pressure.
814  */
815  if (page_is_file_cache(page) &&
816  (!current_is_kswapd() ||
817  sc->priority >= DEF_PRIORITY - 2)) {
818  /*
819  * Immediately reclaim when written back.
820  * Similar in principal to deactivate_page()
821  * except we already have the page isolated
822  * and know it's dirty
823  */
825  SetPageReclaim(page);
826 
827  goto keep_locked;
828  }
829 
830  if (references == PAGEREF_RECLAIM_CLEAN)
831  goto keep_locked;
832  if (!may_enter_fs)
833  goto keep_locked;
834  if (!sc->may_writepage)
835  goto keep_locked;
836 
837  /* Page is dirty, try to write it out here */
838  switch (pageout(page, mapping, sc)) {
839  case PAGE_KEEP:
840  nr_congested++;
841  goto keep_locked;
842  case PAGE_ACTIVATE:
843  goto activate_locked;
844  case PAGE_SUCCESS:
845  if (PageWriteback(page))
846  goto keep;
847  if (PageDirty(page))
848  goto keep;
849 
850  /*
851  * A synchronous write - probably a ramdisk. Go
852  * ahead and try to reclaim the page.
853  */
854  if (!trylock_page(page))
855  goto keep;
856  if (PageDirty(page) || PageWriteback(page))
857  goto keep_locked;
858  mapping = page_mapping(page);
859  case PAGE_CLEAN:
860  ; /* try to free the page below */
861  }
862  }
863 
864  /*
865  * If the page has buffers, try to free the buffer mappings
866  * associated with this page. If we succeed we try to free
867  * the page as well.
868  *
869  * We do this even if the page is PageDirty().
870  * try_to_release_page() does not perform I/O, but it is
871  * possible for a page to have PageDirty set, but it is actually
872  * clean (all its buffers are clean). This happens if the
873  * buffers were written out directly, with submit_bh(). ext3
874  * will do this, as well as the blockdev mapping.
875  * try_to_release_page() will discover that cleanness and will
876  * drop the buffers and mark the page clean - it can be freed.
877  *
878  * Rarely, pages can have buffers and no ->mapping. These are
879  * the pages which were not successfully invalidated in
880  * truncate_complete_page(). We try to drop those buffers here
881  * and if that worked, and the page is no longer mapped into
882  * process address space (page_count == 1) it can be freed.
883  * Otherwise, leave the page on the LRU so it is swappable.
884  */
885  if (page_has_private(page)) {
886  if (!try_to_release_page(page, sc->gfp_mask))
887  goto activate_locked;
888  if (!mapping && page_count(page) == 1) {
889  unlock_page(page);
890  if (put_page_testzero(page))
891  goto free_it;
892  else {
893  /*
894  * rare race with speculative reference.
895  * the speculative reference will free
896  * this page shortly, so we may
897  * increment nr_reclaimed here (and
898  * leave it off the LRU).
899  */
900  nr_reclaimed++;
901  continue;
902  }
903  }
904  }
905 
906  if (!mapping || !__remove_mapping(mapping, page))
907  goto keep_locked;
908 
909  /*
910  * At this point, we have no other references and there is
911  * no way to pick any more up (removed from LRU, removed
912  * from pagecache). Can use non-atomic bitops now (and
913  * we obviously don't have to worry about waking up a process
914  * waiting on the page lock, because there are no references.
915  */
916  __clear_page_locked(page);
917 free_it:
918  nr_reclaimed++;
919 
920  /*
921  * Is there need to periodically free_page_list? It would
922  * appear not as the counts should be low
923  */
924  list_add(&page->lru, &free_pages);
925  continue;
926 
927 cull_mlocked:
928  if (PageSwapCache(page))
929  try_to_free_swap(page);
930  unlock_page(page);
931  putback_lru_page(page);
932  continue;
933 
934 activate_locked:
935  /* Not a candidate for swapping, so reclaim swap space. */
936  if (PageSwapCache(page) && vm_swap_full())
937  try_to_free_swap(page);
938  VM_BUG_ON(PageActive(page));
939  SetPageActive(page);
940  pgactivate++;
941 keep_locked:
942  unlock_page(page);
943 keep:
944  list_add(&page->lru, &ret_pages);
945  VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
946  }
947 
948  /*
949  * Tag a zone as congested if all the dirty pages encountered were
950  * backed by a congested BDI. In this case, reclaimers should just
951  * back off and wait for congestion to clear because further reclaim
952  * will encounter the same problem
953  */
954  if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955  zone_set_flag(zone, ZONE_CONGESTED);
956 
958 
959  list_splice(&ret_pages, page_list);
960  count_vm_events(PGACTIVATE, pgactivate);
962  *ret_nr_dirty += nr_dirty;
963  *ret_nr_writeback += nr_writeback;
964  return nr_reclaimed;
965 }
966 
967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968  struct list_head *page_list)
969 {
970  struct scan_control sc = {
971  .gfp_mask = GFP_KERNEL,
972  .priority = DEF_PRIORITY,
973  .may_unmap = 1,
974  };
975  unsigned long ret, dummy1, dummy2;
976  struct page *page, *next;
977  LIST_HEAD(clean_pages);
978 
979  list_for_each_entry_safe(page, next, page_list, lru) {
980  if (page_is_file_cache(page) && !PageDirty(page)) {
981  ClearPageActive(page);
982  list_move(&page->lru, &clean_pages);
983  }
984  }
985 
986  ret = shrink_page_list(&clean_pages, zone, &sc,
988  &dummy1, &dummy2, true);
989  list_splice(&clean_pages, page_list);
990  __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991  return ret;
992 }
993 
994 /*
995  * Attempt to remove the specified page from its LRU. Only take this page
996  * if it is of the appropriate PageActive status. Pages which are being
997  * freed elsewhere are also ignored.
998  *
999  * page: page to consider
1000  * mode: one of the LRU isolation modes defined above
1001  *
1002  * returns 0 on success, -ve errno on failure.
1003  */
1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1005 {
1006  int ret = -EINVAL;
1007 
1008  /* Only take pages on the LRU. */
1009  if (!PageLRU(page))
1010  return ret;
1011 
1012  /* Compaction should not handle unevictable pages but CMA can do so */
1013  if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1014  return ret;
1015 
1016  ret = -EBUSY;
1017 
1018  /*
1019  * To minimise LRU disruption, the caller can indicate that it only
1020  * wants to isolate pages it will be able to operate on without
1021  * blocking - clean pages for the most part.
1022  *
1023  * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024  * is used by reclaim when it is cannot write to backing storage
1025  *
1026  * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027  * that it is possible to migrate without blocking
1028  */
1029  if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030  /* All the caller can do on PageWriteback is block */
1031  if (PageWriteback(page))
1032  return ret;
1033 
1034  if (PageDirty(page)) {
1035  struct address_space *mapping;
1036 
1037  /* ISOLATE_CLEAN means only clean pages */
1038  if (mode & ISOLATE_CLEAN)
1039  return ret;
1040 
1041  /*
1042  * Only pages without mappings or that have a
1043  * ->migratepage callback are possible to migrate
1044  * without blocking
1045  */
1046  mapping = page_mapping(page);
1047  if (mapping && !mapping->a_ops->migratepage)
1048  return ret;
1049  }
1050  }
1051 
1052  if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053  return ret;
1054 
1055  if (likely(get_page_unless_zero(page))) {
1056  /*
1057  * Be careful not to clear PageLRU until after we're
1058  * sure the page is not being freed elsewhere -- the
1059  * page release code relies on it.
1060  */
1061  ClearPageLRU(page);
1062  ret = 0;
1063  }
1064 
1065  return ret;
1066 }
1067 
1068 /*
1069  * zone->lru_lock is heavily contended. Some of the functions that
1070  * shrink the lists perform better by taking out a batch of pages
1071  * and working on them outside the LRU lock.
1072  *
1073  * For pagecache intensive workloads, this function is the hottest
1074  * spot in the kernel (apart from copy_*_user functions).
1075  *
1076  * Appropriate locks must be held before calling this function.
1077  *
1078  * @nr_to_scan: The number of pages to look through on the list.
1079  * @lruvec: The LRU vector to pull pages from.
1080  * @dst: The temp list to put pages on to.
1081  * @nr_scanned: The number of pages that were scanned.
1082  * @sc: The scan_control struct for this reclaim session
1083  * @mode: One of the LRU isolation modes
1084  * @lru: LRU list id for isolating
1085  *
1086  * returns how many pages were moved onto *@dst.
1087  */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089  struct lruvec *lruvec, struct list_head *dst,
1090  unsigned long *nr_scanned, struct scan_control *sc,
1091  isolate_mode_t mode, enum lru_list lru)
1092 {
1093  struct list_head *src = &lruvec->lists[lru];
1094  unsigned long nr_taken = 0;
1095  unsigned long scan;
1096 
1097  for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1098  struct page *page;
1099  int nr_pages;
1100 
1101  page = lru_to_page(src);
1102  prefetchw_prev_lru_page(page, src, flags);
1103 
1104  VM_BUG_ON(!PageLRU(page));
1105 
1106  switch (__isolate_lru_page(page, mode)) {
1107  case 0:
1108  nr_pages = hpage_nr_pages(page);
1109  mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1110  list_move(&page->lru, dst);
1111  nr_taken += nr_pages;
1112  break;
1113 
1114  case -EBUSY:
1115  /* else it is being freed elsewhere */
1116  list_move(&page->lru, src);
1117  continue;
1118 
1119  default:
1120  BUG();
1121  }
1122  }
1123 
1124  *nr_scanned = scan;
1125  trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126  nr_taken, mode, is_file_lru(lru));
1127  return nr_taken;
1128 }
1129 
1155 int isolate_lru_page(struct page *page)
1156 {
1157  int ret = -EBUSY;
1158 
1159  VM_BUG_ON(!page_count(page));
1160 
1161  if (PageLRU(page)) {
1162  struct zone *zone = page_zone(page);
1163  struct lruvec *lruvec;
1164 
1165  spin_lock_irq(&zone->lru_lock);
1166  lruvec = mem_cgroup_page_lruvec(page, zone);
1167  if (PageLRU(page)) {
1168  int lru = page_lru(page);
1169  get_page(page);
1170  ClearPageLRU(page);
1171  del_page_from_lru_list(page, lruvec, lru);
1172  ret = 0;
1173  }
1174  spin_unlock_irq(&zone->lru_lock);
1175  }
1176  return ret;
1177 }
1178 
1179 /*
1180  * Are there way too many processes in the direct reclaim path already?
1181  */
1182 static int too_many_isolated(struct zone *zone, int file,
1183  struct scan_control *sc)
1184 {
1185  unsigned long inactive, isolated;
1186 
1187  if (current_is_kswapd())
1188  return 0;
1189 
1190  if (!global_reclaim(sc))
1191  return 0;
1192 
1193  if (file) {
1194  inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1195  isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1196  } else {
1197  inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1198  isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1199  }
1200 
1201  return isolated > inactive;
1202 }
1203 
1204 static noinline_for_stack void
1205 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1206 {
1207  struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1208  struct zone *zone = lruvec_zone(lruvec);
1209  LIST_HEAD(pages_to_free);
1210 
1211  /*
1212  * Put back any unfreeable pages.
1213  */
1214  while (!list_empty(page_list)) {
1215  struct page *page = lru_to_page(page_list);
1216  int lru;
1217 
1218  VM_BUG_ON(PageLRU(page));
1219  list_del(&page->lru);
1220  if (unlikely(!page_evictable(page))) {
1221  spin_unlock_irq(&zone->lru_lock);
1222  putback_lru_page(page);
1223  spin_lock_irq(&zone->lru_lock);
1224  continue;
1225  }
1226 
1227  lruvec = mem_cgroup_page_lruvec(page, zone);
1228 
1229  SetPageLRU(page);
1230  lru = page_lru(page);
1231  add_page_to_lru_list(page, lruvec, lru);
1232 
1233  if (is_active_lru(lru)) {
1234  int file = is_file_lru(lru);
1235  int numpages = hpage_nr_pages(page);
1236  reclaim_stat->recent_rotated[file] += numpages;
1237  }
1238  if (put_page_testzero(page)) {
1239  __ClearPageLRU(page);
1240  __ClearPageActive(page);
1241  del_page_from_lru_list(page, lruvec, lru);
1242 
1243  if (unlikely(PageCompound(page))) {
1244  spin_unlock_irq(&zone->lru_lock);
1245  (*get_compound_page_dtor(page))(page);
1246  spin_lock_irq(&zone->lru_lock);
1247  } else
1248  list_add(&page->lru, &pages_to_free);
1249  }
1250  }
1251 
1252  /*
1253  * To save our caller's stack, now use input list for pages to free.
1254  */
1255  list_splice(&pages_to_free, page_list);
1256 }
1257 
1258 /*
1259  * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1260  * of reclaimed pages
1261  */
1262 static noinline_for_stack unsigned long
1263 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1264  struct scan_control *sc, enum lru_list lru)
1265 {
1266  LIST_HEAD(page_list);
1267  unsigned long nr_scanned;
1268  unsigned long nr_reclaimed = 0;
1269  unsigned long nr_taken;
1270  unsigned long nr_dirty = 0;
1271  unsigned long nr_writeback = 0;
1272  isolate_mode_t isolate_mode = 0;
1273  int file = is_file_lru(lru);
1274  struct zone *zone = lruvec_zone(lruvec);
1275  struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1276 
1277  while (unlikely(too_many_isolated(zone, file, sc))) {
1279 
1280  /* We are about to die and free our memory. Return now. */
1281  if (fatal_signal_pending(current))
1282  return SWAP_CLUSTER_MAX;
1283  }
1284 
1285  lru_add_drain();
1286 
1287  if (!sc->may_unmap)
1288  isolate_mode |= ISOLATE_UNMAPPED;
1289  if (!sc->may_writepage)
1290  isolate_mode |= ISOLATE_CLEAN;
1291 
1292  spin_lock_irq(&zone->lru_lock);
1293 
1294  nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1295  &nr_scanned, sc, isolate_mode, lru);
1296 
1297  __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1298  __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1299 
1300  if (global_reclaim(sc)) {
1301  zone->pages_scanned += nr_scanned;
1302  if (current_is_kswapd())
1303  __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1304  else
1305  __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1306  }
1307  spin_unlock_irq(&zone->lru_lock);
1308 
1309  if (nr_taken == 0)
1310  return 0;
1311 
1312  nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1313  &nr_dirty, &nr_writeback, false);
1314 
1315  spin_lock_irq(&zone->lru_lock);
1316 
1317  reclaim_stat->recent_scanned[file] += nr_taken;
1318 
1319  if (global_reclaim(sc)) {
1320  if (current_is_kswapd())
1321  __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1322  nr_reclaimed);
1323  else
1324  __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1325  nr_reclaimed);
1326  }
1327 
1328  putback_inactive_pages(lruvec, &page_list);
1329 
1330  __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1331 
1332  spin_unlock_irq(&zone->lru_lock);
1333 
1334  free_hot_cold_page_list(&page_list, 1);
1335 
1336  /*
1337  * If reclaim is isolating dirty pages under writeback, it implies
1338  * that the long-lived page allocation rate is exceeding the page
1339  * laundering rate. Either the global limits are not being effective
1340  * at throttling processes due to the page distribution throughout
1341  * zones or there is heavy usage of a slow backing device. The
1342  * only option is to throttle from reclaim context which is not ideal
1343  * as there is no guarantee the dirtying process is throttled in the
1344  * same way balance_dirty_pages() manages.
1345  *
1346  * This scales the number of dirty pages that must be under writeback
1347  * before throttling depending on priority. It is a simple backoff
1348  * function that has the most effect in the range DEF_PRIORITY to
1349  * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1350  * in trouble and reclaim is considered to be in trouble.
1351  *
1352  * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1353  * DEF_PRIORITY-1 50% must be PageWriteback
1354  * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1355  * ...
1356  * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1357  * isolated page is PageWriteback
1358  */
1359  if (nr_writeback && nr_writeback >=
1360  (nr_taken >> (DEF_PRIORITY - sc->priority)))
1361  wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1362 
1363  trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1364  zone_idx(zone),
1365  nr_scanned, nr_reclaimed,
1366  sc->priority,
1367  trace_shrink_flags(file));
1368  return nr_reclaimed;
1369 }
1370 
1371 /*
1372  * This moves pages from the active list to the inactive list.
1373  *
1374  * We move them the other way if the page is referenced by one or more
1375  * processes, from rmap.
1376  *
1377  * If the pages are mostly unmapped, the processing is fast and it is
1378  * appropriate to hold zone->lru_lock across the whole operation. But if
1379  * the pages are mapped, the processing is slow (page_referenced()) so we
1380  * should drop zone->lru_lock around each page. It's impossible to balance
1381  * this, so instead we remove the pages from the LRU while processing them.
1382  * It is safe to rely on PG_active against the non-LRU pages in here because
1383  * nobody will play with that bit on a non-LRU page.
1384  *
1385  * The downside is that we have to touch page->_count against each page.
1386  * But we had to alter page->flags anyway.
1387  */
1388 
1389 static void move_active_pages_to_lru(struct lruvec *lruvec,
1390  struct list_head *list,
1391  struct list_head *pages_to_free,
1392  enum lru_list lru)
1393 {
1394  struct zone *zone = lruvec_zone(lruvec);
1395  unsigned long pgmoved = 0;
1396  struct page *page;
1397  int nr_pages;
1398 
1399  while (!list_empty(list)) {
1400  page = lru_to_page(list);
1401  lruvec = mem_cgroup_page_lruvec(page, zone);
1402 
1403  VM_BUG_ON(PageLRU(page));
1404  SetPageLRU(page);
1405 
1406  nr_pages = hpage_nr_pages(page);
1407  mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1408  list_move(&page->lru, &lruvec->lists[lru]);
1409  pgmoved += nr_pages;
1410 
1411  if (put_page_testzero(page)) {
1412  __ClearPageLRU(page);
1413  __ClearPageActive(page);
1414  del_page_from_lru_list(page, lruvec, lru);
1415 
1416  if (unlikely(PageCompound(page))) {
1417  spin_unlock_irq(&zone->lru_lock);
1418  (*get_compound_page_dtor(page))(page);
1419  spin_lock_irq(&zone->lru_lock);
1420  } else
1421  list_add(&page->lru, pages_to_free);
1422  }
1423  }
1424  __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1425  if (!is_active_lru(lru))
1426  __count_vm_events(PGDEACTIVATE, pgmoved);
1427 }
1428 
1429 static void shrink_active_list(unsigned long nr_to_scan,
1430  struct lruvec *lruvec,
1431  struct scan_control *sc,
1432  enum lru_list lru)
1433 {
1434  unsigned long nr_taken;
1435  unsigned long nr_scanned;
1436  unsigned long vm_flags;
1437  LIST_HEAD(l_hold); /* The pages which were snipped off */
1438  LIST_HEAD(l_active);
1439  LIST_HEAD(l_inactive);
1440  struct page *page;
1441  struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1442  unsigned long nr_rotated = 0;
1443  isolate_mode_t isolate_mode = 0;
1444  int file = is_file_lru(lru);
1445  struct zone *zone = lruvec_zone(lruvec);
1446 
1447  lru_add_drain();
1448 
1449  if (!sc->may_unmap)
1450  isolate_mode |= ISOLATE_UNMAPPED;
1451  if (!sc->may_writepage)
1452  isolate_mode |= ISOLATE_CLEAN;
1453 
1454  spin_lock_irq(&zone->lru_lock);
1455 
1456  nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1457  &nr_scanned, sc, isolate_mode, lru);
1458  if (global_reclaim(sc))
1459  zone->pages_scanned += nr_scanned;
1460 
1461  reclaim_stat->recent_scanned[file] += nr_taken;
1462 
1463  __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1464  __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1465  __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1466  spin_unlock_irq(&zone->lru_lock);
1467 
1468  while (!list_empty(&l_hold)) {
1469  cond_resched();
1470  page = lru_to_page(&l_hold);
1471  list_del(&page->lru);
1472 
1473  if (unlikely(!page_evictable(page))) {
1474  putback_lru_page(page);
1475  continue;
1476  }
1477 
1479  if (page_has_private(page) && trylock_page(page)) {
1480  if (page_has_private(page))
1481  try_to_release_page(page, 0);
1482  unlock_page(page);
1483  }
1484  }
1485 
1486  if (page_referenced(page, 0, sc->target_mem_cgroup,
1487  &vm_flags)) {
1488  nr_rotated += hpage_nr_pages(page);
1489  /*
1490  * Identify referenced, file-backed active pages and
1491  * give them one more trip around the active list. So
1492  * that executable code get better chances to stay in
1493  * memory under moderate memory pressure. Anon pages
1494  * are not likely to be evicted by use-once streaming
1495  * IO, plus JVM can create lots of anon VM_EXEC pages,
1496  * so we ignore them here.
1497  */
1498  if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1499  list_add(&page->lru, &l_active);
1500  continue;
1501  }
1502  }
1503 
1504  ClearPageActive(page); /* we are de-activating */
1505  list_add(&page->lru, &l_inactive);
1506  }
1507 
1508  /*
1509  * Move pages back to the lru list.
1510  */
1511  spin_lock_irq(&zone->lru_lock);
1512  /*
1513  * Count referenced pages from currently used mappings as rotated,
1514  * even though only some of them are actually re-activated. This
1515  * helps balance scan pressure between file and anonymous pages in
1516  * get_scan_ratio.
1517  */
1518  reclaim_stat->recent_rotated[file] += nr_rotated;
1519 
1520  move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1521  move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1522  __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1523  spin_unlock_irq(&zone->lru_lock);
1524 
1525  free_hot_cold_page_list(&l_hold, 1);
1526 }
1527 
1528 #ifdef CONFIG_SWAP
1529 static int inactive_anon_is_low_global(struct zone *zone)
1530 {
1531  unsigned long active, inactive;
1532 
1533  active = zone_page_state(zone, NR_ACTIVE_ANON);
1534  inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1535 
1536  if (inactive * zone->inactive_ratio < active)
1537  return 1;
1538 
1539  return 0;
1540 }
1541 
1549 static int inactive_anon_is_low(struct lruvec *lruvec)
1550 {
1551  /*
1552  * If we don't have swap space, anonymous page deactivation
1553  * is pointless.
1554  */
1555  if (!total_swap_pages)
1556  return 0;
1557 
1558  if (!mem_cgroup_disabled())
1559  return mem_cgroup_inactive_anon_is_low(lruvec);
1560 
1561  return inactive_anon_is_low_global(lruvec_zone(lruvec));
1562 }
1563 #else
1564 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1565 {
1566  return 0;
1567 }
1568 #endif
1569 
1570 static int inactive_file_is_low_global(struct zone *zone)
1571 {
1572  unsigned long active, inactive;
1573 
1574  active = zone_page_state(zone, NR_ACTIVE_FILE);
1575  inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1576 
1577  return (active > inactive);
1578 }
1579 
1594 static int inactive_file_is_low(struct lruvec *lruvec)
1595 {
1596  if (!mem_cgroup_disabled())
1597  return mem_cgroup_inactive_file_is_low(lruvec);
1598 
1599  return inactive_file_is_low_global(lruvec_zone(lruvec));
1600 }
1601 
1602 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1603 {
1604  if (is_file_lru(lru))
1605  return inactive_file_is_low(lruvec);
1606  else
1607  return inactive_anon_is_low(lruvec);
1608 }
1609 
1610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1611  struct lruvec *lruvec, struct scan_control *sc)
1612 {
1613  if (is_active_lru(lru)) {
1614  if (inactive_list_is_low(lruvec, lru))
1615  shrink_active_list(nr_to_scan, lruvec, sc, lru);
1616  return 0;
1617  }
1618 
1619  return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1620 }
1621 
1622 static int vmscan_swappiness(struct scan_control *sc)
1623 {
1624  if (global_reclaim(sc))
1625  return vm_swappiness;
1627 }
1628 
1629 /*
1630  * Determine how aggressively the anon and file LRU lists should be
1631  * scanned. The relative value of each set of LRU lists is determined
1632  * by looking at the fraction of the pages scanned we did rotate back
1633  * onto the active list instead of evict.
1634  *
1635  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1636  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1637  */
1638 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1639  unsigned long *nr)
1640 {
1641  unsigned long anon, file, free;
1642  unsigned long anon_prio, file_prio;
1643  unsigned long ap, fp;
1644  struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1645  u64 fraction[2], denominator;
1646  enum lru_list lru;
1647  int noswap = 0;
1648  bool force_scan = false;
1649  struct zone *zone = lruvec_zone(lruvec);
1650 
1651  /*
1652  * If the zone or memcg is small, nr[l] can be 0. This
1653  * results in no scanning on this priority and a potential
1654  * priority drop. Global direct reclaim can go to the next
1655  * zone and tends to have no problems. Global kswapd is for
1656  * zone balancing and it needs to scan a minimum amount. When
1657  * reclaiming for a memcg, a priority drop can cause high
1658  * latencies, so it's better to scan a minimum amount there as
1659  * well.
1660  */
1661  if (current_is_kswapd() && zone->all_unreclaimable)
1662  force_scan = true;
1663  if (!global_reclaim(sc))
1664  force_scan = true;
1665 
1666  /* If we have no swap space, do not bother scanning anon pages. */
1667  if (!sc->may_swap || (nr_swap_pages <= 0)) {
1668  noswap = 1;
1669  fraction[0] = 0;
1670  fraction[1] = 1;
1671  denominator = 1;
1672  goto out;
1673  }
1674 
1675  anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1676  get_lru_size(lruvec, LRU_INACTIVE_ANON);
1677  file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1678  get_lru_size(lruvec, LRU_INACTIVE_FILE);
1679 
1680  if (global_reclaim(sc)) {
1681  free = zone_page_state(zone, NR_FREE_PAGES);
1682  /* If we have very few page cache pages,
1683  force-scan anon pages. */
1684  if (unlikely(file + free <= high_wmark_pages(zone))) {
1685  fraction[0] = 1;
1686  fraction[1] = 0;
1687  denominator = 1;
1688  goto out;
1689  }
1690  }
1691 
1692  /*
1693  * With swappiness at 100, anonymous and file have the same priority.
1694  * This scanning priority is essentially the inverse of IO cost.
1695  */
1696  anon_prio = vmscan_swappiness(sc);
1697  file_prio = 200 - anon_prio;
1698 
1699  /*
1700  * OK, so we have swap space and a fair amount of page cache
1701  * pages. We use the recently rotated / recently scanned
1702  * ratios to determine how valuable each cache is.
1703  *
1704  * Because workloads change over time (and to avoid overflow)
1705  * we keep these statistics as a floating average, which ends
1706  * up weighing recent references more than old ones.
1707  *
1708  * anon in [0], file in [1]
1709  */
1710  spin_lock_irq(&zone->lru_lock);
1711  if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1712  reclaim_stat->recent_scanned[0] /= 2;
1713  reclaim_stat->recent_rotated[0] /= 2;
1714  }
1715 
1716  if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1717  reclaim_stat->recent_scanned[1] /= 2;
1718  reclaim_stat->recent_rotated[1] /= 2;
1719  }
1720 
1721  /*
1722  * The amount of pressure on anon vs file pages is inversely
1723  * proportional to the fraction of recently scanned pages on
1724  * each list that were recently referenced and in active use.
1725  */
1726  ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1727  ap /= reclaim_stat->recent_rotated[0] + 1;
1728 
1729  fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1730  fp /= reclaim_stat->recent_rotated[1] + 1;
1731  spin_unlock_irq(&zone->lru_lock);
1732 
1733  fraction[0] = ap;
1734  fraction[1] = fp;
1735  denominator = ap + fp + 1;
1736 out:
1737  for_each_evictable_lru(lru) {
1738  int file = is_file_lru(lru);
1739  unsigned long scan;
1740 
1741  scan = get_lru_size(lruvec, lru);
1742  if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1743  scan >>= sc->priority;
1744  if (!scan && force_scan)
1745  scan = SWAP_CLUSTER_MAX;
1746  scan = div64_u64(scan * fraction[file], denominator);
1747  }
1748  nr[lru] = scan;
1749  }
1750 }
1751 
1752 /* Use reclaim/compaction for costly allocs or under memory pressure */
1753 static bool in_reclaim_compaction(struct scan_control *sc)
1754 {
1755  if (COMPACTION_BUILD && sc->order &&
1756  (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1757  sc->priority < DEF_PRIORITY - 2))
1758  return true;
1759 
1760  return false;
1761 }
1762 
1763 /*
1764  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1765  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1766  * true if more pages should be reclaimed such that when the page allocator
1767  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1768  * It will give up earlier than that if there is difficulty reclaiming pages.
1769  */
1770 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1771  unsigned long nr_reclaimed,
1772  unsigned long nr_scanned,
1773  struct scan_control *sc)
1774 {
1775  unsigned long pages_for_compaction;
1776  unsigned long inactive_lru_pages;
1777 
1778  /* If not in reclaim/compaction mode, stop */
1779  if (!in_reclaim_compaction(sc))
1780  return false;
1781 
1782  /* Consider stopping depending on scan and reclaim activity */
1783  if (sc->gfp_mask & __GFP_REPEAT) {
1784  /*
1785  * For __GFP_REPEAT allocations, stop reclaiming if the
1786  * full LRU list has been scanned and we are still failing
1787  * to reclaim pages. This full LRU scan is potentially
1788  * expensive but a __GFP_REPEAT caller really wants to succeed
1789  */
1790  if (!nr_reclaimed && !nr_scanned)
1791  return false;
1792  } else {
1793  /*
1794  * For non-__GFP_REPEAT allocations which can presumably
1795  * fail without consequence, stop if we failed to reclaim
1796  * any pages from the last SWAP_CLUSTER_MAX number of
1797  * pages that were scanned. This will return to the
1798  * caller faster at the risk reclaim/compaction and
1799  * the resulting allocation attempt fails
1800  */
1801  if (!nr_reclaimed)
1802  return false;
1803  }
1804 
1805  /*
1806  * If we have not reclaimed enough pages for compaction and the
1807  * inactive lists are large enough, continue reclaiming
1808  */
1809  pages_for_compaction = (2UL << sc->order);
1810  inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1811  if (nr_swap_pages > 0)
1812  inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1813  if (sc->nr_reclaimed < pages_for_compaction &&
1814  inactive_lru_pages > pages_for_compaction)
1815  return true;
1816 
1817  /* If compaction would go ahead or the allocation would succeed, stop */
1818  switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1819  case COMPACT_PARTIAL:
1820  case COMPACT_CONTINUE:
1821  return false;
1822  default:
1823  return true;
1824  }
1825 }
1826 
1827 /*
1828  * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1829  */
1830 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1831 {
1832  unsigned long nr[NR_LRU_LISTS];
1833  unsigned long nr_to_scan;
1834  enum lru_list lru;
1835  unsigned long nr_reclaimed, nr_scanned;
1836  unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1837  struct blk_plug plug;
1838 
1839 restart:
1840  nr_reclaimed = 0;
1841  nr_scanned = sc->nr_scanned;
1842  get_scan_count(lruvec, sc, nr);
1843 
1844  blk_start_plug(&plug);
1845  while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1846  nr[LRU_INACTIVE_FILE]) {
1847  for_each_evictable_lru(lru) {
1848  if (nr[lru]) {
1849  nr_to_scan = min_t(unsigned long,
1850  nr[lru], SWAP_CLUSTER_MAX);
1851  nr[lru] -= nr_to_scan;
1852 
1853  nr_reclaimed += shrink_list(lru, nr_to_scan,
1854  lruvec, sc);
1855  }
1856  }
1857  /*
1858  * On large memory systems, scan >> priority can become
1859  * really large. This is fine for the starting priority;
1860  * we want to put equal scanning pressure on each zone.
1861  * However, if the VM has a harder time of freeing pages,
1862  * with multiple processes reclaiming pages, the total
1863  * freeing target can get unreasonably large.
1864  */
1865  if (nr_reclaimed >= nr_to_reclaim &&
1866  sc->priority < DEF_PRIORITY)
1867  break;
1868  }
1869  blk_finish_plug(&plug);
1870  sc->nr_reclaimed += nr_reclaimed;
1871 
1872  /*
1873  * Even if we did not try to evict anon pages at all, we want to
1874  * rebalance the anon lru active/inactive ratio.
1875  */
1876  if (inactive_anon_is_low(lruvec))
1877  shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1878  sc, LRU_ACTIVE_ANON);
1879 
1880  /* reclaim/compaction might need reclaim to continue */
1881  if (should_continue_reclaim(lruvec, nr_reclaimed,
1882  sc->nr_scanned - nr_scanned, sc))
1883  goto restart;
1884 
1886 }
1887 
1888 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1889 {
1890  struct mem_cgroup *root = sc->target_mem_cgroup;
1892  .zone = zone,
1893  .priority = sc->priority,
1894  };
1895  struct mem_cgroup *memcg;
1896 
1897  memcg = mem_cgroup_iter(root, NULL, &reclaim);
1898  do {
1899  struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1900 
1901  shrink_lruvec(lruvec, sc);
1902 
1903  /*
1904  * Limit reclaim has historically picked one memcg and
1905  * scanned it with decreasing priority levels until
1906  * nr_to_reclaim had been reclaimed. This priority
1907  * cycle is thus over after a single memcg.
1908  *
1909  * Direct reclaim and kswapd, on the other hand, have
1910  * to scan all memory cgroups to fulfill the overall
1911  * scan target for the zone.
1912  */
1913  if (!global_reclaim(sc)) {
1914  mem_cgroup_iter_break(root, memcg);
1915  break;
1916  }
1917  memcg = mem_cgroup_iter(root, memcg, &reclaim);
1918  } while (memcg);
1919 }
1920 
1921 /* Returns true if compaction should go ahead for a high-order request */
1922 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1923 {
1924  unsigned long balance_gap, watermark;
1925  bool watermark_ok;
1926 
1927  /* Do not consider compaction for orders reclaim is meant to satisfy */
1928  if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1929  return false;
1930 
1931  /*
1932  * Compaction takes time to run and there are potentially other
1933  * callers using the pages just freed. Continue reclaiming until
1934  * there is a buffer of free pages available to give compaction
1935  * a reasonable chance of completing and allocating the page
1936  */
1937  balance_gap = min(low_wmark_pages(zone),
1938  (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1939  KSWAPD_ZONE_BALANCE_GAP_RATIO);
1940  watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1941  watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1942 
1943  /*
1944  * If compaction is deferred, reclaim up to a point where
1945  * compaction will have a chance of success when re-enabled
1946  */
1947  if (compaction_deferred(zone, sc->order))
1948  return watermark_ok;
1949 
1950  /* If compaction is not ready to start, keep reclaiming */
1951  if (!compaction_suitable(zone, sc->order))
1952  return false;
1953 
1954  return watermark_ok;
1955 }
1956 
1957 /*
1958  * This is the direct reclaim path, for page-allocating processes. We only
1959  * try to reclaim pages from zones which will satisfy the caller's allocation
1960  * request.
1961  *
1962  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1963  * Because:
1964  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1965  * allocation or
1966  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1967  * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1968  * zone defense algorithm.
1969  *
1970  * If a zone is deemed to be full of pinned pages then just give it a light
1971  * scan then give up on it.
1972  *
1973  * This function returns true if a zone is being reclaimed for a costly
1974  * high-order allocation and compaction is ready to begin. This indicates to
1975  * the caller that it should consider retrying the allocation instead of
1976  * further reclaim.
1977  */
1978 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1979 {
1980  struct zoneref *z;
1981  struct zone *zone;
1982  unsigned long nr_soft_reclaimed;
1983  unsigned long nr_soft_scanned;
1984  bool aborted_reclaim = false;
1985 
1986  /*
1987  * If the number of buffer_heads in the machine exceeds the maximum
1988  * allowed level, force direct reclaim to scan the highmem zone as
1989  * highmem pages could be pinning lowmem pages storing buffer_heads
1990  */
1992  sc->gfp_mask |= __GFP_HIGHMEM;
1993 
1994  for_each_zone_zonelist_nodemask(zone, z, zonelist,
1995  gfp_zone(sc->gfp_mask), sc->nodemask) {
1996  if (!populated_zone(zone))
1997  continue;
1998  /*
1999  * Take care memory controller reclaiming has small influence
2000  * to global LRU.
2001  */
2002  if (global_reclaim(sc)) {
2003  if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2004  continue;
2005  if (zone->all_unreclaimable &&
2006  sc->priority != DEF_PRIORITY)
2007  continue; /* Let kswapd poll it */
2008  if (COMPACTION_BUILD) {
2009  /*
2010  * If we already have plenty of memory free for
2011  * compaction in this zone, don't free any more.
2012  * Even though compaction is invoked for any
2013  * non-zero order, only frequent costly order
2014  * reclamation is disruptive enough to become a
2015  * noticeable problem, like transparent huge
2016  * page allocations.
2017  */
2018  if (compaction_ready(zone, sc)) {
2019  aborted_reclaim = true;
2020  continue;
2021  }
2022  }
2023  /*
2024  * This steals pages from memory cgroups over softlimit
2025  * and returns the number of reclaimed pages and
2026  * scanned pages. This works for global memory pressure
2027  * and balancing, not for a memcg's limit.
2028  */
2029  nr_soft_scanned = 0;
2030  nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2031  sc->order, sc->gfp_mask,
2032  &nr_soft_scanned);
2033  sc->nr_reclaimed += nr_soft_reclaimed;
2034  sc->nr_scanned += nr_soft_scanned;
2035  /* need some check for avoid more shrink_zone() */
2036  }
2037 
2038  shrink_zone(zone, sc);
2039  }
2040 
2041  return aborted_reclaim;
2042 }
2043 
2044 static bool zone_reclaimable(struct zone *zone)
2045 {
2046  return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2047 }
2048 
2049 /* All zones in zonelist are unreclaimable? */
2050 static bool all_unreclaimable(struct zonelist *zonelist,
2051  struct scan_control *sc)
2052 {
2053  struct zoneref *z;
2054  struct zone *zone;
2055 
2056  for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057  gfp_zone(sc->gfp_mask), sc->nodemask) {
2058  if (!populated_zone(zone))
2059  continue;
2060  if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2061  continue;
2062  if (!zone->all_unreclaimable)
2063  return false;
2064  }
2065 
2066  return true;
2067 }
2068 
2069 /*
2070  * This is the main entry point to direct page reclaim.
2071  *
2072  * If a full scan of the inactive list fails to free enough memory then we
2073  * are "out of memory" and something needs to be killed.
2074  *
2075  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2076  * high - the zone may be full of dirty or under-writeback pages, which this
2077  * caller can't do much about. We kick the writeback threads and take explicit
2078  * naps in the hope that some of these pages can be written. But if the
2079  * allocating task holds filesystem locks which prevent writeout this might not
2080  * work, and the allocation attempt will fail.
2081  *
2082  * returns: 0, if no pages reclaimed
2083  * else, the number of pages reclaimed
2084  */
2085 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2086  struct scan_control *sc,
2087  struct shrink_control *shrink)
2088 {
2089  unsigned long total_scanned = 0;
2090  struct reclaim_state *reclaim_state = current->reclaim_state;
2091  struct zoneref *z;
2092  struct zone *zone;
2093  unsigned long writeback_threshold;
2094  bool aborted_reclaim;
2095 
2096  delayacct_freepages_start();
2097 
2098  if (global_reclaim(sc))
2099  count_vm_event(ALLOCSTALL);
2100 
2101  do {
2102  sc->nr_scanned = 0;
2103  aborted_reclaim = shrink_zones(zonelist, sc);
2104 
2105  /*
2106  * Don't shrink slabs when reclaiming memory from
2107  * over limit cgroups
2108  */
2109  if (global_reclaim(sc)) {
2110  unsigned long lru_pages = 0;
2111  for_each_zone_zonelist(zone, z, zonelist,
2112  gfp_zone(sc->gfp_mask)) {
2113  if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2114  continue;
2115 
2116  lru_pages += zone_reclaimable_pages(zone);
2117  }
2118 
2119  shrink_slab(shrink, sc->nr_scanned, lru_pages);
2120  if (reclaim_state) {
2121  sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2122  reclaim_state->reclaimed_slab = 0;
2123  }
2124  }
2125  total_scanned += sc->nr_scanned;
2126  if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2127  goto out;
2128 
2129  /*
2130  * Try to write back as many pages as we just scanned. This
2131  * tends to cause slow streaming writers to write data to the
2132  * disk smoothly, at the dirtying rate, which is nice. But
2133  * that's undesirable in laptop mode, where we *want* lumpy
2134  * writeout. So in laptop mode, write out the whole world.
2135  */
2136  writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2137  if (total_scanned > writeback_threshold) {
2138  wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2140  sc->may_writepage = 1;
2141  }
2142 
2143  /* Take a nap, wait for some writeback to complete */
2144  if (!sc->hibernation_mode && sc->nr_scanned &&
2145  sc->priority < DEF_PRIORITY - 2) {
2146  struct zone *preferred_zone;
2147 
2148  first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2150  &preferred_zone);
2151  wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2152  }
2153  } while (--sc->priority >= 0);
2154 
2155 out:
2156  delayacct_freepages_end();
2157 
2158  if (sc->nr_reclaimed)
2159  return sc->nr_reclaimed;
2160 
2161  /*
2162  * As hibernation is going on, kswapd is freezed so that it can't mark
2163  * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2164  * check.
2165  */
2166  if (oom_killer_disabled)
2167  return 0;
2168 
2169  /* Aborted reclaim to try compaction? don't OOM, then */
2170  if (aborted_reclaim)
2171  return 1;
2172 
2173  /* top priority shrink_zones still had more to do? don't OOM, then */
2174  if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2175  return 1;
2176 
2177  return 0;
2178 }
2179 
2180 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2181 {
2182  struct zone *zone;
2183  unsigned long pfmemalloc_reserve = 0;
2184  unsigned long free_pages = 0;
2185  int i;
2186  bool wmark_ok;
2187 
2188  for (i = 0; i <= ZONE_NORMAL; i++) {
2189  zone = &pgdat->node_zones[i];
2190  pfmemalloc_reserve += min_wmark_pages(zone);
2191  free_pages += zone_page_state(zone, NR_FREE_PAGES);
2192  }
2193 
2194  wmark_ok = free_pages > pfmemalloc_reserve / 2;
2195 
2196  /* kswapd must be awake if processes are being throttled */
2197  if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2198  pgdat->classzone_idx = min(pgdat->classzone_idx,
2199  (enum zone_type)ZONE_NORMAL);
2201  }
2202 
2203  return wmark_ok;
2204 }
2205 
2206 /*
2207  * Throttle direct reclaimers if backing storage is backed by the network
2208  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2209  * depleted. kswapd will continue to make progress and wake the processes
2210  * when the low watermark is reached.
2211  *
2212  * Returns true if a fatal signal was delivered during throttling. If this
2213  * happens, the page allocator should not consider triggering the OOM killer.
2214  */
2215 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2216  nodemask_t *nodemask)
2217 {
2218  struct zone *zone;
2219  int high_zoneidx = gfp_zone(gfp_mask);
2220  pg_data_t *pgdat;
2221 
2222  /*
2223  * Kernel threads should not be throttled as they may be indirectly
2224  * responsible for cleaning pages necessary for reclaim to make forward
2225  * progress. kjournald for example may enter direct reclaim while
2226  * committing a transaction where throttling it could forcing other
2227  * processes to block on log_wait_commit().
2228  */
2229  if (current->flags & PF_KTHREAD)
2230  goto out;
2231 
2232  /*
2233  * If a fatal signal is pending, this process should not throttle.
2234  * It should return quickly so it can exit and free its memory
2235  */
2236  if (fatal_signal_pending(current))
2237  goto out;
2238 
2239  /* Check if the pfmemalloc reserves are ok */
2240  first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2241  pgdat = zone->zone_pgdat;
2242  if (pfmemalloc_watermark_ok(pgdat))
2243  goto out;
2244 
2245  /* Account for the throttling */
2246  count_vm_event(PGSCAN_DIRECT_THROTTLE);
2247 
2248  /*
2249  * If the caller cannot enter the filesystem, it's possible that it
2250  * is due to the caller holding an FS lock or performing a journal
2251  * transaction in the case of a filesystem like ext[3|4]. In this case,
2252  * it is not safe to block on pfmemalloc_wait as kswapd could be
2253  * blocked waiting on the same lock. Instead, throttle for up to a
2254  * second before continuing.
2255  */
2256  if (!(gfp_mask & __GFP_FS)) {
2258  pfmemalloc_watermark_ok(pgdat), HZ);
2259 
2260  goto check_pending;
2261  }
2262 
2263  /* Throttle until kswapd wakes the process */
2264  wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2265  pfmemalloc_watermark_ok(pgdat));
2266 
2268  if (fatal_signal_pending(current))
2269  return true;
2270 
2271 out:
2272  return false;
2273 }
2274 
2275 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2276  gfp_t gfp_mask, nodemask_t *nodemask)
2277 {
2278  unsigned long nr_reclaimed;
2279  struct scan_control sc = {
2280  .gfp_mask = gfp_mask,
2281  .may_writepage = !laptop_mode,
2282  .nr_to_reclaim = SWAP_CLUSTER_MAX,
2283  .may_unmap = 1,
2284  .may_swap = 1,
2285  .order = order,
2286  .priority = DEF_PRIORITY,
2287  .target_mem_cgroup = NULL,
2288  .nodemask = nodemask,
2289  };
2290  struct shrink_control shrink = {
2291  .gfp_mask = sc.gfp_mask,
2292  };
2293 
2294  /*
2295  * Do not enter reclaim if fatal signal was delivered while throttled.
2296  * 1 is returned so that the page allocator does not OOM kill at this
2297  * point.
2298  */
2299  if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2300  return 1;
2301 
2302  trace_mm_vmscan_direct_reclaim_begin(order,
2303  sc.may_writepage,
2304  gfp_mask);
2305 
2306  nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2307 
2308  trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2309 
2310  return nr_reclaimed;
2311 }
2312 
2313 #ifdef CONFIG_MEMCG
2314 
2315 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2316  gfp_t gfp_mask, bool noswap,
2317  struct zone *zone,
2318  unsigned long *nr_scanned)
2319 {
2320  struct scan_control sc = {
2321  .nr_scanned = 0,
2322  .nr_to_reclaim = SWAP_CLUSTER_MAX,
2323  .may_writepage = !laptop_mode,
2324  .may_unmap = 1,
2325  .may_swap = !noswap,
2326  .order = 0,
2327  .priority = 0,
2328  .target_mem_cgroup = memcg,
2329  };
2330  struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2331 
2332  sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2334 
2335  trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2336  sc.may_writepage,
2337  sc.gfp_mask);
2338 
2339  /*
2340  * NOTE: Although we can get the priority field, using it
2341  * here is not a good idea, since it limits the pages we can scan.
2342  * if we don't reclaim here, the shrink_zone from balance_pgdat
2343  * will pick up pages from other mem cgroup's as well. We hack
2344  * the priority and make it zero.
2345  */
2346  shrink_lruvec(lruvec, &sc);
2347 
2348  trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2349 
2350  *nr_scanned = sc.nr_scanned;
2351  return sc.nr_reclaimed;
2352 }
2353 
2354 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2355  gfp_t gfp_mask,
2356  bool noswap)
2357 {
2358  struct zonelist *zonelist;
2359  unsigned long nr_reclaimed;
2360  int nid;
2361  struct scan_control sc = {
2363  .may_unmap = 1,
2364  .may_swap = !noswap,
2365  .nr_to_reclaim = SWAP_CLUSTER_MAX,
2366  .order = 0,
2367  .priority = DEF_PRIORITY,
2368  .target_mem_cgroup = memcg,
2369  .nodemask = NULL, /* we don't care the placement */
2370  .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2372  };
2373  struct shrink_control shrink = {
2374  .gfp_mask = sc.gfp_mask,
2375  };
2376 
2377  /*
2378  * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2379  * take care of from where we get pages. So the node where we start the
2380  * scan does not need to be the current node.
2381  */
2382  nid = mem_cgroup_select_victim_node(memcg);
2383 
2384  zonelist = NODE_DATA(nid)->node_zonelists;
2385 
2386  trace_mm_vmscan_memcg_reclaim_begin(0,
2387  sc.may_writepage,
2388  sc.gfp_mask);
2389 
2390  nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2391 
2392  trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2393 
2394  return nr_reclaimed;
2395 }
2396 #endif
2397 
2398 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2399 {
2400  struct mem_cgroup *memcg;
2401 
2402  if (!total_swap_pages)
2403  return;
2404 
2405  memcg = mem_cgroup_iter(NULL, NULL, NULL);
2406  do {
2407  struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2408 
2409  if (inactive_anon_is_low(lruvec))
2410  shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2411  sc, LRU_ACTIVE_ANON);
2412 
2413  memcg = mem_cgroup_iter(NULL, memcg, NULL);
2414  } while (memcg);
2415 }
2416 
2417 static bool zone_balanced(struct zone *zone, int order,
2418  unsigned long balance_gap, int classzone_idx)
2419 {
2420  if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2421  balance_gap, classzone_idx, 0))
2422  return false;
2423 
2424  if (COMPACTION_BUILD && order && !compaction_suitable(zone, order))
2425  return false;
2426 
2427  return true;
2428 }
2429 
2430 /*
2431  * pgdat_balanced is used when checking if a node is balanced for high-order
2432  * allocations. Only zones that meet watermarks and are in a zone allowed
2433  * by the callers classzone_idx are added to balanced_pages. The total of
2434  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2435  * for the node to be considered balanced. Forcing all zones to be balanced
2436  * for high orders can cause excessive reclaim when there are imbalanced zones.
2437  * The choice of 25% is due to
2438  * o a 16M DMA zone that is balanced will not balance a zone on any
2439  * reasonable sized machine
2440  * o On all other machines, the top zone must be at least a reasonable
2441  * percentage of the middle zones. For example, on 32-bit x86, highmem
2442  * would need to be at least 256M for it to be balance a whole node.
2443  * Similarly, on x86-64 the Normal zone would need to be at least 1G
2444  * to balance a node on its own. These seemed like reasonable ratios.
2445  */
2446 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2447  int classzone_idx)
2448 {
2449  unsigned long present_pages = 0;
2450  int i;
2451 
2452  for (i = 0; i <= classzone_idx; i++)
2453  present_pages += pgdat->node_zones[i].present_pages;
2454 
2455  /* A special case here: if zone has no page, we think it's balanced */
2456  return balanced_pages >= (present_pages >> 2);
2457 }
2458 
2459 /*
2460  * Prepare kswapd for sleeping. This verifies that there are no processes
2461  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2462  *
2463  * Returns true if kswapd is ready to sleep
2464  */
2465 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2466  int classzone_idx)
2467 {
2468  int i;
2469  unsigned long balanced = 0;
2470  bool all_zones_ok = true;
2471 
2472  /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2473  if (remaining)
2474  return false;
2475 
2476  /*
2477  * There is a potential race between when kswapd checks its watermarks
2478  * and a process gets throttled. There is also a potential race if
2479  * processes get throttled, kswapd wakes, a large process exits therby
2480  * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2481  * is going to sleep, no process should be sleeping on pfmemalloc_wait
2482  * so wake them now if necessary. If necessary, processes will wake
2483  * kswapd and get throttled again
2484  */
2485  if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2486  wake_up(&pgdat->pfmemalloc_wait);
2487  return false;
2488  }
2489 
2490  /* Check the watermark levels */
2491  for (i = 0; i <= classzone_idx; i++) {
2492  struct zone *zone = pgdat->node_zones + i;
2493 
2494  if (!populated_zone(zone))
2495  continue;
2496 
2497  /*
2498  * balance_pgdat() skips over all_unreclaimable after
2499  * DEF_PRIORITY. Effectively, it considers them balanced so
2500  * they must be considered balanced here as well if kswapd
2501  * is to sleep
2502  */
2503  if (zone->all_unreclaimable) {
2504  balanced += zone->present_pages;
2505  continue;
2506  }
2507 
2508  if (!zone_balanced(zone, order, 0, i))
2509  all_zones_ok = false;
2510  else
2511  balanced += zone->present_pages;
2512  }
2513 
2514  /*
2515  * For high-order requests, the balanced zones must contain at least
2516  * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2517  * must be balanced
2518  */
2519  if (order)
2520  return pgdat_balanced(pgdat, balanced, classzone_idx);
2521  else
2522  return all_zones_ok;
2523 }
2524 
2525 /*
2526  * For kswapd, balance_pgdat() will work across all this node's zones until
2527  * they are all at high_wmark_pages(zone).
2528  *
2529  * Returns the final order kswapd was reclaiming at
2530  *
2531  * There is special handling here for zones which are full of pinned pages.
2532  * This can happen if the pages are all mlocked, or if they are all used by
2533  * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2534  * What we do is to detect the case where all pages in the zone have been
2535  * scanned twice and there has been zero successful reclaim. Mark the zone as
2536  * dead and from now on, only perform a short scan. Basically we're polling
2537  * the zone for when the problem goes away.
2538  *
2539  * kswapd scans the zones in the highmem->normal->dma direction. It skips
2540  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2541  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2542  * lower zones regardless of the number of free pages in the lower zones. This
2543  * interoperates with the page allocator fallback scheme to ensure that aging
2544  * of pages is balanced across the zones.
2545  */
2546 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2547  int *classzone_idx)
2548 {
2549  int all_zones_ok;
2550  unsigned long balanced;
2551  int i;
2552  int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2553  unsigned long total_scanned;
2554  struct reclaim_state *reclaim_state = current->reclaim_state;
2555  unsigned long nr_soft_reclaimed;
2556  unsigned long nr_soft_scanned;
2557  struct scan_control sc = {
2558  .gfp_mask = GFP_KERNEL,
2559  .may_unmap = 1,
2560  .may_swap = 1,
2561  /*
2562  * kswapd doesn't want to be bailed out while reclaim. because
2563  * we want to put equal scanning pressure on each zone.
2564  */
2565  .nr_to_reclaim = ULONG_MAX,
2566  .order = order,
2567  .target_mem_cgroup = NULL,
2568  };
2569  struct shrink_control shrink = {
2570  .gfp_mask = sc.gfp_mask,
2571  };
2572 loop_again:
2573  total_scanned = 0;
2574  sc.priority = DEF_PRIORITY;
2575  sc.nr_reclaimed = 0;
2576  sc.may_writepage = !laptop_mode;
2577  count_vm_event(PAGEOUTRUN);
2578 
2579  do {
2580  unsigned long lru_pages = 0;
2581  int has_under_min_watermark_zone = 0;
2582 
2583  all_zones_ok = 1;
2584  balanced = 0;
2585 
2586  /*
2587  * Scan in the highmem->dma direction for the highest
2588  * zone which needs scanning
2589  */
2590  for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2591  struct zone *zone = pgdat->node_zones + i;
2592 
2593  if (!populated_zone(zone))
2594  continue;
2595 
2596  if (zone->all_unreclaimable &&
2597  sc.priority != DEF_PRIORITY)
2598  continue;
2599 
2600  /*
2601  * Do some background aging of the anon list, to give
2602  * pages a chance to be referenced before reclaiming.
2603  */
2604  age_active_anon(zone, &sc);
2605 
2606  /*
2607  * If the number of buffer_heads in the machine
2608  * exceeds the maximum allowed level and this node
2609  * has a highmem zone, force kswapd to reclaim from
2610  * it to relieve lowmem pressure.
2611  */
2612  if (buffer_heads_over_limit && is_highmem_idx(i)) {
2613  end_zone = i;
2614  break;
2615  }
2616 
2617  if (!zone_balanced(zone, order, 0, 0)) {
2618  end_zone = i;
2619  break;
2620  } else {
2621  /* If balanced, clear the congested flag */
2622  zone_clear_flag(zone, ZONE_CONGESTED);
2623  }
2624  }
2625  if (i < 0)
2626  goto out;
2627 
2628  for (i = 0; i <= end_zone; i++) {
2629  struct zone *zone = pgdat->node_zones + i;
2630 
2631  lru_pages += zone_reclaimable_pages(zone);
2632  }
2633 
2634  /*
2635  * Now scan the zone in the dma->highmem direction, stopping
2636  * at the last zone which needs scanning.
2637  *
2638  * We do this because the page allocator works in the opposite
2639  * direction. This prevents the page allocator from allocating
2640  * pages behind kswapd's direction of progress, which would
2641  * cause too much scanning of the lower zones.
2642  */
2643  for (i = 0; i <= end_zone; i++) {
2644  struct zone *zone = pgdat->node_zones + i;
2645  int nr_slab, testorder;
2646  unsigned long balance_gap;
2647 
2648  if (!populated_zone(zone))
2649  continue;
2650 
2651  if (zone->all_unreclaimable &&
2652  sc.priority != DEF_PRIORITY)
2653  continue;
2654 
2655  sc.nr_scanned = 0;
2656 
2657  nr_soft_scanned = 0;
2658  /*
2659  * Call soft limit reclaim before calling shrink_zone.
2660  */
2661  nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2662  order, sc.gfp_mask,
2663  &nr_soft_scanned);
2664  sc.nr_reclaimed += nr_soft_reclaimed;
2665  total_scanned += nr_soft_scanned;
2666 
2667  /*
2668  * We put equal pressure on every zone, unless
2669  * one zone has way too many pages free
2670  * already. The "too many pages" is defined
2671  * as the high wmark plus a "gap" where the
2672  * gap is either the low watermark or 1%
2673  * of the zone, whichever is smaller.
2674  */
2675  balance_gap = min(low_wmark_pages(zone),
2676  (zone->present_pages +
2677  KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2678  KSWAPD_ZONE_BALANCE_GAP_RATIO);
2679  /*
2680  * Kswapd reclaims only single pages with compaction
2681  * enabled. Trying too hard to reclaim until contiguous
2682  * free pages have become available can hurt performance
2683  * by evicting too much useful data from memory.
2684  * Do not reclaim more than needed for compaction.
2685  */
2686  testorder = order;
2687  if (COMPACTION_BUILD && order &&
2688  compaction_suitable(zone, order) !=
2690  testorder = 0;
2691 
2692  if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2693  !zone_balanced(zone, testorder,
2694  balance_gap, end_zone)) {
2695  shrink_zone(zone, &sc);
2696 
2697  reclaim_state->reclaimed_slab = 0;
2698  nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2699  sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2700  total_scanned += sc.nr_scanned;
2701 
2702  if (nr_slab == 0 && !zone_reclaimable(zone))
2703  zone->all_unreclaimable = 1;
2704  }
2705 
2706  /*
2707  * If we've done a decent amount of scanning and
2708  * the reclaim ratio is low, start doing writepage
2709  * even in laptop mode
2710  */
2711  if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2712  total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2713  sc.may_writepage = 1;
2714 
2715  if (zone->all_unreclaimable) {
2716  if (end_zone && end_zone == i)
2717  end_zone--;
2718  continue;
2719  }
2720 
2721  if (!zone_balanced(zone, testorder, 0, end_zone)) {
2722  all_zones_ok = 0;
2723  /*
2724  * We are still under min water mark. This
2725  * means that we have a GFP_ATOMIC allocation
2726  * failure risk. Hurry up!
2727  */
2728  if (!zone_watermark_ok_safe(zone, order,
2729  min_wmark_pages(zone), end_zone, 0))
2730  has_under_min_watermark_zone = 1;
2731  } else {
2732  /*
2733  * If a zone reaches its high watermark,
2734  * consider it to be no longer congested. It's
2735  * possible there are dirty pages backed by
2736  * congested BDIs but as pressure is relieved,
2737  * speculatively avoid congestion waits
2738  */
2739  zone_clear_flag(zone, ZONE_CONGESTED);
2740  if (i <= *classzone_idx)
2741  balanced += zone->present_pages;
2742  }
2743 
2744  }
2745 
2746  /*
2747  * If the low watermark is met there is no need for processes
2748  * to be throttled on pfmemalloc_wait as they should not be
2749  * able to safely make forward progress. Wake them
2750  */
2751  if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2752  pfmemalloc_watermark_ok(pgdat))
2753  wake_up(&pgdat->pfmemalloc_wait);
2754 
2755  if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2756  break; /* kswapd: all done */
2757  /*
2758  * OK, kswapd is getting into trouble. Take a nap, then take
2759  * another pass across the zones.
2760  */
2761  if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2762  if (has_under_min_watermark_zone)
2763  count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2764  else
2766  }
2767 
2768  /*
2769  * We do this so kswapd doesn't build up large priorities for
2770  * example when it is freeing in parallel with allocators. It
2771  * matches the direct reclaim path behaviour in terms of impact
2772  * on zone->*_priority.
2773  */
2774  if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2775  break;
2776  } while (--sc.priority >= 0);
2777 out:
2778 
2779  /*
2780  * order-0: All zones must meet high watermark for a balanced node
2781  * high-order: Balanced zones must make up at least 25% of the node
2782  * for the node to be balanced
2783  */
2784  if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2785  cond_resched();
2786 
2787  try_to_freeze();
2788 
2789  /*
2790  * Fragmentation may mean that the system cannot be
2791  * rebalanced for high-order allocations in all zones.
2792  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2793  * it means the zones have been fully scanned and are still
2794  * not balanced. For high-order allocations, there is
2795  * little point trying all over again as kswapd may
2796  * infinite loop.
2797  *
2798  * Instead, recheck all watermarks at order-0 as they
2799  * are the most important. If watermarks are ok, kswapd will go
2800  * back to sleep. High-order users can still perform direct
2801  * reclaim if they wish.
2802  */
2803  if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2804  order = sc.order = 0;
2805 
2806  goto loop_again;
2807  }
2808 
2809  /*
2810  * If kswapd was reclaiming at a higher order, it has the option of
2811  * sleeping without all zones being balanced. Before it does, it must
2812  * ensure that the watermarks for order-0 on *all* zones are met and
2813  * that the congestion flags are cleared. The congestion flag must
2814  * be cleared as kswapd is the only mechanism that clears the flag
2815  * and it is potentially going to sleep here.
2816  */
2817  if (order) {
2818  int zones_need_compaction = 1;
2819 
2820  for (i = 0; i <= end_zone; i++) {
2821  struct zone *zone = pgdat->node_zones + i;
2822 
2823  if (!populated_zone(zone))
2824  continue;
2825 
2826  /* Check if the memory needs to be defragmented. */
2827  if (zone_watermark_ok(zone, order,
2828  low_wmark_pages(zone), *classzone_idx, 0))
2829  zones_need_compaction = 0;
2830  }
2831 
2832  if (zones_need_compaction)
2833  compact_pgdat(pgdat, order);
2834  }
2835 
2836  /*
2837  * Return the order we were reclaiming at so prepare_kswapd_sleep()
2838  * makes a decision on the order we were last reclaiming at. However,
2839  * if another caller entered the allocator slow path while kswapd
2840  * was awake, order will remain at the higher level
2841  */
2842  *classzone_idx = end_zone;
2843  return order;
2844 }
2845 
2846 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2847 {
2848  long remaining = 0;
2849  DEFINE_WAIT(wait);
2850 
2851  if (freezing(current) || kthread_should_stop())
2852  return;
2853 
2855 
2856  /* Try to sleep for a short interval */
2857  if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2858  remaining = schedule_timeout(HZ/10);
2859  finish_wait(&pgdat->kswapd_wait, &wait);
2861  }
2862 
2863  /*
2864  * After a short sleep, check if it was a premature sleep. If not, then
2865  * go fully to sleep until explicitly woken up.
2866  */
2867  if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2868  trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2869 
2870  /*
2871  * vmstat counters are not perfectly accurate and the estimated
2872  * value for counters such as NR_FREE_PAGES can deviate from the
2873  * true value by nr_online_cpus * threshold. To avoid the zone
2874  * watermarks being breached while under pressure, we reduce the
2875  * per-cpu vmstat threshold while kswapd is awake and restore
2876  * them before going back to sleep.
2877  */
2878  set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2879 
2880  /*
2881  * Compaction records what page blocks it recently failed to
2882  * isolate pages from and skips them in the future scanning.
2883  * When kswapd is going to sleep, it is reasonable to assume
2884  * that pages and compaction may succeed so reset the cache.
2885  */
2886  reset_isolation_suitable(pgdat);
2887 
2888  if (!kthread_should_stop())
2889  schedule();
2890 
2891  set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2892  } else {
2893  if (remaining)
2894  count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2895  else
2896  count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2897  }
2898  finish_wait(&pgdat->kswapd_wait, &wait);
2899 }
2900 
2901 /*
2902  * The background pageout daemon, started as a kernel thread
2903  * from the init process.
2904  *
2905  * This basically trickles out pages so that we have _some_
2906  * free memory available even if there is no other activity
2907  * that frees anything up. This is needed for things like routing
2908  * etc, where we otherwise might have all activity going on in
2909  * asynchronous contexts that cannot page things out.
2910  *
2911  * If there are applications that are active memory-allocators
2912  * (most normal use), this basically shouldn't matter.
2913  */
2914 static int kswapd(void *p)
2915 {
2916  unsigned long order, new_order;
2917  unsigned balanced_order;
2918  int classzone_idx, new_classzone_idx;
2919  int balanced_classzone_idx;
2920  pg_data_t *pgdat = (pg_data_t*)p;
2921  struct task_struct *tsk = current;
2922 
2923  struct reclaim_state reclaim_state = {
2924  .reclaimed_slab = 0,
2925  };
2926  const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2927 
2929 
2930  if (!cpumask_empty(cpumask))
2931  set_cpus_allowed_ptr(tsk, cpumask);
2932  current->reclaim_state = &reclaim_state;
2933 
2934  /*
2935  * Tell the memory management that we're a "memory allocator",
2936  * and that if we need more memory we should get access to it
2937  * regardless (see "__alloc_pages()"). "kswapd" should
2938  * never get caught in the normal page freeing logic.
2939  *
2940  * (Kswapd normally doesn't need memory anyway, but sometimes
2941  * you need a small amount of memory in order to be able to
2942  * page out something else, and this flag essentially protects
2943  * us from recursively trying to free more memory as we're
2944  * trying to free the first piece of memory in the first place).
2945  */
2947  set_freezable();
2948 
2949  order = new_order = 0;
2950  balanced_order = 0;
2951  classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2952  balanced_classzone_idx = classzone_idx;
2953  for ( ; ; ) {
2954  int ret;
2955 
2956  /*
2957  * If the last balance_pgdat was unsuccessful it's unlikely a
2958  * new request of a similar or harder type will succeed soon
2959  * so consider going to sleep on the basis we reclaimed at
2960  */
2961  if (balanced_classzone_idx >= new_classzone_idx &&
2962  balanced_order == new_order) {
2963  new_order = pgdat->kswapd_max_order;
2964  new_classzone_idx = pgdat->classzone_idx;
2965  pgdat->kswapd_max_order = 0;
2966  pgdat->classzone_idx = pgdat->nr_zones - 1;
2967  }
2968 
2969  if (order < new_order || classzone_idx > new_classzone_idx) {
2970  /*
2971  * Don't sleep if someone wants a larger 'order'
2972  * allocation or has tigher zone constraints
2973  */
2974  order = new_order;
2975  classzone_idx = new_classzone_idx;
2976  } else {
2977  kswapd_try_to_sleep(pgdat, balanced_order,
2978  balanced_classzone_idx);
2979  order = pgdat->kswapd_max_order;
2980  classzone_idx = pgdat->classzone_idx;
2981  new_order = order;
2982  new_classzone_idx = classzone_idx;
2983  pgdat->kswapd_max_order = 0;
2984  pgdat->classzone_idx = pgdat->nr_zones - 1;
2985  }
2986 
2987  ret = try_to_freeze();
2988  if (kthread_should_stop())
2989  break;
2990 
2991  /*
2992  * We can speed up thawing tasks if we don't call balance_pgdat
2993  * after returning from the refrigerator
2994  */
2995  if (!ret) {
2996  trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2997  balanced_classzone_idx = classzone_idx;
2998  balanced_order = balance_pgdat(pgdat, order,
2999  &balanced_classzone_idx);
3000  }
3001  }
3002 
3003  current->reclaim_state = NULL;
3004  return 0;
3005 }
3006 
3007 /*
3008  * A zone is low on free memory, so wake its kswapd task to service it.
3009  */
3010 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3011 {
3012  pg_data_t *pgdat;
3013 
3014  if (!populated_zone(zone))
3015  return;
3016 
3017  if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3018  return;
3019  pgdat = zone->zone_pgdat;
3020  if (pgdat->kswapd_max_order < order) {
3021  pgdat->kswapd_max_order = order;
3022  pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3023  }
3024  if (!waitqueue_active(&pgdat->kswapd_wait))
3025  return;
3026  if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3027  return;
3028 
3029  trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3031 }
3032 
3033 /*
3034  * The reclaimable count would be mostly accurate.
3035  * The less reclaimable pages may be
3036  * - mlocked pages, which will be moved to unevictable list when encountered
3037  * - mapped pages, which may require several travels to be reclaimed
3038  * - dirty pages, which is not "instantly" reclaimable
3039  */
3040 unsigned long global_reclaimable_pages(void)
3041 {
3042  int nr;
3043 
3044  nr = global_page_state(NR_ACTIVE_FILE) +
3045  global_page_state(NR_INACTIVE_FILE);
3046 
3047  if (nr_swap_pages > 0)
3048  nr += global_page_state(NR_ACTIVE_ANON) +
3049  global_page_state(NR_INACTIVE_ANON);
3050 
3051  return nr;
3052 }
3053 
3054 unsigned long zone_reclaimable_pages(struct zone *zone)
3055 {
3056  int nr;
3057 
3058  nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3059  zone_page_state(zone, NR_INACTIVE_FILE);
3060 
3061  if (nr_swap_pages > 0)
3062  nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3063  zone_page_state(zone, NR_INACTIVE_ANON);
3064 
3065  return nr;
3066 }
3067 
3068 #ifdef CONFIG_HIBERNATION
3069 /*
3070  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3071  * freed pages.
3072  *
3073  * Rather than trying to age LRUs the aim is to preserve the overall
3074  * LRU order by reclaiming preferentially
3075  * inactive > active > active referenced > active mapped
3076  */
3077 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3078 {
3079  struct reclaim_state reclaim_state;
3080  struct scan_control sc = {
3082  .may_swap = 1,
3083  .may_unmap = 1,
3084  .may_writepage = 1,
3085  .nr_to_reclaim = nr_to_reclaim,
3086  .hibernation_mode = 1,
3087  .order = 0,
3088  .priority = DEF_PRIORITY,
3089  };
3090  struct shrink_control shrink = {
3091  .gfp_mask = sc.gfp_mask,
3092  };
3093  struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3094  struct task_struct *p = current;
3095  unsigned long nr_reclaimed;
3096 
3097  p->flags |= PF_MEMALLOC;
3099  reclaim_state.reclaimed_slab = 0;
3101 
3102  nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3103 
3104  p->reclaim_state = NULL;
3106  p->flags &= ~PF_MEMALLOC;
3107 
3108  return nr_reclaimed;
3109 }
3110 #endif /* CONFIG_HIBERNATION */
3111 
3112 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3113  not required for correctness. So if the last cpu in a node goes
3114  away, we get changed to run anywhere: as the first one comes back,
3115  restore their cpu bindings. */
3116 static int __devinit cpu_callback(struct notifier_block *nfb,
3117  unsigned long action, void *hcpu)
3118 {
3119  int nid;
3120 
3121  if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3123  pg_data_t *pgdat = NODE_DATA(nid);
3124  const struct cpumask *mask;
3125 
3126  mask = cpumask_of_node(pgdat->node_id);
3127 
3128  if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3129  /* One of our CPUs online: restore mask */
3130  set_cpus_allowed_ptr(pgdat->kswapd, mask);
3131  }
3132  }
3133  return NOTIFY_OK;
3134 }
3135 
3136 /*
3137  * This kswapd start function will be called by init and node-hot-add.
3138  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3139  */
3140 int kswapd_run(int nid)
3141 {
3142  pg_data_t *pgdat = NODE_DATA(nid);
3143  int ret = 0;
3144 
3145  if (pgdat->kswapd)
3146  return 0;
3147 
3148  pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3149  if (IS_ERR(pgdat->kswapd)) {
3150  /* failure at boot is fatal */
3152  pgdat->kswapd = NULL;
3153  pr_err("Failed to start kswapd on node %d\n", nid);
3154  ret = PTR_ERR(pgdat->kswapd);
3155  }
3156  return ret;
3157 }
3158 
3159 /*
3160  * Called by memory hotplug when all memory in a node is offlined. Caller must
3161  * hold lock_memory_hotplug().
3162  */
3163 void kswapd_stop(int nid)
3164 {
3165  struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3166 
3167  if (kswapd) {
3168  kthread_stop(kswapd);
3169  NODE_DATA(nid)->kswapd = NULL;
3170  }
3171 }
3172 
3173 static int __init kswapd_init(void)
3174 {
3175  int nid;
3176 
3177  swap_setup();
3179  kswapd_run(nid);
3180  hotcpu_notifier(cpu_callback, 0);
3181  return 0;
3182 }
3183 
3184 module_init(kswapd_init)
3185 
3186 #ifdef CONFIG_NUMA
3187 /*
3188  * Zone reclaim mode
3189  *
3190  * If non-zero call zone_reclaim when the number of free pages falls below
3191  * the watermarks.
3192  */
3193 int zone_reclaim_mode __read_mostly;
3194 
3195 #define RECLAIM_OFF 0
3196 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3197 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3198 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3199 
3200 /*
3201  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3202  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3203  * a zone.
3204  */
3205 #define ZONE_RECLAIM_PRIORITY 4
3206 
3207 /*
3208  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3209  * occur.
3210  */
3211 int sysctl_min_unmapped_ratio = 1;
3212 
3213 /*
3214  * If the number of slab pages in a zone grows beyond this percentage then
3215  * slab reclaim needs to occur.
3216  */
3217 int sysctl_min_slab_ratio = 5;
3218 
3219 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3220 {
3221  unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3222  unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3223  zone_page_state(zone, NR_ACTIVE_FILE);
3224 
3225  /*
3226  * It's possible for there to be more file mapped pages than
3227  * accounted for by the pages on the file LRU lists because
3228  * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3229  */
3230  return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3231 }
3232 
3233 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3234 static long zone_pagecache_reclaimable(struct zone *zone)
3235 {
3236  long nr_pagecache_reclaimable;
3237  long delta = 0;
3238 
3239  /*
3240  * If RECLAIM_SWAP is set, then all file pages are considered
3241  * potentially reclaimable. Otherwise, we have to worry about
3242  * pages like swapcache and zone_unmapped_file_pages() provides
3243  * a better estimate
3244  */
3245  if (zone_reclaim_mode & RECLAIM_SWAP)
3246  nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3247  else
3248  nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3249 
3250  /* If we can't clean pages, remove dirty pages from consideration */
3251  if (!(zone_reclaim_mode & RECLAIM_WRITE))
3252  delta += zone_page_state(zone, NR_FILE_DIRTY);
3253 
3254  /* Watch for any possible underflows due to delta */
3255  if (unlikely(delta > nr_pagecache_reclaimable))
3256  delta = nr_pagecache_reclaimable;
3257 
3258  return nr_pagecache_reclaimable - delta;
3259 }
3260 
3261 /*
3262  * Try to free up some pages from this zone through reclaim.
3263  */
3264 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3265 {
3266  /* Minimum pages needed in order to stay on node */
3267  const unsigned long nr_pages = 1 << order;
3268  struct task_struct *p = current;
3269  struct reclaim_state reclaim_state;
3270  struct scan_control sc = {
3271  .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3272  .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3273  .may_swap = 1,
3274  .nr_to_reclaim = max_t(unsigned long, nr_pages,
3275  SWAP_CLUSTER_MAX),
3276  .gfp_mask = gfp_mask,
3277  .order = order,
3278  .priority = ZONE_RECLAIM_PRIORITY,
3279  };
3280  struct shrink_control shrink = {
3281  .gfp_mask = sc.gfp_mask,
3282  };
3283  unsigned long nr_slab_pages0, nr_slab_pages1;
3284 
3285  cond_resched();
3286  /*
3287  * We need to be able to allocate from the reserves for RECLAIM_SWAP
3288  * and we also need to be able to write out pages for RECLAIM_WRITE
3289  * and RECLAIM_SWAP.
3290  */
3291  p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3293  reclaim_state.reclaimed_slab = 0;
3294  p->reclaim_state = &reclaim_state;
3295 
3296  if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3297  /*
3298  * Free memory by calling shrink zone with increasing
3299  * priorities until we have enough memory freed.
3300  */
3301  do {
3302  shrink_zone(zone, &sc);
3303  } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3304  }
3305 
3306  nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3307  if (nr_slab_pages0 > zone->min_slab_pages) {
3308  /*
3309  * shrink_slab() does not currently allow us to determine how
3310  * many pages were freed in this zone. So we take the current
3311  * number of slab pages and shake the slab until it is reduced
3312  * by the same nr_pages that we used for reclaiming unmapped
3313  * pages.
3314  *
3315  * Note that shrink_slab will free memory on all zones and may
3316  * take a long time.
3317  */
3318  for (;;) {
3319  unsigned long lru_pages = zone_reclaimable_pages(zone);
3320 
3321  /* No reclaimable slab or very low memory pressure */
3322  if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3323  break;
3324 
3325  /* Freed enough memory */
3326  nr_slab_pages1 = zone_page_state(zone,
3328  if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3329  break;
3330  }
3331 
3332  /*
3333  * Update nr_reclaimed by the number of slab pages we
3334  * reclaimed from this zone.
3335  */
3336  nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3337  if (nr_slab_pages1 < nr_slab_pages0)
3338  sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3339  }
3340 
3341  p->reclaim_state = NULL;
3342  current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3344  return sc.nr_reclaimed >= nr_pages;
3345 }
3346 
3347 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3348 {
3349  int node_id;
3350  int ret;
3351 
3352  /*
3353  * Zone reclaim reclaims unmapped file backed pages and
3354  * slab pages if we are over the defined limits.
3355  *
3356  * A small portion of unmapped file backed pages is needed for
3357  * file I/O otherwise pages read by file I/O will be immediately
3358  * thrown out if the zone is overallocated. So we do not reclaim
3359  * if less than a specified percentage of the zone is used by
3360  * unmapped file backed pages.
3361  */
3362  if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3363  zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3364  return ZONE_RECLAIM_FULL;
3365 
3366  if (zone->all_unreclaimable)
3367  return ZONE_RECLAIM_FULL;
3368 
3369  /*
3370  * Do not scan if the allocation should not be delayed.
3371  */
3372  if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3373  return ZONE_RECLAIM_NOSCAN;
3374 
3375  /*
3376  * Only run zone reclaim on the local zone or on zones that do not
3377  * have associated processors. This will favor the local processor
3378  * over remote processors and spread off node memory allocations
3379  * as wide as possible.
3380  */
3381  node_id = zone_to_nid(zone);
3382  if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3383  return ZONE_RECLAIM_NOSCAN;
3384 
3385  if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3386  return ZONE_RECLAIM_NOSCAN;
3387 
3388  ret = __zone_reclaim(zone, gfp_mask, order);
3389  zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3390 
3391  if (!ret)
3392  count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3393 
3394  return ret;
3395 }
3396 #endif
3397 
3398 /*
3399  * page_evictable - test whether a page is evictable
3400  * @page: the page to test
3401  *
3402  * Test whether page is evictable--i.e., should be placed on active/inactive
3403  * lists vs unevictable list.
3404  *
3405  * Reasons page might not be evictable:
3406  * (1) page's mapping marked unevictable
3407  * (2) page is part of an mlocked VMA
3408  *
3409  */
3410 int page_evictable(struct page *page)
3411 {
3412  return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3413 }
3414 
3415 #ifdef CONFIG_SHMEM
3416 
3425 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3426 {
3427  struct lruvec *lruvec;
3428  struct zone *zone = NULL;
3429  int pgscanned = 0;
3430  int pgrescued = 0;
3431  int i;
3432 
3433  for (i = 0; i < nr_pages; i++) {
3434  struct page *page = pages[i];
3435  struct zone *pagezone;
3436 
3437  pgscanned++;
3438  pagezone = page_zone(page);
3439  if (pagezone != zone) {
3440  if (zone)
3441  spin_unlock_irq(&zone->lru_lock);
3442  zone = pagezone;
3443  spin_lock_irq(&zone->lru_lock);
3444  }
3445  lruvec = mem_cgroup_page_lruvec(page, zone);
3446 
3447  if (!PageLRU(page) || !PageUnevictable(page))
3448  continue;
3449 
3450  if (page_evictable(page)) {
3451  enum lru_list lru = page_lru_base_type(page);
3452 
3453  VM_BUG_ON(PageActive(page));
3454  ClearPageUnevictable(page);
3455  del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3456  add_page_to_lru_list(page, lruvec, lru);
3457  pgrescued++;
3458  }
3459  }
3460 
3461  if (zone) {
3462  __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3463  __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3464  spin_unlock_irq(&zone->lru_lock);
3465  }
3466 }
3467 #endif /* CONFIG_SHMEM */
3468 
3469 static void warn_scan_unevictable_pages(void)
3470 {
3472  "%s: The scan_unevictable_pages sysctl/node-interface has been "
3473  "disabled for lack of a legitimate use case. If you have "
3474  "one, please send an email to [email protected].\n",
3475  current->comm);
3476 }
3477 
3478 /*
3479  * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3480  * all nodes' unevictable lists for evictable pages
3481  */
3483 
3485  void __user *buffer,
3486  size_t *length, loff_t *ppos)
3487 {
3488  warn_scan_unevictable_pages();
3489  proc_doulongvec_minmax(table, write, buffer, length, ppos);
3490  scan_unevictable_pages = 0;
3491  return 0;
3492 }
3493 
3494 #ifdef CONFIG_NUMA
3495 /*
3496  * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3497  * a specified node's per zone unevictable lists for evictable pages.
3498  */
3499 
3500 static ssize_t read_scan_unevictable_node(struct device *dev,
3501  struct device_attribute *attr,
3502  char *buf)
3503 {
3504  warn_scan_unevictable_pages();
3505  return sprintf(buf, "0\n"); /* always zero; should fit... */
3506 }
3507 
3508 static ssize_t write_scan_unevictable_node(struct device *dev,
3509  struct device_attribute *attr,
3510  const char *buf, size_t count)
3511 {
3512  warn_scan_unevictable_pages();
3513  return 1;
3514 }
3515 
3516 
3517 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3518  read_scan_unevictable_node,
3519  write_scan_unevictable_node);
3520 
3521 int scan_unevictable_register_node(struct node *node)
3522 {
3523  return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3524 }
3525 
3526 void scan_unevictable_unregister_node(struct node *node)
3527 {
3528  device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3529 }
3530 #endif