Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
wd33c93.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 1996 John Shifflett, GeoLog Consulting
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  */
16 
17 /*
18  * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
19  * provided much of the inspiration and some of the code for this
20  * driver. Everything I know about Amiga DMA was gleaned from careful
21  * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
22  * borrowed shamelessly from all over that source. Thanks Hamish!
23  *
24  * _This_ driver is (I feel) an improvement over the old one in
25  * several respects:
26  *
27  * - Target Disconnection/Reconnection is now supported. Any
28  * system with more than one device active on the SCSI bus
29  * will benefit from this. The driver defaults to what I
30  * call 'adaptive disconnect' - meaning that each command
31  * is evaluated individually as to whether or not it should
32  * be run with the option to disconnect/reselect (if the
33  * device chooses), or as a "SCSI-bus-hog".
34  *
35  * - Synchronous data transfers are now supported. Because of
36  * a few devices that choke after telling the driver that
37  * they can do sync transfers, we don't automatically use
38  * this faster protocol - it can be enabled via the command-
39  * line on a device-by-device basis.
40  *
41  * - Runtime operating parameters can now be specified through
42  * the 'amiboot' or the 'insmod' command line. For amiboot do:
43  * "amiboot [usual stuff] wd33c93=blah,blah,blah"
44  * The defaults should be good for most people. See the comment
45  * for 'setup_strings' below for more details.
46  *
47  * - The old driver relied exclusively on what the Western Digital
48  * docs call "Combination Level 2 Commands", which are a great
49  * idea in that the CPU is relieved of a lot of interrupt
50  * overhead. However, by accepting a certain (user-settable)
51  * amount of additional interrupts, this driver achieves
52  * better control over the SCSI bus, and data transfers are
53  * almost as fast while being much easier to define, track,
54  * and debug.
55  *
56  *
57  * TODO:
58  * more speed. linked commands.
59  *
60  *
61  * People with bug reports, wish-lists, complaints, comments,
62  * or improvements are asked to pah-leeez email me (John Shifflett)
63  * at [email protected] or [email protected]! I'm anxious to get
64  * this thing into as good a shape as possible, and I'm positive
65  * there are lots of lurking bugs and "Stupid Places".
66  *
67  * Updates:
68  *
69  * Added support for pre -A chips, which don't have advanced features
70  * and will generate CSR_RESEL rather than CSR_RESEL_AM.
71  * Richard Hirst <[email protected]> August 2000
72  *
73  * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
74  * default_sx_per for asynchronous data transfers. Added adjustment
75  * of transfer periods in sx_table to the actual input-clock.
76  * peter fuerst <[email protected]> February 2007
77  */
78 
79 #include <linux/module.h>
80 
81 #include <linux/string.h>
82 #include <linux/delay.h>
83 #include <linux/init.h>
84 #include <linux/interrupt.h>
85 #include <linux/blkdev.h>
86 
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_device.h>
90 #include <scsi/scsi_host.h>
91 
92 #include <asm/irq.h>
93 
94 #include "wd33c93.h"
95 
96 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns
97 
98 
99 #define WD33C93_VERSION "1.26++"
100 #define WD33C93_DATE "10/Feb/2007"
101 
102 MODULE_AUTHOR("John Shifflett");
103 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
104 MODULE_LICENSE("GPL");
105 
106 /*
107  * 'setup_strings' is a single string used to pass operating parameters and
108  * settings from the kernel/module command-line to the driver. 'setup_args[]'
109  * is an array of strings that define the compile-time default values for
110  * these settings. If Linux boots with an amiboot or insmod command-line,
111  * those settings are combined with 'setup_args[]'. Note that amiboot
112  * command-lines are prefixed with "wd33c93=" while insmod uses a
113  * "setup_strings=" prefix. The driver recognizes the following keywords
114  * (lower case required) and arguments:
115  *
116  * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
117  * the 7 possible SCSI devices. Set a bit to negotiate for
118  * asynchronous transfers on that device. To maintain
119  * backwards compatibility, a command-line such as
120  * "wd33c93=255" will be automatically translated to
121  * "wd33c93=nosync:0xff".
122  * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is
123  * optional - if not present, same as "nodma:1".
124  * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
125  * period. Default is 500; acceptable values are 250 - 1000.
126  * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
127  * x = 1 does 'adaptive' disconnects, which is the default
128  * and generally the best choice.
129  * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
130  * various types of debug output to printed - see the DB_xxx
131  * defines in wd33c93.h
132  * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values
133  * would be from 8 through 20. Default is 8.
134  * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
135  * Single Byte DMA, which is the default. Argument is
136  * optional - if not present, same as "burst:1".
137  * - fast:x -x = 1 to enable Fast SCSI, which is only effective with
138  * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
139  * it, which is the default. Argument is optional - if not
140  * present, same as "fast:1".
141  * - next -No argument. Used to separate blocks of keywords when
142  * there's more than one host adapter in the system.
143  *
144  * Syntax Notes:
145  * - Numeric arguments can be decimal or the '0x' form of hex notation. There
146  * _must_ be a colon between a keyword and its numeric argument, with no
147  * spaces.
148  * - Keywords are separated by commas, no spaces, in the standard kernel
149  * command-line manner.
150  * - A keyword in the 'nth' comma-separated command-line member will overwrite
151  * the 'nth' element of setup_args[]. A blank command-line member (in
152  * other words, a comma with no preceding keyword) will _not_ overwrite
153  * the corresponding setup_args[] element.
154  * - If a keyword is used more than once, the first one applies to the first
155  * SCSI host found, the second to the second card, etc, unless the 'next'
156  * keyword is used to change the order.
157  *
158  * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
159  * - wd33c93=nosync:255
160  * - wd33c93=nodma
161  * - wd33c93=nodma:1
162  * - wd33c93=disconnect:2,nosync:0x08,period:250
163  * - wd33c93=debug:0x1c
164  */
165 
166 /* Normally, no defaults are specified */
167 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };
168 
169 static char *setup_strings;
170 module_param(setup_strings, charp, 0);
171 
172 static void wd33c93_execute(struct Scsi_Host *instance);
173 
174 #ifdef CONFIG_WD33C93_PIO
175 static inline uchar
176 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
177 {
178  uchar data;
179 
180  outb(reg_num, regs.SASR);
181  data = inb(regs.SCMD);
182  return data;
183 }
184 
185 static inline unsigned long
186 read_wd33c93_count(const wd33c93_regs regs)
187 {
188  unsigned long value;
189 
191  value = inb(regs.SCMD) << 16;
192  value |= inb(regs.SCMD) << 8;
193  value |= inb(regs.SCMD);
194  return value;
195 }
196 
197 static inline uchar
198 read_aux_stat(const wd33c93_regs regs)
199 {
200  return inb(regs.SASR);
201 }
202 
203 static inline void
204 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
205 {
206  outb(reg_num, regs.SASR);
207  outb(value, regs.SCMD);
208 }
209 
210 static inline void
211 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
212 {
214  outb((value >> 16) & 0xff, regs.SCMD);
215  outb((value >> 8) & 0xff, regs.SCMD);
216  outb( value & 0xff, regs.SCMD);
217 }
218 
219 #define write_wd33c93_cmd(regs, cmd) \
220  write_wd33c93((regs), WD_COMMAND, (cmd))
221 
222 static inline void
223 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
224 {
225  int i;
226 
227  outb(WD_CDB_1, regs.SASR);
228  for (i=0; i<len; i++)
229  outb(cmnd[i], regs.SCMD);
230 }
231 
232 #else /* CONFIG_WD33C93_PIO */
233 static inline uchar
234 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
235 {
236  *regs.SASR = reg_num;
237  mb();
238  return (*regs.SCMD);
239 }
240 
241 static unsigned long
242 read_wd33c93_count(const wd33c93_regs regs)
243 {
244  unsigned long value;
245 
246  *regs.SASR = WD_TRANSFER_COUNT_MSB;
247  mb();
248  value = *regs.SCMD << 16;
249  value |= *regs.SCMD << 8;
250  value |= *regs.SCMD;
251  mb();
252  return value;
253 }
254 
255 static inline uchar
256 read_aux_stat(const wd33c93_regs regs)
257 {
258  return *regs.SASR;
259 }
260 
261 static inline void
262 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
263 {
264  *regs.SASR = reg_num;
265  mb();
266  *regs.SCMD = value;
267  mb();
268 }
269 
270 static void
271 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
272 {
273  *regs.SASR = WD_TRANSFER_COUNT_MSB;
274  mb();
275  *regs.SCMD = value >> 16;
276  *regs.SCMD = value >> 8;
277  *regs.SCMD = value;
278  mb();
279 }
280 
281 static inline void
282 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
283 {
284  *regs.SASR = WD_COMMAND;
285  mb();
286  *regs.SCMD = cmd;
287  mb();
288 }
289 
290 static inline void
291 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
292 {
293  int i;
294 
295  *regs.SASR = WD_CDB_1;
296  for (i = 0; i < len; i++)
297  *regs.SCMD = cmnd[i];
298 }
299 #endif /* CONFIG_WD33C93_PIO */
300 
301 static inline uchar
302 read_1_byte(const wd33c93_regs regs)
303 {
304  uchar asr;
305  uchar x = 0;
306 
307  write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
308  write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
309  do {
310  asr = read_aux_stat(regs);
311  if (asr & ASR_DBR)
312  x = read_wd33c93(regs, WD_DATA);
313  } while (!(asr & ASR_INT));
314  return x;
315 }
316 
317 static int
318 round_period(unsigned int period, const struct sx_period *sx_table)
319 {
320  int x;
321 
322  for (x = 1; sx_table[x].period_ns; x++) {
323  if ((period <= sx_table[x - 0].period_ns) &&
324  (period > sx_table[x - 1].period_ns)) {
325  return x;
326  }
327  }
328  return 7;
329 }
330 
331 /*
332  * Calculate Synchronous Transfer Register value from SDTR code.
333  */
334 static uchar
335 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
336  const struct sx_period *sx_table)
337 {
338  /* When doing Fast SCSI synchronous data transfers, the corresponding
339  * value in 'sx_table' is two times the actually used transfer period.
340  */
341  uchar result;
342 
343  if (offset && fast) {
344  fast = STR_FSS;
345  period *= 2;
346  } else {
347  fast = 0;
348  }
349  period *= 4; /* convert SDTR code to ns */
350  result = sx_table[round_period(period,sx_table)].reg_value;
351  result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
352  result |= fast;
353  return result;
354 }
355 
356 /*
357  * Calculate SDTR code bytes [3],[4] from period and offset.
358  */
359 static inline void
360 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
361  uchar msg[2])
362 {
363  /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
364  * actually used transfer period for Fast SCSI synchronous data
365  * transfers is half that value.
366  */
367  period /= 4;
368  if (offset && fast)
369  period /= 2;
370  msg[0] = period;
371  msg[1] = offset;
372 }
373 
374 static int
375 wd33c93_queuecommand_lck(struct scsi_cmnd *cmd,
376  void (*done)(struct scsi_cmnd *))
377 {
378  struct WD33C93_hostdata *hostdata;
379  struct scsi_cmnd *tmp;
380 
381  hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
382 
384  printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0]))
385 
386 /* Set up a few fields in the scsi_cmnd structure for our own use:
387  * - host_scribble is the pointer to the next cmd in the input queue
388  * - scsi_done points to the routine we call when a cmd is finished
389  * - result is what you'd expect
390  */
391  cmd->host_scribble = NULL;
392  cmd->scsi_done = done;
393  cmd->result = 0;
394 
395 /* We use the Scsi_Pointer structure that's included with each command
396  * as a scratchpad (as it's intended to be used!). The handy thing about
397  * the SCp.xxx fields is that they're always associated with a given
398  * cmd, and are preserved across disconnect-reselect. This means we
399  * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
400  * if we keep all the critical pointers and counters in SCp:
401  * - SCp.ptr is the pointer into the RAM buffer
402  * - SCp.this_residual is the size of that buffer
403  * - SCp.buffer points to the current scatter-gather buffer
404  * - SCp.buffers_residual tells us how many S.G. buffers there are
405  * - SCp.have_data_in is not used
406  * - SCp.sent_command is not used
407  * - SCp.phase records this command's SRCID_ER bit setting
408  */
409 
410  if (scsi_bufflen(cmd)) {
411  cmd->SCp.buffer = scsi_sglist(cmd);
412  cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
413  cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
414  cmd->SCp.this_residual = cmd->SCp.buffer->length;
415  } else {
416  cmd->SCp.buffer = NULL;
417  cmd->SCp.buffers_residual = 0;
418  cmd->SCp.ptr = NULL;
419  cmd->SCp.this_residual = 0;
420  }
421 
422 /* WD docs state that at the conclusion of a "LEVEL2" command, the
423  * status byte can be retrieved from the LUN register. Apparently,
424  * this is the case only for *uninterrupted* LEVEL2 commands! If
425  * there are any unexpected phases entered, even if they are 100%
426  * legal (different devices may choose to do things differently),
427  * the LEVEL2 command sequence is exited. This often occurs prior
428  * to receiving the status byte, in which case the driver does a
429  * status phase interrupt and gets the status byte on its own.
430  * While such a command can then be "resumed" (ie restarted to
431  * finish up as a LEVEL2 command), the LUN register will NOT be
432  * a valid status byte at the command's conclusion, and we must
433  * use the byte obtained during the earlier interrupt. Here, we
434  * preset SCp.Status to an illegal value (0xff) so that when
435  * this command finally completes, we can tell where the actual
436  * status byte is stored.
437  */
438 
439  cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
440 
441  /*
442  * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
443  * commands are added to the head of the queue so that the desired
444  * sense data is not lost before REQUEST_SENSE executes.
445  */
446 
447  spin_lock_irq(&hostdata->lock);
448 
449  if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
450  cmd->host_scribble = (uchar *) hostdata->input_Q;
451  hostdata->input_Q = cmd;
452  } else { /* find the end of the queue */
453  for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
454  tmp->host_scribble;
455  tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
456  tmp->host_scribble = (uchar *) cmd;
457  }
458 
459 /* We know that there's at least one command in 'input_Q' now.
460  * Go see if any of them are runnable!
461  */
462 
463  wd33c93_execute(cmd->device->host);
464 
465  DB(DB_QUEUE_COMMAND, printk(")Q "))
466 
467  spin_unlock_irq(&hostdata->lock);
468  return 0;
469 }
470 
472 
473 /*
474  * This routine attempts to start a scsi command. If the host_card is
475  * already connected, we give up immediately. Otherwise, look through
476  * the input_Q, using the first command we find that's intended
477  * for a currently non-busy target/lun.
478  *
479  * wd33c93_execute() is always called with interrupts disabled or from
480  * the wd33c93_intr itself, which means that a wd33c93 interrupt
481  * cannot occur while we are in here.
482  */
483 static void
484 wd33c93_execute(struct Scsi_Host *instance)
485 {
486  struct WD33C93_hostdata *hostdata =
487  (struct WD33C93_hostdata *) instance->hostdata;
488  const wd33c93_regs regs = hostdata->regs;
489  struct scsi_cmnd *cmd, *prev;
490 
491  DB(DB_EXECUTE, printk("EX("))
492  if (hostdata->selecting || hostdata->connected) {
493  DB(DB_EXECUTE, printk(")EX-0 "))
494  return;
495  }
496 
497  /*
498  * Search through the input_Q for a command destined
499  * for an idle target/lun.
500  */
501 
502  cmd = (struct scsi_cmnd *) hostdata->input_Q;
503  prev = NULL;
504  while (cmd) {
505  if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
506  break;
507  prev = cmd;
508  cmd = (struct scsi_cmnd *) cmd->host_scribble;
509  }
510 
511  /* quit if queue empty or all possible targets are busy */
512 
513  if (!cmd) {
514  DB(DB_EXECUTE, printk(")EX-1 "))
515  return;
516  }
517 
518  /* remove command from queue */
519 
520  if (prev)
522  else
523  hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
524 
525 #ifdef PROC_STATISTICS
526  hostdata->cmd_cnt[cmd->device->id]++;
527 #endif
528 
529  /*
530  * Start the selection process
531  */
532 
533  if (cmd->sc_data_direction == DMA_TO_DEVICE)
534  write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
535  else
536  write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
537 
538 /* Now we need to figure out whether or not this command is a good
539  * candidate for disconnect/reselect. We guess to the best of our
540  * ability, based on a set of hierarchical rules. When several
541  * devices are operating simultaneously, disconnects are usually
542  * an advantage. In a single device system, or if only 1 device
543  * is being accessed, transfers usually go faster if disconnects
544  * are not allowed:
545  *
546  * + Commands should NEVER disconnect if hostdata->disconnect =
547  * DIS_NEVER (this holds for tape drives also), and ALWAYS
548  * disconnect if hostdata->disconnect = DIS_ALWAYS.
549  * + Tape drive commands should always be allowed to disconnect.
550  * + Disconnect should be allowed if disconnected_Q isn't empty.
551  * + Commands should NOT disconnect if input_Q is empty.
552  * + Disconnect should be allowed if there are commands in input_Q
553  * for a different target/lun. In this case, the other commands
554  * should be made disconnect-able, if not already.
555  *
556  * I know, I know - this code would flunk me out of any
557  * "C Programming 101" class ever offered. But it's easy
558  * to change around and experiment with for now.
559  */
560 
561  cmd->SCp.phase = 0; /* assume no disconnect */
562  if (hostdata->disconnect == DIS_NEVER)
563  goto no;
564  if (hostdata->disconnect == DIS_ALWAYS)
565  goto yes;
566  if (cmd->device->type == 1) /* tape drive? */
567  goto yes;
568  if (hostdata->disconnected_Q) /* other commands disconnected? */
569  goto yes;
570  if (!(hostdata->input_Q)) /* input_Q empty? */
571  goto no;
572  for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
573  prev = (struct scsi_cmnd *) prev->host_scribble) {
574  if ((prev->device->id != cmd->device->id) ||
575  (prev->device->lun != cmd->device->lun)) {
576  for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
577  prev = (struct scsi_cmnd *) prev->host_scribble)
578  prev->SCp.phase = 1;
579  goto yes;
580  }
581  }
582 
583  goto no;
584 
585  yes:
586  cmd->SCp.phase = 1;
587 
588 #ifdef PROC_STATISTICS
589  hostdata->disc_allowed_cnt[cmd->device->id]++;
590 #endif
591 
592  no:
593 
594  write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
595 
596  write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun);
597  write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
598  hostdata->sync_xfer[cmd->device->id]);
599  hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
600 
601  if ((hostdata->level2 == L2_NONE) ||
602  (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
603 
604  /*
605  * Do a 'Select-With-ATN' command. This will end with
606  * one of the following interrupts:
607  * CSR_RESEL_AM: failure - can try again later.
608  * CSR_TIMEOUT: failure - give up.
609  * CSR_SELECT: success - proceed.
610  */
611 
612  hostdata->selecting = cmd;
613 
614 /* Every target has its own synchronous transfer setting, kept in the
615  * sync_xfer array, and a corresponding status byte in sync_stat[].
616  * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
617  * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
618  * means that the parameters are undetermined as yet, and that we
619  * need to send an SDTR message to this device after selection is
620  * complete: We set SS_FIRST to tell the interrupt routine to do so.
621  * If we've been asked not to try synchronous transfers on this
622  * target (and _all_ luns within it), we'll still send the SDTR message
623  * later, but at that time we'll negotiate for async by specifying a
624  * sync fifo depth of 0.
625  */
626  if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
627  hostdata->sync_stat[cmd->device->id] = SS_FIRST;
628  hostdata->state = S_SELECTING;
629  write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
630  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
631  } else {
632 
633  /*
634  * Do a 'Select-With-ATN-Xfer' command. This will end with
635  * one of the following interrupts:
636  * CSR_RESEL_AM: failure - can try again later.
637  * CSR_TIMEOUT: failure - give up.
638  * anything else: success - proceed.
639  */
640 
641  hostdata->connected = cmd;
642  write_wd33c93(regs, WD_COMMAND_PHASE, 0);
643 
644  /* copy command_descriptor_block into WD chip
645  * (take advantage of auto-incrementing)
646  */
647 
648  write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
649 
650  /* The wd33c93 only knows about Group 0, 1, and 5 commands when
651  * it's doing a 'select-and-transfer'. To be safe, we write the
652  * size of the CDB into the OWN_ID register for every case. This
653  * way there won't be problems with vendor-unique, audio, etc.
654  */
655 
656  write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
657 
658  /* When doing a non-disconnect command with DMA, we can save
659  * ourselves a DATA phase interrupt later by setting everything
660  * up ahead of time.
661  */
662 
663  if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) {
664  if (hostdata->dma_setup(cmd,
665  (cmd->sc_data_direction == DMA_TO_DEVICE) ?
667  write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
668  else {
669  write_wd33c93_count(regs,
670  cmd->SCp.this_residual);
671  write_wd33c93(regs, WD_CONTROL,
672  CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
673  hostdata->dma = D_DMA_RUNNING;
674  }
675  } else
676  write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
677 
678  hostdata->state = S_RUNNING_LEVEL2;
679  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
680  }
681 
682  /*
683  * Since the SCSI bus can handle only 1 connection at a time,
684  * we get out of here now. If the selection fails, or when
685  * the command disconnects, we'll come back to this routine
686  * to search the input_Q again...
687  */
688 
689  DB(DB_EXECUTE,
690  printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : ""))
691 }
692 
693 static void
694 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
695  int data_in_dir, struct WD33C93_hostdata *hostdata)
696 {
697  uchar asr;
698 
699  DB(DB_TRANSFER,
700  printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
701 
702  write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
703  write_wd33c93_count(regs, cnt);
704  write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
705  if (data_in_dir) {
706  do {
707  asr = read_aux_stat(regs);
708  if (asr & ASR_DBR)
709  *buf++ = read_wd33c93(regs, WD_DATA);
710  } while (!(asr & ASR_INT));
711  } else {
712  do {
713  asr = read_aux_stat(regs);
714  if (asr & ASR_DBR)
715  write_wd33c93(regs, WD_DATA, *buf++);
716  } while (!(asr & ASR_INT));
717  }
718 
719  /* Note: we are returning with the interrupt UN-cleared.
720  * Since (presumably) an entire I/O operation has
721  * completed, the bus phase is probably different, and
722  * the interrupt routine will discover this when it
723  * responds to the uncleared int.
724  */
725 
726 }
727 
728 static void
729 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
730  int data_in_dir)
731 {
732  struct WD33C93_hostdata *hostdata;
733  unsigned long length;
734 
735  hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
736 
737 /* Normally, you'd expect 'this_residual' to be non-zero here.
738  * In a series of scatter-gather transfers, however, this
739  * routine will usually be called with 'this_residual' equal
740  * to 0 and 'buffers_residual' non-zero. This means that a
741  * previous transfer completed, clearing 'this_residual', and
742  * now we need to setup the next scatter-gather buffer as the
743  * source or destination for THIS transfer.
744  */
745  if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
746  ++cmd->SCp.buffer;
747  --cmd->SCp.buffers_residual;
748  cmd->SCp.this_residual = cmd->SCp.buffer->length;
749  cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
750  }
751  if (!cmd->SCp.this_residual) /* avoid bogus setups */
752  return;
753 
754  write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
755  hostdata->sync_xfer[cmd->device->id]);
756 
757 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
758  * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
759  */
760 
761  if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
762 #ifdef PROC_STATISTICS
763  hostdata->pio_cnt++;
764 #endif
765  transfer_pio(regs, (uchar *) cmd->SCp.ptr,
766  cmd->SCp.this_residual, data_in_dir, hostdata);
767  length = cmd->SCp.this_residual;
768  cmd->SCp.this_residual = read_wd33c93_count(regs);
769  cmd->SCp.ptr += (length - cmd->SCp.this_residual);
770  }
771 
772 /* We are able to do DMA (in fact, the Amiga hardware is
773  * already going!), so start up the wd33c93 in DMA mode.
774  * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
775  * transfer completes and causes an interrupt, we're
776  * reminded to tell the Amiga to shut down its end. We'll
777  * postpone the updating of 'this_residual' and 'ptr'
778  * until then.
779  */
780 
781  else {
782 #ifdef PROC_STATISTICS
783  hostdata->dma_cnt++;
784 #endif
785  write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
786  write_wd33c93_count(regs, cmd->SCp.this_residual);
787 
788  if ((hostdata->level2 >= L2_DATA) ||
789  (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
790  write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
791  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
792  hostdata->state = S_RUNNING_LEVEL2;
793  } else
794  write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
795 
796  hostdata->dma = D_DMA_RUNNING;
797  }
798 }
799 
800 void
801 wd33c93_intr(struct Scsi_Host *instance)
802 {
803  struct WD33C93_hostdata *hostdata =
804  (struct WD33C93_hostdata *) instance->hostdata;
805  const wd33c93_regs regs = hostdata->regs;
806  struct scsi_cmnd *patch, *cmd;
807  uchar asr, sr, phs, id, lun, *ucp, msg;
808  unsigned long length, flags;
809 
810  asr = read_aux_stat(regs);
811  if (!(asr & ASR_INT) || (asr & ASR_BSY))
812  return;
813 
814  spin_lock_irqsave(&hostdata->lock, flags);
815 
816 #ifdef PROC_STATISTICS
817  hostdata->int_cnt++;
818 #endif
819 
820  cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
821  sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */
822  phs = read_wd33c93(regs, WD_COMMAND_PHASE);
823 
824  DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
825 
826 /* After starting a DMA transfer, the next interrupt
827  * is guaranteed to be in response to completion of
828  * the transfer. Since the Amiga DMA hardware runs in
829  * in an open-ended fashion, it needs to be told when
830  * to stop; do that here if D_DMA_RUNNING is true.
831  * Also, we have to update 'this_residual' and 'ptr'
832  * based on the contents of the TRANSFER_COUNT register,
833  * in case the device decided to do an intermediate
834  * disconnect (a device may do this if it has to do a
835  * seek, or just to be nice and let other devices have
836  * some bus time during long transfers). After doing
837  * whatever is needed, we go on and service the WD3393
838  * interrupt normally.
839  */
840  if (hostdata->dma == D_DMA_RUNNING) {
841  DB(DB_TRANSFER,
842  printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual))
843  hostdata->dma_stop(cmd->device->host, cmd, 1);
844  hostdata->dma = D_DMA_OFF;
845  length = cmd->SCp.this_residual;
846  cmd->SCp.this_residual = read_wd33c93_count(regs);
847  cmd->SCp.ptr += (length - cmd->SCp.this_residual);
848  DB(DB_TRANSFER,
849  printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual))
850  }
851 
852 /* Respond to the specific WD3393 interrupt - there are quite a few! */
853  switch (sr) {
854  case CSR_TIMEOUT:
855  DB(DB_INTR, printk("TIMEOUT"))
856 
857  if (hostdata->state == S_RUNNING_LEVEL2)
858  hostdata->connected = NULL;
859  else {
860  cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
861  hostdata->selecting = NULL;
862  }
863 
864  cmd->result = DID_NO_CONNECT << 16;
865  hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
866  hostdata->state = S_UNCONNECTED;
867  cmd->scsi_done(cmd);
868 
869  /* From esp.c:
870  * There is a window of time within the scsi_done() path
871  * of execution where interrupts are turned back on full
872  * blast and left that way. During that time we could
873  * reconnect to a disconnected command, then we'd bomb
874  * out below. We could also end up executing two commands
875  * at _once_. ...just so you know why the restore_flags()
876  * is here...
877  */
878 
879  spin_unlock_irqrestore(&hostdata->lock, flags);
880 
881 /* We are not connected to a target - check to see if there
882  * are commands waiting to be executed.
883  */
884 
885  wd33c93_execute(instance);
886  break;
887 
888 /* Note: this interrupt should not occur in a LEVEL2 command */
889 
890  case CSR_SELECT:
891  DB(DB_INTR, printk("SELECT"))
892  hostdata->connected = cmd =
893  (struct scsi_cmnd *) hostdata->selecting;
894  hostdata->selecting = NULL;
895 
896  /* construct an IDENTIFY message with correct disconnect bit */
897 
898  hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
899  if (cmd->SCp.phase)
900  hostdata->outgoing_msg[0] |= 0x40;
901 
902  if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
903 
904  hostdata->sync_stat[cmd->device->id] = SS_WAITING;
905 
906 /* Tack on a 2nd message to ask about synchronous transfers. If we've
907  * been asked to do only asynchronous transfers on this device, we
908  * request a fifo depth of 0, which is equivalent to async - should
909  * solve the problems some people have had with GVP's Guru ROM.
910  */
911 
912  hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
913  hostdata->outgoing_msg[2] = 3;
914  hostdata->outgoing_msg[3] = EXTENDED_SDTR;
915  if (hostdata->no_sync & (1 << cmd->device->id)) {
916  calc_sync_msg(hostdata->default_sx_per, 0,
917  0, hostdata->outgoing_msg + 4);
918  } else {
919  calc_sync_msg(optimum_sx_per(hostdata),
921  hostdata->fast,
922  hostdata->outgoing_msg + 4);
923  }
924  hostdata->outgoing_len = 6;
925 #ifdef SYNC_DEBUG
926  ucp = hostdata->outgoing_msg + 1;
927  printk(" sending SDTR %02x03%02x%02x%02x ",
928  ucp[0], ucp[2], ucp[3], ucp[4]);
929 #endif
930  } else
931  hostdata->outgoing_len = 1;
932 
933  hostdata->state = S_CONNECTED;
934  spin_unlock_irqrestore(&hostdata->lock, flags);
935  break;
936 
937  case CSR_XFER_DONE | PHS_DATA_IN:
938  case CSR_UNEXP | PHS_DATA_IN:
939  case CSR_SRV_REQ | PHS_DATA_IN:
940  DB(DB_INTR,
941  printk("IN-%d.%d", cmd->SCp.this_residual,
942  cmd->SCp.buffers_residual))
943  transfer_bytes(regs, cmd, DATA_IN_DIR);
944  if (hostdata->state != S_RUNNING_LEVEL2)
945  hostdata->state = S_CONNECTED;
946  spin_unlock_irqrestore(&hostdata->lock, flags);
947  break;
948 
950  case CSR_UNEXP | PHS_DATA_OUT:
951  case CSR_SRV_REQ | PHS_DATA_OUT:
952  DB(DB_INTR,
953  printk("OUT-%d.%d", cmd->SCp.this_residual,
954  cmd->SCp.buffers_residual))
955  transfer_bytes(regs, cmd, DATA_OUT_DIR);
956  if (hostdata->state != S_RUNNING_LEVEL2)
957  hostdata->state = S_CONNECTED;
958  spin_unlock_irqrestore(&hostdata->lock, flags);
959  break;
960 
961 /* Note: this interrupt should not occur in a LEVEL2 command */
962 
963  case CSR_XFER_DONE | PHS_COMMAND:
964  case CSR_UNEXP | PHS_COMMAND:
965  case CSR_SRV_REQ | PHS_COMMAND:
966  DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
967  transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
968  hostdata);
969  hostdata->state = S_CONNECTED;
970  spin_unlock_irqrestore(&hostdata->lock, flags);
971  break;
972 
973  case CSR_XFER_DONE | PHS_STATUS:
974  case CSR_UNEXP | PHS_STATUS:
975  case CSR_SRV_REQ | PHS_STATUS:
976  DB(DB_INTR, printk("STATUS="))
977  cmd->SCp.Status = read_1_byte(regs);
978  DB(DB_INTR, printk("%02x", cmd->SCp.Status))
979  if (hostdata->level2 >= L2_BASIC) {
980  sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
981  udelay(7);
982  hostdata->state = S_RUNNING_LEVEL2;
983  write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
984  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
985  } else {
986  hostdata->state = S_CONNECTED;
987  }
988  spin_unlock_irqrestore(&hostdata->lock, flags);
989  break;
990 
991  case CSR_XFER_DONE | PHS_MESS_IN:
992  case CSR_UNEXP | PHS_MESS_IN:
993  case CSR_SRV_REQ | PHS_MESS_IN:
994  DB(DB_INTR, printk("MSG_IN="))
995 
996  msg = read_1_byte(regs);
997  sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
998  udelay(7);
999 
1000  hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1001  if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1002  msg = EXTENDED_MESSAGE;
1003  else
1004  hostdata->incoming_ptr = 0;
1005 
1006  cmd->SCp.Message = msg;
1007  switch (msg) {
1008 
1009  case COMMAND_COMPLETE:
1010  DB(DB_INTR, printk("CCMP"))
1011  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1012  hostdata->state = S_PRE_CMP_DISC;
1013  break;
1014 
1015  case SAVE_POINTERS:
1016  DB(DB_INTR, printk("SDP"))
1017  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1018  hostdata->state = S_CONNECTED;
1019  break;
1020 
1021  case RESTORE_POINTERS:
1022  DB(DB_INTR, printk("RDP"))
1023  if (hostdata->level2 >= L2_BASIC) {
1024  write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1025  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1026  hostdata->state = S_RUNNING_LEVEL2;
1027  } else {
1028  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1029  hostdata->state = S_CONNECTED;
1030  }
1031  break;
1032 
1033  case DISCONNECT:
1034  DB(DB_INTR, printk("DIS"))
1035  cmd->device->disconnect = 1;
1036  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1037  hostdata->state = S_PRE_TMP_DISC;
1038  break;
1039 
1040  case MESSAGE_REJECT:
1041  DB(DB_INTR, printk("REJ"))
1042 #ifdef SYNC_DEBUG
1043  printk("-REJ-");
1044 #endif
1045  if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
1046  hostdata->sync_stat[cmd->device->id] = SS_SET;
1047  /* we want default_sx_per, not DEFAULT_SX_PER */
1048  hostdata->sync_xfer[cmd->device->id] =
1049  calc_sync_xfer(hostdata->default_sx_per
1050  / 4, 0, 0, hostdata->sx_table);
1051  }
1052  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1053  hostdata->state = S_CONNECTED;
1054  break;
1055 
1056  case EXTENDED_MESSAGE:
1057  DB(DB_INTR, printk("EXT"))
1058 
1059  ucp = hostdata->incoming_msg;
1060 
1061 #ifdef SYNC_DEBUG
1062  printk("%02x", ucp[hostdata->incoming_ptr]);
1063 #endif
1064  /* Is this the last byte of the extended message? */
1065 
1066  if ((hostdata->incoming_ptr >= 2) &&
1067  (hostdata->incoming_ptr == (ucp[1] + 1))) {
1068 
1069  switch (ucp[2]) { /* what's the EXTENDED code? */
1070  case EXTENDED_SDTR:
1071  /* default to default async period */
1072  id = calc_sync_xfer(hostdata->
1073  default_sx_per / 4, 0,
1074  0, hostdata->sx_table);
1075  if (hostdata->sync_stat[cmd->device->id] !=
1076  SS_WAITING) {
1077 
1078 /* A device has sent an unsolicited SDTR message; rather than go
1079  * through the effort of decoding it and then figuring out what
1080  * our reply should be, we're just gonna say that we have a
1081  * synchronous fifo depth of 0. This will result in asynchronous
1082  * transfers - not ideal but so much easier.
1083  * Actually, this is OK because it assures us that if we don't
1084  * specifically ask for sync transfers, we won't do any.
1085  */
1086 
1087  write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1088  hostdata->outgoing_msg[0] =
1090  hostdata->outgoing_msg[1] = 3;
1091  hostdata->outgoing_msg[2] =
1092  EXTENDED_SDTR;
1093  calc_sync_msg(hostdata->
1094  default_sx_per, 0,
1095  0, hostdata->outgoing_msg + 3);
1096  hostdata->outgoing_len = 5;
1097  } else {
1098  if (ucp[4]) /* well, sync transfer */
1099  id = calc_sync_xfer(ucp[3], ucp[4],
1100  hostdata->fast,
1101  hostdata->sx_table);
1102  else if (ucp[3]) /* very unlikely... */
1103  id = calc_sync_xfer(ucp[3], ucp[4],
1104  0, hostdata->sx_table);
1105  }
1106  hostdata->sync_xfer[cmd->device->id] = id;
1107 #ifdef SYNC_DEBUG
1108  printk(" sync_xfer=%02x\n",
1109  hostdata->sync_xfer[cmd->device->id]);
1110 #endif
1111  hostdata->sync_stat[cmd->device->id] =
1112  SS_SET;
1113  write_wd33c93_cmd(regs,
1115  hostdata->state = S_CONNECTED;
1116  break;
1117  case EXTENDED_WDTR:
1118  write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1119  printk("sending WDTR ");
1120  hostdata->outgoing_msg[0] =
1122  hostdata->outgoing_msg[1] = 2;
1123  hostdata->outgoing_msg[2] =
1124  EXTENDED_WDTR;
1125  hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1126  hostdata->outgoing_len = 4;
1127  write_wd33c93_cmd(regs,
1129  hostdata->state = S_CONNECTED;
1130  break;
1131  default:
1132  write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1133  printk
1134  ("Rejecting Unknown Extended Message(%02x). ",
1135  ucp[2]);
1136  hostdata->outgoing_msg[0] =
1138  hostdata->outgoing_len = 1;
1139  write_wd33c93_cmd(regs,
1141  hostdata->state = S_CONNECTED;
1142  break;
1143  }
1144  hostdata->incoming_ptr = 0;
1145  }
1146 
1147  /* We need to read more MESS_IN bytes for the extended message */
1148 
1149  else {
1150  hostdata->incoming_ptr++;
1151  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1152  hostdata->state = S_CONNECTED;
1153  }
1154  break;
1155 
1156  default:
1157  printk("Rejecting Unknown Message(%02x) ", msg);
1158  write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1159  hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1160  hostdata->outgoing_len = 1;
1161  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1162  hostdata->state = S_CONNECTED;
1163  }
1164  spin_unlock_irqrestore(&hostdata->lock, flags);
1165  break;
1166 
1167 /* Note: this interrupt will occur only after a LEVEL2 command */
1168 
1169  case CSR_SEL_XFER_DONE:
1170 
1171 /* Make sure that reselection is enabled at this point - it may
1172  * have been turned off for the command that just completed.
1173  */
1174 
1175  write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1176  if (phs == 0x60) {
1177  DB(DB_INTR, printk("SX-DONE"))
1178  cmd->SCp.Message = COMMAND_COMPLETE;
1179  lun = read_wd33c93(regs, WD_TARGET_LUN);
1180  DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1181  hostdata->connected = NULL;
1182  hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1183  hostdata->state = S_UNCONNECTED;
1184  if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1185  cmd->SCp.Status = lun;
1186  if (cmd->cmnd[0] == REQUEST_SENSE
1187  && cmd->SCp.Status != GOOD)
1188  cmd->result =
1189  (cmd->
1190  result & 0x00ffff) | (DID_ERROR << 16);
1191  else
1192  cmd->result =
1193  cmd->SCp.Status | (cmd->SCp.Message << 8);
1194  cmd->scsi_done(cmd);
1195 
1196 /* We are no longer connected to a target - check to see if
1197  * there are commands waiting to be executed.
1198  */
1199  spin_unlock_irqrestore(&hostdata->lock, flags);
1200  wd33c93_execute(instance);
1201  } else {
1202  printk
1203  ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---",
1204  asr, sr, phs);
1205  spin_unlock_irqrestore(&hostdata->lock, flags);
1206  }
1207  break;
1208 
1209 /* Note: this interrupt will occur only after a LEVEL2 command */
1210 
1211  case CSR_SDP:
1212  DB(DB_INTR, printk("SDP"))
1213  hostdata->state = S_RUNNING_LEVEL2;
1214  write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
1215  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1216  spin_unlock_irqrestore(&hostdata->lock, flags);
1217  break;
1218 
1219  case CSR_XFER_DONE | PHS_MESS_OUT:
1220  case CSR_UNEXP | PHS_MESS_OUT:
1221  case CSR_SRV_REQ | PHS_MESS_OUT:
1222  DB(DB_INTR, printk("MSG_OUT="))
1223 
1224 /* To get here, we've probably requested MESSAGE_OUT and have
1225  * already put the correct bytes in outgoing_msg[] and filled
1226  * in outgoing_len. We simply send them out to the SCSI bus.
1227  * Sometimes we get MESSAGE_OUT phase when we're not expecting
1228  * it - like when our SDTR message is rejected by a target. Some
1229  * targets send the REJECT before receiving all of the extended
1230  * message, and then seem to go back to MESSAGE_OUT for a byte
1231  * or two. Not sure why, or if I'm doing something wrong to
1232  * cause this to happen. Regardless, it seems that sending
1233  * NOP messages in these situations results in no harm and
1234  * makes everyone happy.
1235  */
1236  if (hostdata->outgoing_len == 0) {
1237  hostdata->outgoing_len = 1;
1238  hostdata->outgoing_msg[0] = NOP;
1239  }
1240  transfer_pio(regs, hostdata->outgoing_msg,
1241  hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1242  DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1243  hostdata->outgoing_len = 0;
1244  hostdata->state = S_CONNECTED;
1245  spin_unlock_irqrestore(&hostdata->lock, flags);
1246  break;
1247 
1248  case CSR_UNEXP_DISC:
1249 
1250 /* I think I've seen this after a request-sense that was in response
1251  * to an error condition, but not sure. We certainly need to do
1252  * something when we get this interrupt - the question is 'what?'.
1253  * Let's think positively, and assume some command has finished
1254  * in a legal manner (like a command that provokes a request-sense),
1255  * so we treat it as a normal command-complete-disconnect.
1256  */
1257 
1258 /* Make sure that reselection is enabled at this point - it may
1259  * have been turned off for the command that just completed.
1260  */
1261 
1262  write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1263  if (cmd == NULL) {
1264  printk(" - Already disconnected! ");
1265  hostdata->state = S_UNCONNECTED;
1266  spin_unlock_irqrestore(&hostdata->lock, flags);
1267  return;
1268  }
1269  DB(DB_INTR, printk("UNEXP_DISC"))
1270  hostdata->connected = NULL;
1271  hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1272  hostdata->state = S_UNCONNECTED;
1273  if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1274  cmd->result =
1275  (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1276  else
1277  cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1278  cmd->scsi_done(cmd);
1279 
1280 /* We are no longer connected to a target - check to see if
1281  * there are commands waiting to be executed.
1282  */
1283  /* look above for comments on scsi_done() */
1284  spin_unlock_irqrestore(&hostdata->lock, flags);
1285  wd33c93_execute(instance);
1286  break;
1287 
1288  case CSR_DISC:
1289 
1290 /* Make sure that reselection is enabled at this point - it may
1291  * have been turned off for the command that just completed.
1292  */
1293 
1294  write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1295  DB(DB_INTR, printk("DISC"))
1296  if (cmd == NULL) {
1297  printk(" - Already disconnected! ");
1298  hostdata->state = S_UNCONNECTED;
1299  }
1300  switch (hostdata->state) {
1301  case S_PRE_CMP_DISC:
1302  hostdata->connected = NULL;
1303  hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1304  hostdata->state = S_UNCONNECTED;
1305  DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1306  if (cmd->cmnd[0] == REQUEST_SENSE
1307  && cmd->SCp.Status != GOOD)
1308  cmd->result =
1309  (cmd->
1310  result & 0x00ffff) | (DID_ERROR << 16);
1311  else
1312  cmd->result =
1313  cmd->SCp.Status | (cmd->SCp.Message << 8);
1314  cmd->scsi_done(cmd);
1315  break;
1316  case S_PRE_TMP_DISC:
1317  case S_RUNNING_LEVEL2:
1318  cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1319  hostdata->disconnected_Q = cmd;
1320  hostdata->connected = NULL;
1321  hostdata->state = S_UNCONNECTED;
1322 
1323 #ifdef PROC_STATISTICS
1324  hostdata->disc_done_cnt[cmd->device->id]++;
1325 #endif
1326 
1327  break;
1328  default:
1329  printk("*** Unexpected DISCONNECT interrupt! ***");
1330  hostdata->state = S_UNCONNECTED;
1331  }
1332 
1333 /* We are no longer connected to a target - check to see if
1334  * there are commands waiting to be executed.
1335  */
1336  spin_unlock_irqrestore(&hostdata->lock, flags);
1337  wd33c93_execute(instance);
1338  break;
1339 
1340  case CSR_RESEL_AM:
1341  case CSR_RESEL:
1342  DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
1343 
1344  /* Old chips (pre -A ???) don't have advanced features and will
1345  * generate CSR_RESEL. In that case we have to extract the LUN the
1346  * hard way (see below).
1347  * First we have to make sure this reselection didn't
1348  * happen during Arbitration/Selection of some other device.
1349  * If yes, put losing command back on top of input_Q.
1350  */
1351  if (hostdata->level2 <= L2_NONE) {
1352 
1353  if (hostdata->selecting) {
1354  cmd = (struct scsi_cmnd *) hostdata->selecting;
1355  hostdata->selecting = NULL;
1356  hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1357  cmd->host_scribble =
1358  (uchar *) hostdata->input_Q;
1359  hostdata->input_Q = cmd;
1360  }
1361  }
1362 
1363  else {
1364 
1365  if (cmd) {
1366  if (phs == 0x00) {
1367  hostdata->busy[cmd->device->id] &=
1368  ~(1 << cmd->device->lun);
1369  cmd->host_scribble =
1370  (uchar *) hostdata->input_Q;
1371  hostdata->input_Q = cmd;
1372  } else {
1373  printk
1374  ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
1375  asr, sr, phs);
1376  while (1)
1377  printk("\r");
1378  }
1379  }
1380 
1381  }
1382 
1383  /* OK - find out which device reselected us. */
1384 
1385  id = read_wd33c93(regs, WD_SOURCE_ID);
1386  id &= SRCID_MASK;
1387 
1388  /* and extract the lun from the ID message. (Note that we don't
1389  * bother to check for a valid message here - I guess this is
1390  * not the right way to go, but...)
1391  */
1392 
1393  if (sr == CSR_RESEL_AM) {
1394  lun = read_wd33c93(regs, WD_DATA);
1395  if (hostdata->level2 < L2_RESELECT)
1396  write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1397  lun &= 7;
1398  } else {
1399  /* Old chip; wait for msgin phase to pick up the LUN. */
1400  for (lun = 255; lun; lun--) {
1401  if ((asr = read_aux_stat(regs)) & ASR_INT)
1402  break;
1403  udelay(10);
1404  }
1405  if (!(asr & ASR_INT)) {
1406  printk
1407  ("wd33c93: Reselected without IDENTIFY\n");
1408  lun = 0;
1409  } else {
1410  /* Verify this is a change to MSG_IN and read the message */
1411  sr = read_wd33c93(regs, WD_SCSI_STATUS);
1412  udelay(7);
1413  if (sr == (CSR_ABORT | PHS_MESS_IN) ||
1414  sr == (CSR_UNEXP | PHS_MESS_IN) ||
1415  sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
1416  /* Got MSG_IN, grab target LUN */
1417  lun = read_1_byte(regs);
1418  /* Now we expect a 'paused with ACK asserted' int.. */
1419  asr = read_aux_stat(regs);
1420  if (!(asr & ASR_INT)) {
1421  udelay(10);
1422  asr = read_aux_stat(regs);
1423  if (!(asr & ASR_INT))
1424  printk
1425  ("wd33c93: No int after LUN on RESEL (%02x)\n",
1426  asr);
1427  }
1428  sr = read_wd33c93(regs, WD_SCSI_STATUS);
1429  udelay(7);
1430  if (sr != CSR_MSGIN)
1431  printk
1432  ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
1433  sr);
1434  lun &= 7;
1435  write_wd33c93_cmd(regs,
1437  } else {
1438  printk
1439  ("wd33c93: Not MSG_IN on reselect (%02x)\n",
1440  sr);
1441  lun = 0;
1442  }
1443  }
1444  }
1445 
1446  /* Now we look for the command that's reconnecting. */
1447 
1448  cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
1449  patch = NULL;
1450  while (cmd) {
1451  if (id == cmd->device->id && lun == cmd->device->lun)
1452  break;
1453  patch = cmd;
1454  cmd = (struct scsi_cmnd *) cmd->host_scribble;
1455  }
1456 
1457  /* Hmm. Couldn't find a valid command.... What to do? */
1458 
1459  if (!cmd) {
1460  printk
1461  ("---TROUBLE: target %d.%d not in disconnect queue---",
1462  id, lun);
1463  spin_unlock_irqrestore(&hostdata->lock, flags);
1464  return;
1465  }
1466 
1467  /* Ok, found the command - now start it up again. */
1468 
1469  if (patch)
1470  patch->host_scribble = cmd->host_scribble;
1471  else
1472  hostdata->disconnected_Q =
1473  (struct scsi_cmnd *) cmd->host_scribble;
1474  hostdata->connected = cmd;
1475 
1476  /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1477  * because these things are preserved over a disconnect.
1478  * But we DO need to fix the DPD bit so it's correct for this command.
1479  */
1480 
1482  write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
1483  else
1484  write_wd33c93(regs, WD_DESTINATION_ID,
1485  cmd->device->id | DSTID_DPD);
1486  if (hostdata->level2 >= L2_RESELECT) {
1487  write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
1488  write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1489  write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1490  hostdata->state = S_RUNNING_LEVEL2;
1491  } else
1492  hostdata->state = S_CONNECTED;
1493 
1494  spin_unlock_irqrestore(&hostdata->lock, flags);
1495  break;
1496 
1497  default:
1498  printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1499  spin_unlock_irqrestore(&hostdata->lock, flags);
1500  }
1501 
1502  DB(DB_INTR, printk("} "))
1503 
1504 }
1505 
1506 static void
1507 reset_wd33c93(struct Scsi_Host *instance)
1508 {
1509  struct WD33C93_hostdata *hostdata =
1510  (struct WD33C93_hostdata *) instance->hostdata;
1511  const wd33c93_regs regs = hostdata->regs;
1512  uchar sr;
1513 
1514 #ifdef CONFIG_SGI_IP22
1515  {
1516  int busycount = 0;
1517  extern void sgiwd93_reset(unsigned long);
1518  /* wait 'til the chip gets some time for us */
1519  while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
1520  udelay (10);
1521  /*
1522  * there are scsi devices out there, which manage to lock up
1523  * the wd33c93 in a busy condition. In this state it won't
1524  * accept the reset command. The only way to solve this is to
1525  * give the chip a hardware reset (if possible). The code below
1526  * does this for the SGI Indy, where this is possible
1527  */
1528  /* still busy ? */
1529  if (read_aux_stat(regs) & ASR_BSY)
1530  sgiwd93_reset(instance->base); /* yeah, give it the hard one */
1531  }
1532 #endif
1533 
1534  write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
1535  instance->this_id | hostdata->clock_freq);
1536  write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1537  write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
1538  calc_sync_xfer(hostdata->default_sx_per / 4,
1539  DEFAULT_SX_OFF, 0, hostdata->sx_table));
1540  write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
1541 
1542 
1543 #ifdef CONFIG_MVME147_SCSI
1544  udelay(25); /* The old wd33c93 on MVME147 needs this, at least */
1545 #endif
1546 
1547  while (!(read_aux_stat(regs) & ASR_INT))
1548  ;
1549  sr = read_wd33c93(regs, WD_SCSI_STATUS);
1550 
1551  hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
1552  if (sr == 0x00)
1553  hostdata->chip = C_WD33C93;
1554  else if (sr == 0x01) {
1555  write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */
1556  sr = read_wd33c93(regs, WD_QUEUE_TAG);
1557  if (sr == 0xa5) {
1558  hostdata->chip = C_WD33C93B;
1559  write_wd33c93(regs, WD_QUEUE_TAG, 0);
1560  } else
1561  hostdata->chip = C_WD33C93A;
1562  } else
1563  hostdata->chip = C_UNKNOWN_CHIP;
1564 
1565  if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */
1566  hostdata->fast = 0;
1567 
1568  write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1569  write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1570 }
1571 
1572 int
1574 {
1575  struct Scsi_Host *instance;
1576  struct WD33C93_hostdata *hostdata;
1577  int i;
1578 
1579  instance = SCpnt->device->host;
1580  hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1581 
1582  printk("scsi%d: reset. ", instance->host_no);
1583  disable_irq(instance->irq);
1584 
1585  hostdata->dma_stop(instance, NULL, 0);
1586  for (i = 0; i < 8; i++) {
1587  hostdata->busy[i] = 0;
1588  hostdata->sync_xfer[i] =
1589  calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1590  0, hostdata->sx_table);
1591  hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1592  }
1593  hostdata->input_Q = NULL;
1594  hostdata->selecting = NULL;
1595  hostdata->connected = NULL;
1596  hostdata->disconnected_Q = NULL;
1597  hostdata->state = S_UNCONNECTED;
1598  hostdata->dma = D_DMA_OFF;
1599  hostdata->incoming_ptr = 0;
1600  hostdata->outgoing_len = 0;
1601 
1602  reset_wd33c93(instance);
1603  SCpnt->result = DID_RESET << 16;
1604  enable_irq(instance->irq);
1605  return SUCCESS;
1606 }
1607 
1608 int
1610 {
1611  struct Scsi_Host *instance;
1612  struct WD33C93_hostdata *hostdata;
1614  struct scsi_cmnd *tmp, *prev;
1615 
1616  disable_irq(cmd->device->host->irq);
1617 
1618  instance = cmd->device->host;
1619  hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1620  regs = hostdata->regs;
1621 
1622 /*
1623  * Case 1 : If the command hasn't been issued yet, we simply remove it
1624  * from the input_Q.
1625  */
1626 
1627  tmp = (struct scsi_cmnd *) hostdata->input_Q;
1628  prev = NULL;
1629  while (tmp) {
1630  if (tmp == cmd) {
1631  if (prev)
1632  prev->host_scribble = cmd->host_scribble;
1633  else
1634  hostdata->input_Q =
1635  (struct scsi_cmnd *) cmd->host_scribble;
1636  cmd->host_scribble = NULL;
1637  cmd->result = DID_ABORT << 16;
1638  printk
1639  ("scsi%d: Abort - removing command from input_Q. ",
1640  instance->host_no);
1641  enable_irq(cmd->device->host->irq);
1642  cmd->scsi_done(cmd);
1643  return SUCCESS;
1644  }
1645  prev = tmp;
1646  tmp = (struct scsi_cmnd *) tmp->host_scribble;
1647  }
1648 
1649 /*
1650  * Case 2 : If the command is connected, we're going to fail the abort
1651  * and let the high level SCSI driver retry at a later time or
1652  * issue a reset.
1653  *
1654  * Timeouts, and therefore aborted commands, will be highly unlikely
1655  * and handling them cleanly in this situation would make the common
1656  * case of noresets less efficient, and would pollute our code. So,
1657  * we fail.
1658  */
1659 
1660  if (hostdata->connected == cmd) {
1661  uchar sr, asr;
1662  unsigned long timeout;
1663 
1664  printk("scsi%d: Aborting connected command - ",
1665  instance->host_no);
1666 
1667  printk("stopping DMA - ");
1668  if (hostdata->dma == D_DMA_RUNNING) {
1669  hostdata->dma_stop(instance, cmd, 0);
1670  hostdata->dma = D_DMA_OFF;
1671  }
1672 
1673  printk("sending wd33c93 ABORT command - ");
1674  write_wd33c93(regs, WD_CONTROL,
1675  CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1676  write_wd33c93_cmd(regs, WD_CMD_ABORT);
1677 
1678 /* Now we have to attempt to flush out the FIFO... */
1679 
1680  printk("flushing fifo - ");
1681  timeout = 1000000;
1682  do {
1683  asr = read_aux_stat(regs);
1684  if (asr & ASR_DBR)
1685  read_wd33c93(regs, WD_DATA);
1686  } while (!(asr & ASR_INT) && timeout-- > 0);
1687  sr = read_wd33c93(regs, WD_SCSI_STATUS);
1688  printk
1689  ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1690  asr, sr, read_wd33c93_count(regs), timeout);
1691 
1692  /*
1693  * Abort command processed.
1694  * Still connected.
1695  * We must disconnect.
1696  */
1697 
1698  printk("sending wd33c93 DISCONNECT command - ");
1699  write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
1700 
1701  timeout = 1000000;
1702  asr = read_aux_stat(regs);
1703  while ((asr & ASR_CIP) && timeout-- > 0)
1704  asr = read_aux_stat(regs);
1705  sr = read_wd33c93(regs, WD_SCSI_STATUS);
1706  printk("asr=%02x, sr=%02x.", asr, sr);
1707 
1708  hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1709  hostdata->connected = NULL;
1710  hostdata->state = S_UNCONNECTED;
1711  cmd->result = DID_ABORT << 16;
1712 
1713 /* sti();*/
1714  wd33c93_execute(instance);
1715 
1716  enable_irq(cmd->device->host->irq);
1717  cmd->scsi_done(cmd);
1718  return SUCCESS;
1719  }
1720 
1721 /*
1722  * Case 3: If the command is currently disconnected from the bus,
1723  * we're not going to expend much effort here: Let's just return
1724  * an ABORT_SNOOZE and hope for the best...
1725  */
1726 
1727  tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
1728  while (tmp) {
1729  if (tmp == cmd) {
1730  printk
1731  ("scsi%d: Abort - command found on disconnected_Q - ",
1732  instance->host_no);
1733  printk("Abort SNOOZE. ");
1734  enable_irq(cmd->device->host->irq);
1735  return FAILED;
1736  }
1737  tmp = (struct scsi_cmnd *) tmp->host_scribble;
1738  }
1739 
1740 /*
1741  * Case 4 : If we reached this point, the command was not found in any of
1742  * the queues.
1743  *
1744  * We probably reached this point because of an unlikely race condition
1745  * between the command completing successfully and the abortion code,
1746  * so we won't panic, but we will notify the user in case something really
1747  * broke.
1748  */
1749 
1750 /* sti();*/
1751  wd33c93_execute(instance);
1752 
1753  enable_irq(cmd->device->host->irq);
1754  printk("scsi%d: warning : SCSI command probably completed successfully"
1755  " before abortion. ", instance->host_no);
1756  return FAILED;
1757 }
1758 
1759 #define MAX_WD33C93_HOSTS 4
1760 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1761 #define SETUP_BUFFER_SIZE 200
1762 static char setup_buffer[SETUP_BUFFER_SIZE];
1763 static char setup_used[MAX_SETUP_ARGS];
1764 static int done_setup = 0;
1765 
1766 static int
1767 wd33c93_setup(char *str)
1768 {
1769  int i;
1770  char *p1, *p2;
1771 
1772  /* The kernel does some processing of the command-line before calling
1773  * this function: If it begins with any decimal or hex number arguments,
1774  * ints[0] = how many numbers found and ints[1] through [n] are the values
1775  * themselves. str points to where the non-numeric arguments (if any)
1776  * start: We do our own parsing of those. We construct synthetic 'nosync'
1777  * keywords out of numeric args (to maintain compatibility with older
1778  * versions) and then add the rest of the arguments.
1779  */
1780 
1781  p1 = setup_buffer;
1782  *p1 = '\0';
1783  if (str)
1784  strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
1785  setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1786  p1 = setup_buffer;
1787  i = 0;
1788  while (*p1 && (i < MAX_SETUP_ARGS)) {
1789  p2 = strchr(p1, ',');
1790  if (p2) {
1791  *p2 = '\0';
1792  if (p1 != p2)
1793  setup_args[i] = p1;
1794  p1 = p2 + 1;
1795  i++;
1796  } else {
1797  setup_args[i] = p1;
1798  break;
1799  }
1800  }
1801  for (i = 0; i < MAX_SETUP_ARGS; i++)
1802  setup_used[i] = 0;
1803  done_setup = 1;
1804 
1805  return 1;
1806 }
1807 __setup("wd33c93=", wd33c93_setup);
1808 
1809 /* check_setup_args() returns index if key found, 0 if not
1810  */
1811 static int
1812 check_setup_args(char *key, int *flags, int *val, char *buf)
1813 {
1814  int x;
1815  char *cp;
1816 
1817  for (x = 0; x < MAX_SETUP_ARGS; x++) {
1818  if (setup_used[x])
1819  continue;
1820  if (!strncmp(setup_args[x], key, strlen(key)))
1821  break;
1822  if (!strncmp(setup_args[x], "next", strlen("next")))
1823  return 0;
1824  }
1825  if (x == MAX_SETUP_ARGS)
1826  return 0;
1827  setup_used[x] = 1;
1828  cp = setup_args[x] + strlen(key);
1829  *val = -1;
1830  if (*cp != ':')
1831  return ++x;
1832  cp++;
1833  if ((*cp >= '0') && (*cp <= '9')) {
1834  *val = simple_strtoul(cp, NULL, 0);
1835  }
1836  return ++x;
1837 }
1838 
1839 /*
1840  * Calculate internal data-transfer-clock cycle from input-clock
1841  * frequency (/MHz) and fill 'sx_table'.
1842  *
1843  * The original driver used to rely on a fixed sx_table, containing periods
1844  * for (only) the lower limits of the respective input-clock-frequency ranges
1845  * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with
1846  * this setting so far, it might be desirable to adjust the transfer periods
1847  * closer to the really attached, possibly 25% higher, input-clock, since
1848  * - the wd33c93 may really use a significant shorter period, than it has
1849  * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
1850  * instead).
1851  * - the wd33c93 may ask the target for a lower transfer rate, than the target
1852  * is capable of (eg. negotiating for an assumed minimum of 252ns instead of
1853  * possible 200ns, which indeed shows up in tests as an approx. 10% lower
1854  * transfer rate).
1855  */
1856 static inline unsigned int
1857 round_4(unsigned int x)
1858 {
1859  switch (x & 3) {
1860  case 1: --x;
1861  break;
1862  case 2: ++x;
1863  case 3: ++x;
1864  }
1865  return x;
1866 }
1867 
1868 static void
1869 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
1870 {
1871  unsigned int d, i;
1872  if (mhz < 11)
1873  d = 2; /* divisor for 8-10 MHz input-clock */
1874  else if (mhz < 16)
1875  d = 3; /* divisor for 12-15 MHz input-clock */
1876  else
1877  d = 4; /* divisor for 16-20 MHz input-clock */
1878 
1879  d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */
1880 
1881  sx_table[0].period_ns = 1;
1882  sx_table[0].reg_value = 0x20;
1883  for (i = 1; i < 8; i++) {
1884  sx_table[i].period_ns = round_4((i+1)*d / 100);
1885  sx_table[i].reg_value = (i+1)*0x10;
1886  }
1887  sx_table[7].reg_value = 0;
1888  sx_table[8].period_ns = 0;
1889  sx_table[8].reg_value = 0;
1890 }
1891 
1892 /*
1893  * check and, maybe, map an init- or "clock:"- argument.
1894  */
1895 static uchar
1896 set_clk_freq(int freq, int *mhz)
1897 {
1898  int x = freq;
1899  if (WD33C93_FS_8_10 == freq)
1900  freq = 8;
1901  else if (WD33C93_FS_12_15 == freq)
1902  freq = 12;
1903  else if (WD33C93_FS_16_20 == freq)
1904  freq = 16;
1905  else if (freq > 7 && freq < 11)
1906  x = WD33C93_FS_8_10;
1907  else if (freq > 11 && freq < 16)
1908  x = WD33C93_FS_12_15;
1909  else if (freq > 15 && freq < 21)
1910  x = WD33C93_FS_16_20;
1911  else {
1912  /* Hmm, wouldn't it be safer to assume highest freq here? */
1913  x = WD33C93_FS_8_10;
1914  freq = 8;
1915  }
1916  *mhz = freq;
1917  return x;
1918 }
1919 
1920 /*
1921  * to be used with the resync: fast: ... options
1922  */
1923 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
1924 {
1925  int i;
1926  for (i = 0; i < 8; i++)
1927  if (mask & (1 << i))
1928  hd->sync_stat[i] = SS_UNSET;
1929 }
1930 
1931 void
1932 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
1933  dma_setup_t setup, dma_stop_t stop, int clock_freq)
1934 {
1935  struct WD33C93_hostdata *hostdata;
1936  int i;
1937  int flags;
1938  int val;
1939  char buf[32];
1940 
1941  if (!done_setup && setup_strings)
1942  wd33c93_setup(setup_strings);
1943 
1944  hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1945 
1946  hostdata->regs = regs;
1947  hostdata->clock_freq = set_clk_freq(clock_freq, &i);
1948  calc_sx_table(i, hostdata->sx_table);
1949  hostdata->dma_setup = setup;
1950  hostdata->dma_stop = stop;
1951  hostdata->dma_bounce_buffer = NULL;
1952  hostdata->dma_bounce_len = 0;
1953  for (i = 0; i < 8; i++) {
1954  hostdata->busy[i] = 0;
1955  hostdata->sync_xfer[i] =
1956  calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1957  0, hostdata->sx_table);
1958  hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1959 #ifdef PROC_STATISTICS
1960  hostdata->cmd_cnt[i] = 0;
1961  hostdata->disc_allowed_cnt[i] = 0;
1962  hostdata->disc_done_cnt[i] = 0;
1963 #endif
1964  }
1965  hostdata->input_Q = NULL;
1966  hostdata->selecting = NULL;
1967  hostdata->connected = NULL;
1968  hostdata->disconnected_Q = NULL;
1969  hostdata->state = S_UNCONNECTED;
1970  hostdata->dma = D_DMA_OFF;
1971  hostdata->level2 = L2_BASIC;
1972  hostdata->disconnect = DIS_ADAPTIVE;
1973  hostdata->args = DEBUG_DEFAULTS;
1974  hostdata->incoming_ptr = 0;
1975  hostdata->outgoing_len = 0;
1976  hostdata->default_sx_per = DEFAULT_SX_PER;
1977  hostdata->no_dma = 0; /* default is DMA enabled */
1978 
1979 #ifdef PROC_INTERFACE
1980  hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
1982 #ifdef PROC_STATISTICS
1983  hostdata->dma_cnt = 0;
1984  hostdata->pio_cnt = 0;
1985  hostdata->int_cnt = 0;
1986 #endif
1987 #endif
1988 
1989  if (check_setup_args("clock", &flags, &val, buf)) {
1990  hostdata->clock_freq = set_clk_freq(val, &val);
1991  calc_sx_table(val, hostdata->sx_table);
1992  }
1993 
1994  if (check_setup_args("nosync", &flags, &val, buf))
1995  hostdata->no_sync = val;
1996 
1997  if (check_setup_args("nodma", &flags, &val, buf))
1998  hostdata->no_dma = (val == -1) ? 1 : val;
1999 
2000  if (check_setup_args("period", &flags, &val, buf))
2001  hostdata->default_sx_per =
2002  hostdata->sx_table[round_period((unsigned int) val,
2003  hostdata->sx_table)].period_ns;
2004 
2005  if (check_setup_args("disconnect", &flags, &val, buf)) {
2006  if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2007  hostdata->disconnect = val;
2008  else
2009  hostdata->disconnect = DIS_ADAPTIVE;
2010  }
2011 
2012  if (check_setup_args("level2", &flags, &val, buf))
2013  hostdata->level2 = val;
2014 
2015  if (check_setup_args("debug", &flags, &val, buf))
2016  hostdata->args = val & DB_MASK;
2017 
2018  if (check_setup_args("burst", &flags, &val, buf))
2019  hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;
2020 
2021  if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
2022  && check_setup_args("fast", &flags, &val, buf))
2023  hostdata->fast = !!val;
2024 
2025  if ((i = check_setup_args("next", &flags, &val, buf))) {
2026  while (i)
2027  setup_used[--i] = 1;
2028  }
2029 #ifdef PROC_INTERFACE
2030  if (check_setup_args("proc", &flags, &val, buf))
2031  hostdata->proc = val;
2032 #endif
2033 
2034  spin_lock_irq(&hostdata->lock);
2035  reset_wd33c93(instance);
2036  spin_unlock_irq(&hostdata->lock);
2037 
2038  printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
2039  instance->host_no,
2040  (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
2041  C_WD33C93A) ?
2042  "WD33c93A" : (hostdata->chip ==
2043  C_WD33C93B) ? "WD33c93B" : "unknown",
2044  hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
2045 #ifdef DEBUGGING_ON
2046  printk(" debug_flags=0x%02x\n", hostdata->args);
2047 #else
2048  printk(" debugging=OFF\n");
2049 #endif
2050  printk(" setup_args=");
2051  for (i = 0; i < MAX_SETUP_ARGS; i++)
2052  printk("%s,", setup_args[i]);
2053  printk("\n");
2054  printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE);
2055 }
2056 
2057 int
2058 wd33c93_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in)
2059 {
2060 
2061 #ifdef PROC_INTERFACE
2062 
2063  char *bp;
2064  char tbuf[128];
2065  struct WD33C93_hostdata *hd;
2066  struct scsi_cmnd *cmd;
2067  int x;
2068  static int stop = 0;
2069 
2070  hd = (struct WD33C93_hostdata *) instance->hostdata;
2071 
2072 /* If 'in' is TRUE we need to _read_ the proc file. We accept the following
2073  * keywords (same format as command-line, but arguments are not optional):
2074  * debug
2075  * disconnect
2076  * period
2077  * resync
2078  * proc
2079  * nodma
2080  * level2
2081  * burst
2082  * fast
2083  * nosync
2084  */
2085 
2086  if (in) {
2087  buf[len] = '\0';
2088  for (bp = buf; *bp; ) {
2089  while (',' == *bp || ' ' == *bp)
2090  ++bp;
2091  if (!strncmp(bp, "debug:", 6)) {
2092  hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
2093  } else if (!strncmp(bp, "disconnect:", 11)) {
2094  x = simple_strtoul(bp+11, &bp, 0);
2095  if (x < DIS_NEVER || x > DIS_ALWAYS)
2096  x = DIS_ADAPTIVE;
2097  hd->disconnect = x;
2098  } else if (!strncmp(bp, "period:", 7)) {
2099  x = simple_strtoul(bp+7, &bp, 0);
2100  hd->default_sx_per =
2101  hd->sx_table[round_period((unsigned int) x,
2102  hd->sx_table)].period_ns;
2103  } else if (!strncmp(bp, "resync:", 7)) {
2104  set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
2105  } else if (!strncmp(bp, "proc:", 5)) {
2106  hd->proc = simple_strtoul(bp+5, &bp, 0);
2107  } else if (!strncmp(bp, "nodma:", 6)) {
2108  hd->no_dma = simple_strtoul(bp+6, &bp, 0);
2109  } else if (!strncmp(bp, "level2:", 7)) {
2110  hd->level2 = simple_strtoul(bp+7, &bp, 0);
2111  } else if (!strncmp(bp, "burst:", 6)) {
2112  hd->dma_mode =
2113  simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
2114  } else if (!strncmp(bp, "fast:", 5)) {
2115  x = !!simple_strtol(bp+5, &bp, 0);
2116  if (x != hd->fast)
2117  set_resync(hd, 0xff);
2118  hd->fast = x;
2119  } else if (!strncmp(bp, "nosync:", 7)) {
2120  x = simple_strtoul(bp+7, &bp, 0);
2121  set_resync(hd, x ^ hd->no_sync);
2122  hd->no_sync = x;
2123  } else {
2124  break; /* unknown keyword,syntax-error,... */
2125  }
2126  }
2127  return len;
2128  }
2129 
2130  spin_lock_irq(&hd->lock);
2131  bp = buf;
2132  *bp = '\0';
2133  if (hd->proc & PR_VERSION) {
2134  sprintf(tbuf, "\nVersion %s - %s.",
2136  strcat(bp, tbuf);
2137  }
2138  if (hd->proc & PR_INFO) {
2139  sprintf(tbuf, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
2140  " dma_mode=%02x fast=%d",
2141  hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
2142  strcat(bp, tbuf);
2143  strcat(bp, "\nsync_xfer[] = ");
2144  for (x = 0; x < 7; x++) {
2145  sprintf(tbuf, "\t%02x", hd->sync_xfer[x]);
2146  strcat(bp, tbuf);
2147  }
2148  strcat(bp, "\nsync_stat[] = ");
2149  for (x = 0; x < 7; x++) {
2150  sprintf(tbuf, "\t%02x", hd->sync_stat[x]);
2151  strcat(bp, tbuf);
2152  }
2153  }
2154 #ifdef PROC_STATISTICS
2155  if (hd->proc & PR_STATISTICS) {
2156  strcat(bp, "\ncommands issued: ");
2157  for (x = 0; x < 7; x++) {
2158  sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]);
2159  strcat(bp, tbuf);
2160  }
2161  strcat(bp, "\ndisconnects allowed:");
2162  for (x = 0; x < 7; x++) {
2163  sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]);
2164  strcat(bp, tbuf);
2165  }
2166  strcat(bp, "\ndisconnects done: ");
2167  for (x = 0; x < 7; x++) {
2168  sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]);
2169  strcat(bp, tbuf);
2170  }
2171  sprintf(tbuf,
2172  "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
2173  hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
2174  strcat(bp, tbuf);
2175  }
2176 #endif
2177  if (hd->proc & PR_CONNECTED) {
2178  strcat(bp, "\nconnected: ");
2179  if (hd->connected) {
2180  cmd = (struct scsi_cmnd *) hd->connected;
2181  sprintf(tbuf, " %d:%d(%02x)",
2182  cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2183  strcat(bp, tbuf);
2184  }
2185  }
2186  if (hd->proc & PR_INPUTQ) {
2187  strcat(bp, "\ninput_Q: ");
2188  cmd = (struct scsi_cmnd *) hd->input_Q;
2189  while (cmd) {
2190  sprintf(tbuf, " %d:%d(%02x)",
2191  cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2192  strcat(bp, tbuf);
2193  cmd = (struct scsi_cmnd *) cmd->host_scribble;
2194  }
2195  }
2196  if (hd->proc & PR_DISCQ) {
2197  strcat(bp, "\ndisconnected_Q:");
2198  cmd = (struct scsi_cmnd *) hd->disconnected_Q;
2199  while (cmd) {
2200  sprintf(tbuf, " %d:%d(%02x)",
2201  cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2202  strcat(bp, tbuf);
2203  cmd = (struct scsi_cmnd *) cmd->host_scribble;
2204  }
2205  }
2206  strcat(bp, "\n");
2207  spin_unlock_irq(&hd->lock);
2208  *start = buf;
2209  if (stop) {
2210  stop = 0;
2211  return 0;
2212  }
2213  if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */
2214  stop = 1;
2215  if (hd->proc & PR_STOP) /* stop every other time */
2216  stop = 1;
2217  return strlen(bp);
2218 
2219 #else /* PROC_INTERFACE */
2220 
2221  return 0;
2222 
2223 #endif /* PROC_INTERFACE */
2224 
2225 }
2226