Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_file.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_ioctl.h"
35 #include "xfs_trace.h"
36 
37 #include <linux/dcache.h>
38 #include <linux/falloc.h>
39 #include <linux/pagevec.h>
40 
41 static const struct vm_operations_struct xfs_file_vm_ops;
42 
43 /*
44  * Locking primitives for read and write IO paths to ensure we consistently use
45  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
46  */
47 static inline void
48 xfs_rw_ilock(
49  struct xfs_inode *ip,
50  int type)
51 {
52  if (type & XFS_IOLOCK_EXCL)
53  mutex_lock(&VFS_I(ip)->i_mutex);
54  xfs_ilock(ip, type);
55 }
56 
57 static inline void
58 xfs_rw_iunlock(
59  struct xfs_inode *ip,
60  int type)
61 {
62  xfs_iunlock(ip, type);
63  if (type & XFS_IOLOCK_EXCL)
64  mutex_unlock(&VFS_I(ip)->i_mutex);
65 }
66 
67 static inline void
68 xfs_rw_ilock_demote(
69  struct xfs_inode *ip,
70  int type)
71 {
72  xfs_ilock_demote(ip, type);
73  if (type & XFS_IOLOCK_EXCL)
74  mutex_unlock(&VFS_I(ip)->i_mutex);
75 }
76 
77 /*
78  * xfs_iozero
79  *
80  * xfs_iozero clears the specified range of buffer supplied,
81  * and marks all the affected blocks as valid and modified. If
82  * an affected block is not allocated, it will be allocated. If
83  * an affected block is not completely overwritten, and is not
84  * valid before the operation, it will be read from disk before
85  * being partially zeroed.
86  */
87 STATIC int
89  struct xfs_inode *ip, /* inode */
90  loff_t pos, /* offset in file */
91  size_t count) /* size of data to zero */
92 {
93  struct page *page;
94  struct address_space *mapping;
95  int status;
96 
97  mapping = VFS_I(ip)->i_mapping;
98  do {
99  unsigned offset, bytes;
100  void *fsdata;
101 
102  offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
103  bytes = PAGE_CACHE_SIZE - offset;
104  if (bytes > count)
105  bytes = count;
106 
107  status = pagecache_write_begin(NULL, mapping, pos, bytes,
109  &page, &fsdata);
110  if (status)
111  break;
112 
113  zero_user(page, offset, bytes);
114 
115  status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
116  page, fsdata);
117  WARN_ON(status <= 0); /* can't return less than zero! */
118  pos += bytes;
119  count -= bytes;
120  status = 0;
121  } while (count);
122 
123  return (-status);
124 }
125 
126 /*
127  * Fsync operations on directories are much simpler than on regular files,
128  * as there is no file data to flush, and thus also no need for explicit
129  * cache flush operations, and there are no non-transaction metadata updates
130  * on directories either.
131  */
132 STATIC int
134  struct file *file,
135  loff_t start,
136  loff_t end,
137  int datasync)
138 {
139  struct xfs_inode *ip = XFS_I(file->f_mapping->host);
140  struct xfs_mount *mp = ip->i_mount;
141  xfs_lsn_t lsn = 0;
142 
143  trace_xfs_dir_fsync(ip);
144 
145  xfs_ilock(ip, XFS_ILOCK_SHARED);
146  if (xfs_ipincount(ip))
147  lsn = ip->i_itemp->ili_last_lsn;
148  xfs_iunlock(ip, XFS_ILOCK_SHARED);
149 
150  if (!lsn)
151  return 0;
152  return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
153 }
154 
155 STATIC int
157  struct file *file,
158  loff_t start,
159  loff_t end,
160  int datasync)
161 {
162  struct inode *inode = file->f_mapping->host;
163  struct xfs_inode *ip = XFS_I(inode);
164  struct xfs_mount *mp = ip->i_mount;
165  int error = 0;
166  int log_flushed = 0;
167  xfs_lsn_t lsn = 0;
168 
169  trace_xfs_file_fsync(ip);
170 
171  error = filemap_write_and_wait_range(inode->i_mapping, start, end);
172  if (error)
173  return error;
174 
175  if (XFS_FORCED_SHUTDOWN(mp))
176  return -XFS_ERROR(EIO);
177 
178  xfs_iflags_clear(ip, XFS_ITRUNCATED);
179 
180  if (mp->m_flags & XFS_MOUNT_BARRIER) {
181  /*
182  * If we have an RT and/or log subvolume we need to make sure
183  * to flush the write cache the device used for file data
184  * first. This is to ensure newly written file data make
185  * it to disk before logging the new inode size in case of
186  * an extending write.
187  */
188  if (XFS_IS_REALTIME_INODE(ip))
189  xfs_blkdev_issue_flush(mp->m_rtdev_targp);
190  else if (mp->m_logdev_targp != mp->m_ddev_targp)
191  xfs_blkdev_issue_flush(mp->m_ddev_targp);
192  }
193 
194  /*
195  * All metadata updates are logged, which means that we just have
196  * to flush the log up to the latest LSN that touched the inode.
197  */
198  xfs_ilock(ip, XFS_ILOCK_SHARED);
199  if (xfs_ipincount(ip)) {
200  if (!datasync ||
201  (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
202  lsn = ip->i_itemp->ili_last_lsn;
203  }
204  xfs_iunlock(ip, XFS_ILOCK_SHARED);
205 
206  if (lsn)
207  error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
208 
209  /*
210  * If we only have a single device, and the log force about was
211  * a no-op we might have to flush the data device cache here.
212  * This can only happen for fdatasync/O_DSYNC if we were overwriting
213  * an already allocated file and thus do not have any metadata to
214  * commit.
215  */
216  if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
217  mp->m_logdev_targp == mp->m_ddev_targp &&
218  !XFS_IS_REALTIME_INODE(ip) &&
219  !log_flushed)
220  xfs_blkdev_issue_flush(mp->m_ddev_targp);
221 
222  return -error;
223 }
224 
227  struct kiocb *iocb,
228  const struct iovec *iovp,
229  unsigned long nr_segs,
230  loff_t pos)
231 {
232  struct file *file = iocb->ki_filp;
233  struct inode *inode = file->f_mapping->host;
234  struct xfs_inode *ip = XFS_I(inode);
235  struct xfs_mount *mp = ip->i_mount;
236  size_t size = 0;
237  ssize_t ret = 0;
238  int ioflags = 0;
239  xfs_fsize_t n;
240 
241  XFS_STATS_INC(xs_read_calls);
242 
243  BUG_ON(iocb->ki_pos != pos);
244 
245  if (unlikely(file->f_flags & O_DIRECT))
246  ioflags |= IO_ISDIRECT;
247  if (file->f_mode & FMODE_NOCMTIME)
248  ioflags |= IO_INVIS;
249 
250  ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
251  if (ret < 0)
252  return ret;
253 
254  if (unlikely(ioflags & IO_ISDIRECT)) {
257  mp->m_rtdev_targp : mp->m_ddev_targp;
258  if ((iocb->ki_pos & target->bt_smask) ||
259  (size & target->bt_smask)) {
260  if (iocb->ki_pos == i_size_read(inode))
261  return 0;
262  return -XFS_ERROR(EINVAL);
263  }
264  }
265 
266  n = mp->m_super->s_maxbytes - iocb->ki_pos;
267  if (n <= 0 || size == 0)
268  return 0;
269 
270  if (n < size)
271  size = n;
272 
273  if (XFS_FORCED_SHUTDOWN(mp))
274  return -EIO;
275 
276  /*
277  * Locking is a bit tricky here. If we take an exclusive lock
278  * for direct IO, we effectively serialise all new concurrent
279  * read IO to this file and block it behind IO that is currently in
280  * progress because IO in progress holds the IO lock shared. We only
281  * need to hold the lock exclusive to blow away the page cache, so
282  * only take lock exclusively if the page cache needs invalidation.
283  * This allows the normal direct IO case of no page cache pages to
284  * proceeed concurrently without serialisation.
285  */
286  xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
287  if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
288  xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
289  xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
290 
291  if (inode->i_mapping->nrpages) {
292  ret = -xfs_flushinval_pages(ip,
293  (iocb->ki_pos & PAGE_CACHE_MASK),
294  -1, FI_REMAPF_LOCKED);
295  if (ret) {
296  xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
297  return ret;
298  }
299  }
300  xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
301  }
302 
303  trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
304 
305  ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
306  if (ret > 0)
307  XFS_STATS_ADD(xs_read_bytes, ret);
308 
309  xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
310  return ret;
311 }
312 
315  struct file *infilp,
316  loff_t *ppos,
317  struct pipe_inode_info *pipe,
318  size_t count,
319  unsigned int flags)
320 {
321  struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
322  int ioflags = 0;
323  ssize_t ret;
324 
325  XFS_STATS_INC(xs_read_calls);
326 
327  if (infilp->f_mode & FMODE_NOCMTIME)
328  ioflags |= IO_INVIS;
329 
330  if (XFS_FORCED_SHUTDOWN(ip->i_mount))
331  return -EIO;
332 
333  xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
334 
335  trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
336 
337  ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
338  if (ret > 0)
339  XFS_STATS_ADD(xs_read_bytes, ret);
340 
341  xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
342  return ret;
343 }
344 
345 /*
346  * xfs_file_splice_write() does not use xfs_rw_ilock() because
347  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
348  * couuld cause lock inversions between the aio_write path and the splice path
349  * if someone is doing concurrent splice(2) based writes and write(2) based
350  * writes to the same inode. The only real way to fix this is to re-implement
351  * the generic code here with correct locking orders.
352  */
355  struct pipe_inode_info *pipe,
356  struct file *outfilp,
357  loff_t *ppos,
358  size_t count,
359  unsigned int flags)
360 {
361  struct inode *inode = outfilp->f_mapping->host;
362  struct xfs_inode *ip = XFS_I(inode);
363  int ioflags = 0;
364  ssize_t ret;
365 
366  XFS_STATS_INC(xs_write_calls);
367 
368  if (outfilp->f_mode & FMODE_NOCMTIME)
369  ioflags |= IO_INVIS;
370 
371  if (XFS_FORCED_SHUTDOWN(ip->i_mount))
372  return -EIO;
373 
374  xfs_ilock(ip, XFS_IOLOCK_EXCL);
375 
376  trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
377 
378  ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
379  if (ret > 0)
380  XFS_STATS_ADD(xs_write_bytes, ret);
381 
382  xfs_iunlock(ip, XFS_IOLOCK_EXCL);
383  return ret;
384 }
385 
386 /*
387  * This routine is called to handle zeroing any space in the last block of the
388  * file that is beyond the EOF. We do this since the size is being increased
389  * without writing anything to that block and we don't want to read the
390  * garbage on the disk.
391  */
392 STATIC int /* error (positive) */
394  struct xfs_inode *ip,
396  xfs_fsize_t isize)
397 {
398  struct xfs_mount *mp = ip->i_mount;
399  xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
400  int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
401  int zero_len;
402  int nimaps = 1;
403  int error = 0;
404  struct xfs_bmbt_irec imap;
405 
406  xfs_ilock(ip, XFS_ILOCK_EXCL);
407  error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
408  xfs_iunlock(ip, XFS_ILOCK_EXCL);
409  if (error)
410  return error;
411 
412  ASSERT(nimaps > 0);
413 
414  /*
415  * If the block underlying isize is just a hole, then there
416  * is nothing to zero.
417  */
418  if (imap.br_startblock == HOLESTARTBLOCK)
419  return 0;
420 
421  zero_len = mp->m_sb.sb_blocksize - zero_offset;
422  if (isize + zero_len > offset)
423  zero_len = offset - isize;
424  return xfs_iozero(ip, isize, zero_len);
425 }
426 
427 /*
428  * Zero any on disk space between the current EOF and the new, larger EOF.
429  *
430  * This handles the normal case of zeroing the remainder of the last block in
431  * the file and the unusual case of zeroing blocks out beyond the size of the
432  * file. This second case only happens with fixed size extents and when the
433  * system crashes before the inode size was updated but after blocks were
434  * allocated.
435  *
436  * Expects the iolock to be held exclusive, and will take the ilock internally.
437  */
438 int /* error (positive) */
440  struct xfs_inode *ip,
441  xfs_off_t offset, /* starting I/O offset */
442  xfs_fsize_t isize) /* current inode size */
443 {
444  struct xfs_mount *mp = ip->i_mount;
445  xfs_fileoff_t start_zero_fsb;
446  xfs_fileoff_t end_zero_fsb;
447  xfs_fileoff_t zero_count_fsb;
448  xfs_fileoff_t last_fsb;
449  xfs_fileoff_t zero_off;
450  xfs_fsize_t zero_len;
451  int nimaps;
452  int error = 0;
453  struct xfs_bmbt_irec imap;
454 
455  ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
456  ASSERT(offset > isize);
457 
458  /*
459  * First handle zeroing the block on which isize resides.
460  *
461  * We only zero a part of that block so it is handled specially.
462  */
463  if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
464  error = xfs_zero_last_block(ip, offset, isize);
465  if (error)
466  return error;
467  }
468 
469  /*
470  * Calculate the range between the new size and the old where blocks
471  * needing to be zeroed may exist.
472  *
473  * To get the block where the last byte in the file currently resides,
474  * we need to subtract one from the size and truncate back to a block
475  * boundary. We subtract 1 in case the size is exactly on a block
476  * boundary.
477  */
478  last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
479  start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
480  end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
481  ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
482  if (last_fsb == end_zero_fsb) {
483  /*
484  * The size was only incremented on its last block.
485  * We took care of that above, so just return.
486  */
487  return 0;
488  }
489 
490  ASSERT(start_zero_fsb <= end_zero_fsb);
491  while (start_zero_fsb <= end_zero_fsb) {
492  nimaps = 1;
493  zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
494 
495  xfs_ilock(ip, XFS_ILOCK_EXCL);
496  error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
497  &imap, &nimaps, 0);
498  xfs_iunlock(ip, XFS_ILOCK_EXCL);
499  if (error)
500  return error;
501 
502  ASSERT(nimaps > 0);
503 
504  if (imap.br_state == XFS_EXT_UNWRITTEN ||
505  imap.br_startblock == HOLESTARTBLOCK) {
506  start_zero_fsb = imap.br_startoff + imap.br_blockcount;
507  ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
508  continue;
509  }
510 
511  /*
512  * There are blocks we need to zero.
513  */
514  zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
515  zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
516 
517  if ((zero_off + zero_len) > offset)
518  zero_len = offset - zero_off;
519 
520  error = xfs_iozero(ip, zero_off, zero_len);
521  if (error)
522  return error;
523 
524  start_zero_fsb = imap.br_startoff + imap.br_blockcount;
525  ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
526  }
527 
528  return 0;
529 }
530 
531 /*
532  * Common pre-write limit and setup checks.
533  *
534  * Called with the iolocked held either shared and exclusive according to
535  * @iolock, and returns with it held. Might upgrade the iolock to exclusive
536  * if called for a direct write beyond i_size.
537  */
540  struct file *file,
541  loff_t *pos,
542  size_t *count,
543  int *iolock)
544 {
545  struct inode *inode = file->f_mapping->host;
546  struct xfs_inode *ip = XFS_I(inode);
547  int error = 0;
548 
549 restart:
550  error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
551  if (error)
552  return error;
553 
554  /*
555  * If the offset is beyond the size of the file, we need to zero any
556  * blocks that fall between the existing EOF and the start of this
557  * write. If zeroing is needed and we are currently holding the
558  * iolock shared, we need to update it to exclusive which implies
559  * having to redo all checks before.
560  */
561  if (*pos > i_size_read(inode)) {
562  if (*iolock == XFS_IOLOCK_SHARED) {
563  xfs_rw_iunlock(ip, *iolock);
564  *iolock = XFS_IOLOCK_EXCL;
565  xfs_rw_ilock(ip, *iolock);
566  goto restart;
567  }
568  error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
569  if (error)
570  return error;
571  }
572 
573  /*
574  * Updating the timestamps will grab the ilock again from
575  * xfs_fs_dirty_inode, so we have to call it after dropping the
576  * lock above. Eventually we should look into a way to avoid
577  * the pointless lock roundtrip.
578  */
579  if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
580  error = file_update_time(file);
581  if (error)
582  return error;
583  }
584 
585  /*
586  * If we're writing the file then make sure to clear the setuid and
587  * setgid bits if the process is not being run by root. This keeps
588  * people from modifying setuid and setgid binaries.
589  */
590  return file_remove_suid(file);
591 }
592 
593 /*
594  * xfs_file_dio_aio_write - handle direct IO writes
595  *
596  * Lock the inode appropriately to prepare for and issue a direct IO write.
597  * By separating it from the buffered write path we remove all the tricky to
598  * follow locking changes and looping.
599  *
600  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
601  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
602  * pages are flushed out.
603  *
604  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
605  * allowing them to be done in parallel with reads and other direct IO writes.
606  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
607  * needs to do sub-block zeroing and that requires serialisation against other
608  * direct IOs to the same block. In this case we need to serialise the
609  * submission of the unaligned IOs so that we don't get racing block zeroing in
610  * the dio layer. To avoid the problem with aio, we also need to wait for
611  * outstanding IOs to complete so that unwritten extent conversion is completed
612  * before we try to map the overlapping block. This is currently implemented by
613  * hitting it with a big hammer (i.e. inode_dio_wait()).
614  *
615  * Returns with locks held indicated by @iolock and errors indicated by
616  * negative return values.
617  */
620  struct kiocb *iocb,
621  const struct iovec *iovp,
622  unsigned long nr_segs,
623  loff_t pos,
624  size_t ocount)
625 {
626  struct file *file = iocb->ki_filp;
627  struct address_space *mapping = file->f_mapping;
628  struct inode *inode = mapping->host;
629  struct xfs_inode *ip = XFS_I(inode);
630  struct xfs_mount *mp = ip->i_mount;
631  ssize_t ret = 0;
632  size_t count = ocount;
633  int unaligned_io = 0;
634  int iolock;
636  mp->m_rtdev_targp : mp->m_ddev_targp;
637 
638  if ((pos & target->bt_smask) || (count & target->bt_smask))
639  return -XFS_ERROR(EINVAL);
640 
641  if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
642  unaligned_io = 1;
643 
644  /*
645  * We don't need to take an exclusive lock unless there page cache needs
646  * to be invalidated or unaligned IO is being executed. We don't need to
647  * consider the EOF extension case here because
648  * xfs_file_aio_write_checks() will relock the inode as necessary for
649  * EOF zeroing cases and fill out the new inode size as appropriate.
650  */
651  if (unaligned_io || mapping->nrpages)
652  iolock = XFS_IOLOCK_EXCL;
653  else
654  iolock = XFS_IOLOCK_SHARED;
655  xfs_rw_ilock(ip, iolock);
656 
657  /*
658  * Recheck if there are cached pages that need invalidate after we got
659  * the iolock to protect against other threads adding new pages while
660  * we were waiting for the iolock.
661  */
662  if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
663  xfs_rw_iunlock(ip, iolock);
664  iolock = XFS_IOLOCK_EXCL;
665  xfs_rw_ilock(ip, iolock);
666  }
667 
668  ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
669  if (ret)
670  goto out;
671 
672  if (mapping->nrpages) {
673  ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
675  if (ret)
676  goto out;
677  }
678 
679  /*
680  * If we are doing unaligned IO, wait for all other IO to drain,
681  * otherwise demote the lock if we had to flush cached pages
682  */
683  if (unaligned_io)
684  inode_dio_wait(inode);
685  else if (iolock == XFS_IOLOCK_EXCL) {
686  xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
687  iolock = XFS_IOLOCK_SHARED;
688  }
689 
690  trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
691  ret = generic_file_direct_write(iocb, iovp,
692  &nr_segs, pos, &iocb->ki_pos, count, ocount);
693 
694 out:
695  xfs_rw_iunlock(ip, iolock);
696 
697  /* No fallback to buffered IO on errors for XFS. */
698  ASSERT(ret < 0 || ret == count);
699  return ret;
700 }
701 
704  struct kiocb *iocb,
705  const struct iovec *iovp,
706  unsigned long nr_segs,
707  loff_t pos,
708  size_t ocount)
709 {
710  struct file *file = iocb->ki_filp;
711  struct address_space *mapping = file->f_mapping;
712  struct inode *inode = mapping->host;
713  struct xfs_inode *ip = XFS_I(inode);
714  ssize_t ret;
715  int enospc = 0;
716  int iolock = XFS_IOLOCK_EXCL;
717  size_t count = ocount;
718 
719  xfs_rw_ilock(ip, iolock);
720 
721  ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
722  if (ret)
723  goto out;
724 
725  /* We can write back this queue in page reclaim */
726  current->backing_dev_info = mapping->backing_dev_info;
727 
728 write_retry:
729  trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
730  ret = generic_file_buffered_write(iocb, iovp, nr_segs,
731  pos, &iocb->ki_pos, count, ret);
732  /*
733  * if we just got an ENOSPC, flush the inode now we aren't holding any
734  * page locks and retry *once*
735  */
736  if (ret == -ENOSPC && !enospc) {
737  enospc = 1;
738  ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
739  if (!ret)
740  goto write_retry;
741  }
742 
743  current->backing_dev_info = NULL;
744 out:
745  xfs_rw_iunlock(ip, iolock);
746  return ret;
747 }
748 
751  struct kiocb *iocb,
752  const struct iovec *iovp,
753  unsigned long nr_segs,
754  loff_t pos)
755 {
756  struct file *file = iocb->ki_filp;
757  struct address_space *mapping = file->f_mapping;
758  struct inode *inode = mapping->host;
759  struct xfs_inode *ip = XFS_I(inode);
760  ssize_t ret;
761  size_t ocount = 0;
762 
763  XFS_STATS_INC(xs_write_calls);
764 
765  BUG_ON(iocb->ki_pos != pos);
766 
767  ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
768  if (ret)
769  return ret;
770 
771  if (ocount == 0)
772  return 0;
773 
774  sb_start_write(inode->i_sb);
775 
776  if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
777  ret = -EIO;
778  goto out;
779  }
780 
781  if (unlikely(file->f_flags & O_DIRECT))
782  ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
783  else
784  ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
785  ocount);
786 
787  if (ret > 0) {
788  ssize_t err;
789 
790  XFS_STATS_ADD(xs_write_bytes, ret);
791 
792  /* Handle various SYNC-type writes */
793  err = generic_write_sync(file, pos, ret);
794  if (err < 0)
795  ret = err;
796  }
797 
798 out:
799  sb_end_write(inode->i_sb);
800  return ret;
801 }
802 
803 STATIC long
805  struct file *file,
806  int mode,
807  loff_t offset,
808  loff_t len)
809 {
810  struct inode *inode = file->f_path.dentry->d_inode;
811  long error;
812  loff_t new_size = 0;
814  xfs_inode_t *ip = XFS_I(inode);
815  int cmd = XFS_IOC_RESVSP;
816  int attr_flags = XFS_ATTR_NOLOCK;
817 
819  return -EOPNOTSUPP;
820 
821  bf.l_whence = 0;
822  bf.l_start = offset;
823  bf.l_len = len;
824 
825  xfs_ilock(ip, XFS_IOLOCK_EXCL);
826 
827  if (mode & FALLOC_FL_PUNCH_HOLE)
828  cmd = XFS_IOC_UNRESVSP;
829 
830  /* check the new inode size is valid before allocating */
831  if (!(mode & FALLOC_FL_KEEP_SIZE) &&
832  offset + len > i_size_read(inode)) {
833  new_size = offset + len;
834  error = inode_newsize_ok(inode, new_size);
835  if (error)
836  goto out_unlock;
837  }
838 
839  if (file->f_flags & O_DSYNC)
840  attr_flags |= XFS_ATTR_SYNC;
841 
842  error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
843  if (error)
844  goto out_unlock;
845 
846  /* Change file size if needed */
847  if (new_size) {
848  struct iattr iattr;
849 
850  iattr.ia_valid = ATTR_SIZE;
851  iattr.ia_size = new_size;
852  error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
853  }
854 
855 out_unlock:
856  xfs_iunlock(ip, XFS_IOLOCK_EXCL);
857  return error;
858 }
859 
860 
861 STATIC int
863  struct inode *inode,
864  struct file *file)
865 {
866  if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
867  return -EFBIG;
868  if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
869  return -EIO;
870  return 0;
871 }
872 
873 STATIC int
875  struct inode *inode,
876  struct file *file)
877 {
878  struct xfs_inode *ip = XFS_I(inode);
879  int mode;
880  int error;
881 
882  error = xfs_file_open(inode, file);
883  if (error)
884  return error;
885 
886  /*
887  * If there are any blocks, read-ahead block 0 as we're almost
888  * certain to have the next operation be a read there.
889  */
890  mode = xfs_ilock_map_shared(ip);
891  if (ip->i_d.di_nextents > 0)
893  xfs_iunlock(ip, mode);
894  return 0;
895 }
896 
897 STATIC int
899  struct inode *inode,
900  struct file *filp)
901 {
902  return -xfs_release(XFS_I(inode));
903 }
904 
905 STATIC int
907  struct file *filp,
908  void *dirent,
909  filldir_t filldir)
910 {
911  struct inode *inode = filp->f_path.dentry->d_inode;
912  xfs_inode_t *ip = XFS_I(inode);
913  int error;
914  size_t bufsize;
915 
916  /*
917  * The Linux API doesn't pass down the total size of the buffer
918  * we read into down to the filesystem. With the filldir concept
919  * it's not needed for correct information, but the XFS dir2 leaf
920  * code wants an estimate of the buffer size to calculate it's
921  * readahead window and size the buffers used for mapping to
922  * physical blocks.
923  *
924  * Try to give it an estimate that's good enough, maybe at some
925  * point we can change the ->readdir prototype to include the
926  * buffer size. For now we use the current glibc buffer size.
927  */
928  bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
929 
930  error = xfs_readdir(ip, dirent, bufsize,
931  (xfs_off_t *)&filp->f_pos, filldir);
932  if (error)
933  return -error;
934  return 0;
935 }
936 
937 STATIC int
939  struct file *filp,
940  struct vm_area_struct *vma)
941 {
942  vma->vm_ops = &xfs_file_vm_ops;
943 
944  file_accessed(filp);
945  return 0;
946 }
947 
948 /*
949  * mmap()d file has taken write protection fault and is being made
950  * writable. We can set the page state up correctly for a writable
951  * page, which means we can do correct delalloc accounting (ENOSPC
952  * checking!) and unwritten extent mapping.
953  */
954 STATIC int
956  struct vm_area_struct *vma,
957  struct vm_fault *vmf)
958 {
959  return block_page_mkwrite(vma, vmf, xfs_get_blocks);
960 }
961 
962 /*
963  * This type is designed to indicate the type of offset we would like
964  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
965  */
966 enum {
967  HOLE_OFF = 0,
969 };
970 
971 /*
972  * Lookup the desired type of offset from the given page.
973  *
974  * On success, return true and the offset argument will point to the
975  * start of the region that was found. Otherwise this function will
976  * return false and keep the offset argument unchanged.
977  */
978 STATIC bool
980  struct page *page,
981  loff_t *offset,
982  unsigned int type)
983 {
984  loff_t lastoff = page_offset(page);
985  bool found = false;
986  struct buffer_head *bh, *head;
987 
988  bh = head = page_buffers(page);
989  do {
990  /*
991  * Unwritten extents that have data in the page
992  * cache covering them can be identified by the
993  * BH_Unwritten state flag. Pages with multiple
994  * buffers might have a mix of holes, data and
995  * unwritten extents - any buffer with valid
996  * data in it should have BH_Uptodate flag set
997  * on it.
998  */
999  if (buffer_unwritten(bh) ||
1000  buffer_uptodate(bh)) {
1001  if (type == DATA_OFF)
1002  found = true;
1003  } else {
1004  if (type == HOLE_OFF)
1005  found = true;
1006  }
1007 
1008  if (found) {
1009  *offset = lastoff;
1010  break;
1011  }
1012  lastoff += bh->b_size;
1013  } while ((bh = bh->b_this_page) != head);
1014 
1015  return found;
1016 }
1017 
1018 /*
1019  * This routine is called to find out and return a data or hole offset
1020  * from the page cache for unwritten extents according to the desired
1021  * type for xfs_seek_data() or xfs_seek_hole().
1022  *
1023  * The argument offset is used to tell where we start to search from the
1024  * page cache. Map is used to figure out the end points of the range to
1025  * lookup pages.
1026  *
1027  * Return true if the desired type of offset was found, and the argument
1028  * offset is filled with that address. Otherwise, return false and keep
1029  * offset unchanged.
1030  */
1031 STATIC bool
1033  struct inode *inode,
1034  struct xfs_bmbt_irec *map,
1035  unsigned int type,
1036  loff_t *offset)
1037 {
1038  struct xfs_inode *ip = XFS_I(inode);
1039  struct xfs_mount *mp = ip->i_mount;
1040  struct pagevec pvec;
1041  pgoff_t index;
1042  pgoff_t end;
1043  loff_t endoff;
1044  loff_t startoff = *offset;
1045  loff_t lastoff = startoff;
1046  bool found = false;
1047 
1048  pagevec_init(&pvec, 0);
1049 
1050  index = startoff >> PAGE_CACHE_SHIFT;
1051  endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1052  end = endoff >> PAGE_CACHE_SHIFT;
1053  do {
1054  int want;
1055  unsigned nr_pages;
1056  unsigned int i;
1057 
1058  want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1059  nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1060  want);
1061  /*
1062  * No page mapped into given range. If we are searching holes
1063  * and if this is the first time we got into the loop, it means
1064  * that the given offset is landed in a hole, return it.
1065  *
1066  * If we have already stepped through some block buffers to find
1067  * holes but they all contains data. In this case, the last
1068  * offset is already updated and pointed to the end of the last
1069  * mapped page, if it does not reach the endpoint to search,
1070  * that means there should be a hole between them.
1071  */
1072  if (nr_pages == 0) {
1073  /* Data search found nothing */
1074  if (type == DATA_OFF)
1075  break;
1076 
1077  ASSERT(type == HOLE_OFF);
1078  if (lastoff == startoff || lastoff < endoff) {
1079  found = true;
1080  *offset = lastoff;
1081  }
1082  break;
1083  }
1084 
1085  /*
1086  * At lease we found one page. If this is the first time we
1087  * step into the loop, and if the first page index offset is
1088  * greater than the given search offset, a hole was found.
1089  */
1090  if (type == HOLE_OFF && lastoff == startoff &&
1091  lastoff < page_offset(pvec.pages[0])) {
1092  found = true;
1093  break;
1094  }
1095 
1096  for (i = 0; i < nr_pages; i++) {
1097  struct page *page = pvec.pages[i];
1098  loff_t b_offset;
1099 
1100  /*
1101  * At this point, the page may be truncated or
1102  * invalidated (changing page->mapping to NULL),
1103  * or even swizzled back from swapper_space to tmpfs
1104  * file mapping. However, page->index will not change
1105  * because we have a reference on the page.
1106  *
1107  * Searching done if the page index is out of range.
1108  * If the current offset is not reaches the end of
1109  * the specified search range, there should be a hole
1110  * between them.
1111  */
1112  if (page->index > end) {
1113  if (type == HOLE_OFF && lastoff < endoff) {
1114  *offset = lastoff;
1115  found = true;
1116  }
1117  goto out;
1118  }
1119 
1120  lock_page(page);
1121  /*
1122  * Page truncated or invalidated(page->mapping == NULL).
1123  * We can freely skip it and proceed to check the next
1124  * page.
1125  */
1126  if (unlikely(page->mapping != inode->i_mapping)) {
1127  unlock_page(page);
1128  continue;
1129  }
1130 
1131  if (!page_has_buffers(page)) {
1132  unlock_page(page);
1133  continue;
1134  }
1135 
1136  found = xfs_lookup_buffer_offset(page, &b_offset, type);
1137  if (found) {
1138  /*
1139  * The found offset may be less than the start
1140  * point to search if this is the first time to
1141  * come here.
1142  */
1143  *offset = max_t(loff_t, startoff, b_offset);
1144  unlock_page(page);
1145  goto out;
1146  }
1147 
1148  /*
1149  * We either searching data but nothing was found, or
1150  * searching hole but found a data buffer. In either
1151  * case, probably the next page contains the desired
1152  * things, update the last offset to it so.
1153  */
1154  lastoff = page_offset(page) + PAGE_SIZE;
1155  unlock_page(page);
1156  }
1157 
1158  /*
1159  * The number of returned pages less than our desired, search
1160  * done. In this case, nothing was found for searching data,
1161  * but we found a hole behind the last offset.
1162  */
1163  if (nr_pages < want) {
1164  if (type == HOLE_OFF) {
1165  *offset = lastoff;
1166  found = true;
1167  }
1168  break;
1169  }
1170 
1171  index = pvec.pages[i - 1]->index + 1;
1172  pagevec_release(&pvec);
1173  } while (index <= end);
1174 
1175 out:
1176  pagevec_release(&pvec);
1177  return found;
1178 }
1179 
1180 STATIC loff_t
1182  struct file *file,
1183  loff_t start)
1184 {
1185  struct inode *inode = file->f_mapping->host;
1186  struct xfs_inode *ip = XFS_I(inode);
1187  struct xfs_mount *mp = ip->i_mount;
1188  loff_t uninitialized_var(offset);
1189  xfs_fsize_t isize;
1190  xfs_fileoff_t fsbno;
1192  uint lock;
1193  int error;
1194 
1195  lock = xfs_ilock_map_shared(ip);
1196 
1197  isize = i_size_read(inode);
1198  if (start >= isize) {
1199  error = ENXIO;
1200  goto out_unlock;
1201  }
1202 
1203  /*
1204  * Try to read extents from the first block indicated
1205  * by fsbno to the end block of the file.
1206  */
1207  fsbno = XFS_B_TO_FSBT(mp, start);
1208  end = XFS_B_TO_FSB(mp, isize);
1209  for (;;) {
1210  struct xfs_bmbt_irec map[2];
1211  int nmap = 2;
1212  unsigned int i;
1213 
1214  error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1216  if (error)
1217  goto out_unlock;
1218 
1219  /* No extents at given offset, must be beyond EOF */
1220  if (nmap == 0) {
1221  error = ENXIO;
1222  goto out_unlock;
1223  }
1224 
1225  for (i = 0; i < nmap; i++) {
1226  offset = max_t(loff_t, start,
1227  XFS_FSB_TO_B(mp, map[i].br_startoff));
1228 
1229  /* Landed in a data extent */
1230  if (map[i].br_startblock == DELAYSTARTBLOCK ||
1231  (map[i].br_state == XFS_EXT_NORM &&
1232  !isnullstartblock(map[i].br_startblock)))
1233  goto out;
1234 
1235  /*
1236  * Landed in an unwritten extent, try to search data
1237  * from page cache.
1238  */
1239  if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1240  if (xfs_find_get_desired_pgoff(inode, &map[i],
1241  DATA_OFF, &offset))
1242  goto out;
1243  }
1244  }
1245 
1246  /*
1247  * map[0] is hole or its an unwritten extent but
1248  * without data in page cache. Probably means that
1249  * we are reading after EOF if nothing in map[1].
1250  */
1251  if (nmap == 1) {
1252  error = ENXIO;
1253  goto out_unlock;
1254  }
1255 
1256  ASSERT(i > 1);
1257 
1258  /*
1259  * Nothing was found, proceed to the next round of search
1260  * if reading offset not beyond or hit EOF.
1261  */
1262  fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1263  start = XFS_FSB_TO_B(mp, fsbno);
1264  if (start >= isize) {
1265  error = ENXIO;
1266  goto out_unlock;
1267  }
1268  }
1269 
1270 out:
1271  if (offset != file->f_pos)
1272  file->f_pos = offset;
1273 
1274 out_unlock:
1275  xfs_iunlock_map_shared(ip, lock);
1276 
1277  if (error)
1278  return -error;
1279  return offset;
1280 }
1281 
1282 STATIC loff_t
1284  struct file *file,
1285  loff_t start)
1286 {
1287  struct inode *inode = file->f_mapping->host;
1288  struct xfs_inode *ip = XFS_I(inode);
1289  struct xfs_mount *mp = ip->i_mount;
1290  loff_t uninitialized_var(offset);
1291  xfs_fsize_t isize;
1292  xfs_fileoff_t fsbno;
1294  uint lock;
1295  int error;
1296 
1297  if (XFS_FORCED_SHUTDOWN(mp))
1298  return -XFS_ERROR(EIO);
1299 
1300  lock = xfs_ilock_map_shared(ip);
1301 
1302  isize = i_size_read(inode);
1303  if (start >= isize) {
1304  error = ENXIO;
1305  goto out_unlock;
1306  }
1307 
1308  fsbno = XFS_B_TO_FSBT(mp, start);
1309  end = XFS_B_TO_FSB(mp, isize);
1310 
1311  for (;;) {
1312  struct xfs_bmbt_irec map[2];
1313  int nmap = 2;
1314  unsigned int i;
1315 
1316  error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1318  if (error)
1319  goto out_unlock;
1320 
1321  /* No extents at given offset, must be beyond EOF */
1322  if (nmap == 0) {
1323  error = ENXIO;
1324  goto out_unlock;
1325  }
1326 
1327  for (i = 0; i < nmap; i++) {
1328  offset = max_t(loff_t, start,
1329  XFS_FSB_TO_B(mp, map[i].br_startoff));
1330 
1331  /* Landed in a hole */
1332  if (map[i].br_startblock == HOLESTARTBLOCK)
1333  goto out;
1334 
1335  /*
1336  * Landed in an unwritten extent, try to search hole
1337  * from page cache.
1338  */
1339  if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1340  if (xfs_find_get_desired_pgoff(inode, &map[i],
1341  HOLE_OFF, &offset))
1342  goto out;
1343  }
1344  }
1345 
1346  /*
1347  * map[0] contains data or its unwritten but contains
1348  * data in page cache, probably means that we are
1349  * reading after EOF. We should fix offset to point
1350  * to the end of the file(i.e., there is an implicit
1351  * hole at the end of any file).
1352  */
1353  if (nmap == 1) {
1354  offset = isize;
1355  break;
1356  }
1357 
1358  ASSERT(i > 1);
1359 
1360  /*
1361  * Both mappings contains data, proceed to the next round of
1362  * search if the current reading offset not beyond or hit EOF.
1363  */
1364  fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1365  start = XFS_FSB_TO_B(mp, fsbno);
1366  if (start >= isize) {
1367  offset = isize;
1368  break;
1369  }
1370  }
1371 
1372 out:
1373  /*
1374  * At this point, we must have found a hole. However, the returned
1375  * offset may be bigger than the file size as it may be aligned to
1376  * page boundary for unwritten extents, we need to deal with this
1377  * situation in particular.
1378  */
1379  offset = min_t(loff_t, offset, isize);
1380  if (offset != file->f_pos)
1381  file->f_pos = offset;
1382 
1383 out_unlock:
1384  xfs_iunlock_map_shared(ip, lock);
1385 
1386  if (error)
1387  return -error;
1388  return offset;
1389 }
1390 
1391 STATIC loff_t
1393  struct file *file,
1394  loff_t offset,
1395  int origin)
1396 {
1397  switch (origin) {
1398  case SEEK_END:
1399  case SEEK_CUR:
1400  case SEEK_SET:
1401  return generic_file_llseek(file, offset, origin);
1402  case SEEK_DATA:
1403  return xfs_seek_data(file, offset);
1404  case SEEK_HOLE:
1405  return xfs_seek_hole(file, offset);
1406  default:
1407  return -EINVAL;
1408  }
1409 }
1410 
1412  .llseek = xfs_file_llseek,
1413  .read = do_sync_read,
1414  .write = do_sync_write,
1415  .aio_read = xfs_file_aio_read,
1416  .aio_write = xfs_file_aio_write,
1417  .splice_read = xfs_file_splice_read,
1418  .splice_write = xfs_file_splice_write,
1419  .unlocked_ioctl = xfs_file_ioctl,
1420 #ifdef CONFIG_COMPAT
1421  .compat_ioctl = xfs_file_compat_ioctl,
1422 #endif
1423  .mmap = xfs_file_mmap,
1424  .open = xfs_file_open,
1425  .release = xfs_file_release,
1426  .fsync = xfs_file_fsync,
1427  .fallocate = xfs_file_fallocate,
1428 };
1429 
1431  .open = xfs_dir_open,
1432  .read = generic_read_dir,
1433  .readdir = xfs_file_readdir,
1434  .llseek = generic_file_llseek,
1435  .unlocked_ioctl = xfs_file_ioctl,
1436 #ifdef CONFIG_COMPAT
1437  .compat_ioctl = xfs_file_compat_ioctl,
1438 #endif
1439  .fsync = xfs_dir_fsync,
1440 };
1441 
1442 static const struct vm_operations_struct xfs_file_vm_ops = {
1443  .fault = filemap_fault,
1444  .page_mkwrite = xfs_vm_page_mkwrite,
1445  .remap_pages = generic_file_remap_pages,
1446 };