LLVM API Documentation

AArch64ExpandPseudoInsts.cpp
Go to the documentation of this file.
00001 //==-- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions --*- C++ -*-=//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file contains a pass that expands pseudo instructions into target
00011 // instructions to allow proper scheduling and other late optimizations.  This
00012 // pass should be run after register allocation but before the post-regalloc
00013 // scheduling pass.
00014 //
00015 //===----------------------------------------------------------------------===//
00016 
00017 #include "MCTargetDesc/AArch64AddressingModes.h"
00018 #include "AArch64InstrInfo.h"
00019 #include "AArch64Subtarget.h"
00020 #include "llvm/CodeGen/MachineFunctionPass.h"
00021 #include "llvm/CodeGen/MachineInstrBuilder.h"
00022 #include "llvm/Support/MathExtras.h"
00023 using namespace llvm;
00024 
00025 namespace {
00026 class AArch64ExpandPseudo : public MachineFunctionPass {
00027 public:
00028   static char ID;
00029   AArch64ExpandPseudo() : MachineFunctionPass(ID) {}
00030 
00031   const AArch64InstrInfo *TII;
00032 
00033   bool runOnMachineFunction(MachineFunction &Fn) override;
00034 
00035   const char *getPassName() const override {
00036     return "AArch64 pseudo instruction expansion pass";
00037   }
00038 
00039 private:
00040   bool expandMBB(MachineBasicBlock &MBB);
00041   bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
00042   bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
00043                     unsigned BitSize);
00044 };
00045 char AArch64ExpandPseudo::ID = 0;
00046 }
00047 
00048 /// \brief Transfer implicit operands on the pseudo instruction to the
00049 /// instructions created from the expansion.
00050 static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
00051                            MachineInstrBuilder &DefMI) {
00052   const MCInstrDesc &Desc = OldMI.getDesc();
00053   for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
00054        ++i) {
00055     const MachineOperand &MO = OldMI.getOperand(i);
00056     assert(MO.isReg() && MO.getReg());
00057     if (MO.isUse())
00058       UseMI.addOperand(MO);
00059     else
00060       DefMI.addOperand(MO);
00061   }
00062 }
00063 
00064 /// \brief Helper function which extracts the specified 16-bit chunk from a
00065 /// 64-bit value.
00066 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
00067   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
00068 
00069   return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
00070 }
00071 
00072 /// \brief Helper function which replicates a 16-bit chunk within a 64-bit
00073 /// value. Indices correspond to element numbers in a v4i16.
00074 static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
00075   assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
00076   const unsigned ShiftAmt = ToIdx * 16;
00077 
00078   // Replicate the source chunk to the destination position.
00079   const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
00080   // Clear the destination chunk.
00081   Imm &= ~(0xFFFFLL << ShiftAmt);
00082   // Insert the replicated chunk.
00083   return Imm | Chunk;
00084 }
00085 
00086 /// \brief Helper function which tries to materialize a 64-bit value with an
00087 /// ORR + MOVK instruction sequence.
00088 static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
00089                        MachineBasicBlock &MBB,
00090                        MachineBasicBlock::iterator &MBBI,
00091                        const AArch64InstrInfo *TII, unsigned ChunkIdx) {
00092   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
00093   const unsigned ShiftAmt = ChunkIdx * 16;
00094 
00095   uint64_t Encoding;
00096   if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
00097     // Create the ORR-immediate instruction.
00098     MachineInstrBuilder MIB =
00099         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
00100             .addOperand(MI.getOperand(0))
00101             .addReg(AArch64::XZR)
00102             .addImm(Encoding);
00103 
00104     // Create the MOVK instruction.
00105     const unsigned Imm16 = getChunk(UImm, ChunkIdx);
00106     const unsigned DstReg = MI.getOperand(0).getReg();
00107     const bool DstIsDead = MI.getOperand(0).isDead();
00108     MachineInstrBuilder MIB1 =
00109         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
00110             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
00111             .addReg(DstReg)
00112             .addImm(Imm16)
00113             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
00114 
00115     transferImpOps(MI, MIB, MIB1);
00116     MI.eraseFromParent();
00117     return true;
00118   }
00119 
00120   return false;
00121 }
00122 
00123 /// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
00124 /// can be materialized with an ORR instruction.
00125 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
00126   Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
00127 
00128   return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
00129 }
00130 
00131 /// \brief Check for identical 16-bit chunks within the constant and if so
00132 /// materialize them with a single ORR instruction. The remaining one or two
00133 /// 16-bit chunks will be materialized with MOVK instructions.
00134 ///
00135 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
00136 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
00137 /// an ORR instruction.
00138 ///
00139 static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
00140                                  MachineBasicBlock &MBB,
00141                                  MachineBasicBlock::iterator &MBBI,
00142                                  const AArch64InstrInfo *TII) {
00143   typedef DenseMap<uint64_t, unsigned> CountMap;
00144   CountMap Counts;
00145 
00146   // Scan the constant and count how often every chunk occurs.
00147   for (unsigned Idx = 0; Idx < 4; ++Idx)
00148     ++Counts[getChunk(UImm, Idx)];
00149 
00150   // Traverse the chunks to find one which occurs more than once.
00151   for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
00152        Chunk != End; ++Chunk) {
00153     const uint64_t ChunkVal = Chunk->first;
00154     const unsigned Count = Chunk->second;
00155 
00156     uint64_t Encoding = 0;
00157 
00158     // We are looking for chunks which have two or three instances and can be
00159     // materialized with an ORR instruction.
00160     if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
00161       continue;
00162 
00163     const bool CountThree = Count == 3;
00164     // Create the ORR-immediate instruction.
00165     MachineInstrBuilder MIB =
00166         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
00167             .addOperand(MI.getOperand(0))
00168             .addReg(AArch64::XZR)
00169             .addImm(Encoding);
00170 
00171     const unsigned DstReg = MI.getOperand(0).getReg();
00172     const bool DstIsDead = MI.getOperand(0).isDead();
00173 
00174     unsigned ShiftAmt = 0;
00175     uint64_t Imm16 = 0;
00176     // Find the first chunk not materialized with the ORR instruction.
00177     for (; ShiftAmt < 64; ShiftAmt += 16) {
00178       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
00179 
00180       if (Imm16 != ChunkVal)
00181         break;
00182     }
00183 
00184     // Create the first MOVK instruction.
00185     MachineInstrBuilder MIB1 =
00186         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
00187             .addReg(DstReg,
00188                     RegState::Define | getDeadRegState(DstIsDead && CountThree))
00189             .addReg(DstReg)
00190             .addImm(Imm16)
00191             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
00192 
00193     // In case we have three instances the whole constant is now materialized
00194     // and we can exit.
00195     if (CountThree) {
00196       transferImpOps(MI, MIB, MIB1);
00197       MI.eraseFromParent();
00198       return true;
00199     }
00200 
00201     // Find the remaining chunk which needs to be materialized.
00202     for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
00203       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
00204 
00205       if (Imm16 != ChunkVal)
00206         break;
00207     }
00208 
00209     // Create the second MOVK instruction.
00210     MachineInstrBuilder MIB2 =
00211         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
00212             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
00213             .addReg(DstReg)
00214             .addImm(Imm16)
00215             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
00216 
00217     transferImpOps(MI, MIB, MIB2);
00218     MI.eraseFromParent();
00219     return true;
00220   }
00221 
00222   return false;
00223 }
00224 
00225 /// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
00226 /// starts a contiguous sequence of ones if we look at the bits from the LSB
00227 /// towards the MSB.
00228 static bool isStartChunk(uint64_t Chunk) {
00229   if (Chunk == 0 || Chunk == UINT64_MAX)
00230     return false;
00231 
00232   return (CountLeadingOnes_64(Chunk) + countTrailingZeros(Chunk)) == 64;
00233 }
00234 
00235 /// \brief Check whether this chunk matches the pattern '0...1...' This pattern
00236 /// ends a contiguous sequence of ones if we look at the bits from the LSB
00237 /// towards the MSB.
00238 static bool isEndChunk(uint64_t Chunk) {
00239   if (Chunk == 0 || Chunk == UINT64_MAX)
00240     return false;
00241 
00242   return (countLeadingZeros(Chunk) + CountTrailingOnes_64(Chunk)) == 64;
00243 }
00244 
00245 /// \brief Clear or set all bits in the chunk at the given index.
00246 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
00247   const uint64_t Mask = 0xFFFF;
00248 
00249   if (Clear)
00250     // Clear chunk in the immediate.
00251     Imm &= ~(Mask << (Idx * 16));
00252   else
00253     // Set all bits in the immediate for the particular chunk.
00254     Imm |= Mask << (Idx * 16);
00255 
00256   return Imm;
00257 }
00258 
00259 /// \brief Check whether the constant contains a sequence of contiguous ones,
00260 /// which might be interrupted by one or two chunks. If so, materialize the
00261 /// sequence of contiguous ones with an ORR instruction.
00262 /// Materialize the chunks which are either interrupting the sequence or outside
00263 /// of the sequence with a MOVK instruction.
00264 ///
00265 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
00266 /// which ends the sequence (0...1...). Then we are looking for constants which
00267 /// contain at least one S and E chunk.
00268 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
00269 ///
00270 /// We are also looking for constants like |S|A|B|E| where the contiguous
00271 /// sequence of ones wraps around the MSB into the LSB.
00272 ///
00273 static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
00274                               MachineBasicBlock &MBB,
00275                               MachineBasicBlock::iterator &MBBI,
00276                               const AArch64InstrInfo *TII) {
00277   const int NotSet = -1;
00278   const uint64_t Mask = 0xFFFF;
00279 
00280   int StartIdx = NotSet;
00281   int EndIdx = NotSet;
00282   // Try to find the chunks which start/end a contiguous sequence of ones.
00283   for (int Idx = 0; Idx < 4; ++Idx) {
00284     int64_t Chunk = getChunk(UImm, Idx);
00285     // Sign extend the 16-bit chunk to 64-bit.
00286     Chunk = (Chunk << 48) >> 48;
00287 
00288     if (isStartChunk(Chunk))
00289       StartIdx = Idx;
00290     else if (isEndChunk(Chunk))
00291       EndIdx = Idx;
00292   }
00293 
00294   // Early exit in case we can't find a start/end chunk.
00295   if (StartIdx == NotSet || EndIdx == NotSet)
00296     return false;
00297 
00298   // Outside of the contiguous sequence of ones everything needs to be zero.
00299   uint64_t Outside = 0;
00300   // Chunks between the start and end chunk need to have all their bits set.
00301   uint64_t Inside = Mask;
00302 
00303   // If our contiguous sequence of ones wraps around from the MSB into the LSB,
00304   // just swap indices and pretend we are materializing a contiguous sequence
00305   // of zeros surrounded by a contiguous sequence of ones.
00306   if (StartIdx > EndIdx) {
00307     std::swap(StartIdx, EndIdx);
00308     std::swap(Outside, Inside);
00309   }
00310 
00311   uint64_t OrrImm = UImm;
00312   int FirstMovkIdx = NotSet;
00313   int SecondMovkIdx = NotSet;
00314 
00315   // Find out which chunks we need to patch up to obtain a contiguous sequence
00316   // of ones.
00317   for (int Idx = 0; Idx < 4; ++Idx) {
00318     const uint64_t Chunk = getChunk(UImm, Idx);
00319 
00320     // Check whether we are looking at a chunk which is not part of the
00321     // contiguous sequence of ones.
00322     if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
00323       OrrImm = updateImm(OrrImm, Idx, Outside == 0);
00324 
00325       // Remember the index we need to patch.
00326       if (FirstMovkIdx == NotSet)
00327         FirstMovkIdx = Idx;
00328       else
00329         SecondMovkIdx = Idx;
00330 
00331       // Check whether we are looking a chunk which is part of the contiguous
00332       // sequence of ones.
00333     } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
00334       OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
00335 
00336       // Remember the index we need to patch.
00337       if (FirstMovkIdx == NotSet)
00338         FirstMovkIdx = Idx;
00339       else
00340         SecondMovkIdx = Idx;
00341     }
00342   }
00343   assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
00344 
00345   // Create the ORR-immediate instruction.
00346   uint64_t Encoding = 0;
00347   AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
00348   MachineInstrBuilder MIB =
00349       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
00350           .addOperand(MI.getOperand(0))
00351           .addReg(AArch64::XZR)
00352           .addImm(Encoding);
00353 
00354   const unsigned DstReg = MI.getOperand(0).getReg();
00355   const bool DstIsDead = MI.getOperand(0).isDead();
00356 
00357   const bool SingleMovk = SecondMovkIdx == NotSet;
00358   // Create the first MOVK instruction.
00359   MachineInstrBuilder MIB1 =
00360       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
00361           .addReg(DstReg,
00362                   RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
00363           .addReg(DstReg)
00364           .addImm(getChunk(UImm, FirstMovkIdx))
00365           .addImm(
00366               AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
00367 
00368   // Early exit in case we only need to emit a single MOVK instruction.
00369   if (SingleMovk) {
00370     transferImpOps(MI, MIB, MIB1);
00371     MI.eraseFromParent();
00372     return true;
00373   }
00374 
00375   // Create the second MOVK instruction.
00376   MachineInstrBuilder MIB2 =
00377       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
00378           .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
00379           .addReg(DstReg)
00380           .addImm(getChunk(UImm, SecondMovkIdx))
00381           .addImm(
00382               AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
00383 
00384   transferImpOps(MI, MIB, MIB2);
00385   MI.eraseFromParent();
00386   return true;
00387 }
00388 
00389 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
00390 /// real move-immediate instructions to synthesize the immediate.
00391 bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
00392                                        MachineBasicBlock::iterator MBBI,
00393                                        unsigned BitSize) {
00394   MachineInstr &MI = *MBBI;
00395   uint64_t Imm = MI.getOperand(1).getImm();
00396   const unsigned Mask = 0xFFFF;
00397 
00398   // Try a MOVI instruction (aka ORR-immediate with the zero register).
00399   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
00400   uint64_t Encoding;
00401   if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
00402     unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
00403     MachineInstrBuilder MIB =
00404         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
00405             .addOperand(MI.getOperand(0))
00406             .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
00407             .addImm(Encoding);
00408     transferImpOps(MI, MIB, MIB);
00409     MI.eraseFromParent();
00410     return true;
00411   }
00412 
00413   // Scan the immediate and count the number of 16-bit chunks which are either
00414   // all ones or all zeros.
00415   unsigned OneChunks = 0;
00416   unsigned ZeroChunks = 0;
00417   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
00418     const unsigned Chunk = (Imm >> Shift) & Mask;
00419     if (Chunk == Mask)
00420       OneChunks++;
00421     else if (Chunk == 0)
00422       ZeroChunks++;
00423   }
00424 
00425   // Since we can't materialize the constant with a single ORR instruction,
00426   // let's see whether we can materialize 3/4 of the constant with an ORR
00427   // instruction and use an additional MOVK instruction to materialize the
00428   // remaining 1/4.
00429   //
00430   // We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
00431   //
00432   // E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
00433   // we would create the following instruction sequence:
00434   //
00435   // ORR x0, xzr, |A|X|A|X|
00436   // MOVK x0, |B|, LSL #16
00437   //
00438   // Only look at 64-bit constants which can't be materialized with a single
00439   // instruction e.g. which have less than either three all zero or all one
00440   // chunks.
00441   //
00442   // Ignore 32-bit constants here, they always can be materialized with a
00443   // MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
00444   // with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
00445   // Thus we fall back to the default code below which in the best case creates
00446   // a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
00447   //
00448   if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
00449     // If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
00450     // identical?
00451     if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
00452       // See if we can come up with a constant which can be materialized with
00453       // ORR-immediate by replicating element 3 into element 1.
00454       uint64_t OrrImm = replicateChunk(UImm, 3, 1);
00455       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
00456         return true;
00457 
00458       // See if we can come up with a constant which can be materialized with
00459       // ORR-immediate by replicating element 1 into element 3.
00460       OrrImm = replicateChunk(UImm, 1, 3);
00461       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
00462         return true;
00463 
00464       // If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
00465       // identical?
00466     } else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
00467       // See if we can come up with a constant which can be materialized with
00468       // ORR-immediate by replicating element 2 into element 0.
00469       uint64_t OrrImm = replicateChunk(UImm, 2, 0);
00470       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
00471         return true;
00472 
00473       // See if we can come up with a constant which can be materialized with
00474       // ORR-immediate by replicating element 1 into element 3.
00475       OrrImm = replicateChunk(UImm, 0, 2);
00476       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
00477         return true;
00478     }
00479   }
00480 
00481   // Check for identical 16-bit chunks within the constant and if so materialize
00482   // them with a single ORR instruction. The remaining one or two 16-bit chunks
00483   // will be materialized with MOVK instructions.
00484   if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
00485     return true;
00486 
00487   // Check whether the constant contains a sequence of contiguous ones, which
00488   // might be interrupted by one or two chunks. If so, materialize the sequence
00489   // of contiguous ones with an ORR instruction. Materialize the chunks which
00490   // are either interrupting the sequence or outside of the sequence with a
00491   // MOVK instruction.
00492   if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
00493     return true;
00494 
00495   // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
00496   // more MOVK instructions to insert additional 16-bit portions into the
00497   // lower bits.
00498   bool isNeg = false;
00499 
00500   // Use MOVN to materialize the high bits if we have more all one chunks
00501   // than all zero chunks.
00502   if (OneChunks > ZeroChunks) {
00503     isNeg = true;
00504     Imm = ~Imm;
00505   }
00506 
00507   unsigned FirstOpc;
00508   if (BitSize == 32) {
00509     Imm &= (1LL << 32) - 1;
00510     FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
00511   } else {
00512     FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
00513   }
00514   unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
00515   unsigned LastShift = 0; // LSL amount for last MOVK
00516   if (Imm != 0) {
00517     unsigned LZ = countLeadingZeros(Imm);
00518     unsigned TZ = countTrailingZeros(Imm);
00519     Shift = ((63 - LZ) / 16) * 16;
00520     LastShift = (TZ / 16) * 16;
00521   }
00522   unsigned Imm16 = (Imm >> Shift) & Mask;
00523   unsigned DstReg = MI.getOperand(0).getReg();
00524   bool DstIsDead = MI.getOperand(0).isDead();
00525   MachineInstrBuilder MIB1 =
00526       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
00527           .addReg(DstReg, RegState::Define |
00528                               getDeadRegState(DstIsDead && Shift == LastShift))
00529           .addImm(Imm16)
00530           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
00531 
00532   // If a MOVN was used for the high bits of a negative value, flip the rest
00533   // of the bits back for use with MOVK.
00534   if (isNeg)
00535     Imm = ~Imm;
00536 
00537   if (Shift == LastShift) {
00538     transferImpOps(MI, MIB1, MIB1);
00539     MI.eraseFromParent();
00540     return true;
00541   }
00542 
00543   MachineInstrBuilder MIB2;
00544   unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
00545   while (Shift != LastShift) {
00546     Shift -= 16;
00547     Imm16 = (Imm >> Shift) & Mask;
00548     if (Imm16 == (isNeg ? Mask : 0))
00549       continue; // This 16-bit portion is already set correctly.
00550     MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
00551                .addReg(DstReg,
00552                        RegState::Define |
00553                            getDeadRegState(DstIsDead && Shift == LastShift))
00554                .addReg(DstReg)
00555                .addImm(Imm16)
00556                .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
00557   }
00558 
00559   transferImpOps(MI, MIB1, MIB2);
00560   MI.eraseFromParent();
00561   return true;
00562 }
00563 
00564 /// \brief If MBBI references a pseudo instruction that should be expanded here,
00565 /// do the expansion and return true.  Otherwise return false.
00566 bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
00567                                  MachineBasicBlock::iterator MBBI) {
00568   MachineInstr &MI = *MBBI;
00569   unsigned Opcode = MI.getOpcode();
00570   switch (Opcode) {
00571   default:
00572     break;
00573 
00574   case AArch64::ADDWrr:
00575   case AArch64::SUBWrr:
00576   case AArch64::ADDXrr:
00577   case AArch64::SUBXrr:
00578   case AArch64::ADDSWrr:
00579   case AArch64::SUBSWrr:
00580   case AArch64::ADDSXrr:
00581   case AArch64::SUBSXrr:
00582   case AArch64::ANDWrr:
00583   case AArch64::ANDXrr:
00584   case AArch64::BICWrr:
00585   case AArch64::BICXrr:
00586   case AArch64::ANDSWrr:
00587   case AArch64::ANDSXrr:
00588   case AArch64::BICSWrr:
00589   case AArch64::BICSXrr:
00590   case AArch64::EONWrr:
00591   case AArch64::EONXrr:
00592   case AArch64::EORWrr:
00593   case AArch64::EORXrr:
00594   case AArch64::ORNWrr:
00595   case AArch64::ORNXrr:
00596   case AArch64::ORRWrr:
00597   case AArch64::ORRXrr: {
00598     unsigned Opcode;
00599     switch (MI.getOpcode()) {
00600     default:
00601       return false;
00602     case AArch64::ADDWrr:      Opcode = AArch64::ADDWrs; break;
00603     case AArch64::SUBWrr:      Opcode = AArch64::SUBWrs; break;
00604     case AArch64::ADDXrr:      Opcode = AArch64::ADDXrs; break;
00605     case AArch64::SUBXrr:      Opcode = AArch64::SUBXrs; break;
00606     case AArch64::ADDSWrr:     Opcode = AArch64::ADDSWrs; break;
00607     case AArch64::SUBSWrr:     Opcode = AArch64::SUBSWrs; break;
00608     case AArch64::ADDSXrr:     Opcode = AArch64::ADDSXrs; break;
00609     case AArch64::SUBSXrr:     Opcode = AArch64::SUBSXrs; break;
00610     case AArch64::ANDWrr:      Opcode = AArch64::ANDWrs; break;
00611     case AArch64::ANDXrr:      Opcode = AArch64::ANDXrs; break;
00612     case AArch64::BICWrr:      Opcode = AArch64::BICWrs; break;
00613     case AArch64::BICXrr:      Opcode = AArch64::BICXrs; break;
00614     case AArch64::ANDSWrr:     Opcode = AArch64::ANDSWrs; break;
00615     case AArch64::ANDSXrr:     Opcode = AArch64::ANDSXrs; break;
00616     case AArch64::BICSWrr:     Opcode = AArch64::BICSWrs; break;
00617     case AArch64::BICSXrr:     Opcode = AArch64::BICSXrs; break;
00618     case AArch64::EONWrr:      Opcode = AArch64::EONWrs; break;
00619     case AArch64::EONXrr:      Opcode = AArch64::EONXrs; break;
00620     case AArch64::EORWrr:      Opcode = AArch64::EORWrs; break;
00621     case AArch64::EORXrr:      Opcode = AArch64::EORXrs; break;
00622     case AArch64::ORNWrr:      Opcode = AArch64::ORNWrs; break;
00623     case AArch64::ORNXrr:      Opcode = AArch64::ORNXrs; break;
00624     case AArch64::ORRWrr:      Opcode = AArch64::ORRWrs; break;
00625     case AArch64::ORRXrr:      Opcode = AArch64::ORRXrs; break;
00626     }
00627     MachineInstrBuilder MIB1 =
00628         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
00629                 MI.getOperand(0).getReg())
00630             .addOperand(MI.getOperand(1))
00631             .addOperand(MI.getOperand(2))
00632             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
00633     transferImpOps(MI, MIB1, MIB1);
00634     MI.eraseFromParent();
00635     return true;
00636   }
00637 
00638   case AArch64::LOADgot: {
00639     // Expand into ADRP + LDR.
00640     unsigned DstReg = MI.getOperand(0).getReg();
00641     const MachineOperand &MO1 = MI.getOperand(1);
00642     unsigned Flags = MO1.getTargetFlags();
00643     MachineInstrBuilder MIB1 =
00644         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
00645     MachineInstrBuilder MIB2 =
00646         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
00647             .addOperand(MI.getOperand(0))
00648             .addReg(DstReg);
00649 
00650     if (MO1.isGlobal()) {
00651       MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
00652       MIB2.addGlobalAddress(MO1.getGlobal(), 0,
00653                             Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
00654     } else if (MO1.isSymbol()) {
00655       MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
00656       MIB2.addExternalSymbol(MO1.getSymbolName(),
00657                              Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
00658     } else {
00659       assert(MO1.isCPI() &&
00660              "Only expect globals, externalsymbols, or constant pools");
00661       MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
00662                                 Flags | AArch64II::MO_PAGE);
00663       MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
00664                                 Flags | AArch64II::MO_PAGEOFF |
00665                                     AArch64II::MO_NC);
00666     }
00667 
00668     transferImpOps(MI, MIB1, MIB2);
00669     MI.eraseFromParent();
00670     return true;
00671   }
00672 
00673   case AArch64::MOVaddr:
00674   case AArch64::MOVaddrJT:
00675   case AArch64::MOVaddrCP:
00676   case AArch64::MOVaddrBA:
00677   case AArch64::MOVaddrTLS:
00678   case AArch64::MOVaddrEXT: {
00679     // Expand into ADRP + ADD.
00680     unsigned DstReg = MI.getOperand(0).getReg();
00681     MachineInstrBuilder MIB1 =
00682         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
00683             .addOperand(MI.getOperand(1));
00684 
00685     MachineInstrBuilder MIB2 =
00686         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
00687             .addOperand(MI.getOperand(0))
00688             .addReg(DstReg)
00689             .addOperand(MI.getOperand(2))
00690             .addImm(0);
00691 
00692     transferImpOps(MI, MIB1, MIB2);
00693     MI.eraseFromParent();
00694     return true;
00695   }
00696 
00697   case AArch64::MOVi32imm:
00698     return expandMOVImm(MBB, MBBI, 32);
00699   case AArch64::MOVi64imm:
00700     return expandMOVImm(MBB, MBBI, 64);
00701   case AArch64::RET_ReallyLR:
00702     BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
00703         .addReg(AArch64::LR);
00704     MI.eraseFromParent();
00705     return true;
00706   }
00707   return false;
00708 }
00709 
00710 /// \brief Iterate over the instructions in basic block MBB and expand any
00711 /// pseudo instructions.  Return true if anything was modified.
00712 bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
00713   bool Modified = false;
00714 
00715   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
00716   while (MBBI != E) {
00717     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
00718     Modified |= expandMI(MBB, MBBI);
00719     MBBI = NMBBI;
00720   }
00721 
00722   return Modified;
00723 }
00724 
00725 bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
00726   TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
00727 
00728   bool Modified = false;
00729   for (auto &MBB : MF)
00730     Modified |= expandMBB(MBB);
00731   return Modified;
00732 }
00733 
00734 /// \brief Returns an instance of the pseudo instruction expansion pass.
00735 FunctionPass *llvm::createAArch64ExpandPseudoPass() {
00736   return new AArch64ExpandPseudo();
00737 }