LLVM API Documentation

AArch64TargetTransformInfo.cpp
Go to the documentation of this file.
00001 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 /// \file
00010 /// This file implements a TargetTransformInfo analysis pass specific to the
00011 /// AArch64 target machine. It uses the target's detailed information to provide
00012 /// more precise answers to certain TTI queries, while letting the target
00013 /// independent and default TTI implementations handle the rest.
00014 ///
00015 //===----------------------------------------------------------------------===//
00016 
00017 #include "AArch64.h"
00018 #include "AArch64TargetMachine.h"
00019 #include "MCTargetDesc/AArch64AddressingModes.h"
00020 #include "llvm/Analysis/TargetTransformInfo.h"
00021 #include "llvm/Support/Debug.h"
00022 #include "llvm/Target/CostTable.h"
00023 #include "llvm/Target/TargetLowering.h"
00024 #include <algorithm>
00025 using namespace llvm;
00026 
00027 #define DEBUG_TYPE "aarch64tti"
00028 
00029 // Declare the pass initialization routine locally as target-specific passes
00030 // don't have a target-wide initialization entry point, and so we rely on the
00031 // pass constructor initialization.
00032 namespace llvm {
00033 void initializeAArch64TTIPass(PassRegistry &);
00034 }
00035 
00036 namespace {
00037 
00038 class AArch64TTI final : public ImmutablePass, public TargetTransformInfo {
00039   const AArch64TargetMachine *TM;
00040   const AArch64Subtarget *ST;
00041   const AArch64TargetLowering *TLI;
00042 
00043   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
00044   /// are set if the result needs to be inserted and/or extracted from vectors.
00045   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
00046 
00047 public:
00048   AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
00049     llvm_unreachable("This pass cannot be directly constructed");
00050   }
00051 
00052   AArch64TTI(const AArch64TargetMachine *TM)
00053       : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
00054         TLI(TM->getSubtargetImpl()->getTargetLowering()) {
00055     initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
00056   }
00057 
00058   void initializePass() override { pushTTIStack(this); }
00059 
00060   void getAnalysisUsage(AnalysisUsage &AU) const override {
00061     TargetTransformInfo::getAnalysisUsage(AU);
00062   }
00063 
00064   /// Pass identification.
00065   static char ID;
00066 
00067   /// Provide necessary pointer adjustments for the two base classes.
00068   void *getAdjustedAnalysisPointer(const void *ID) override {
00069     if (ID == &TargetTransformInfo::ID)
00070       return (TargetTransformInfo *)this;
00071     return this;
00072   }
00073 
00074   /// \name Scalar TTI Implementations
00075   /// @{
00076   unsigned getIntImmCost(int64_t Val) const;
00077   unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
00078   unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
00079                          Type *Ty) const override;
00080   unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
00081                          Type *Ty) const override;
00082   PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
00083 
00084   /// @}
00085 
00086   /// \name Vector TTI Implementations
00087   /// @{
00088 
00089   unsigned getNumberOfRegisters(bool Vector) const override {
00090     if (Vector) {
00091       if (ST->hasNEON())
00092         return 32;
00093       return 0;
00094     }
00095     return 31;
00096   }
00097 
00098   unsigned getRegisterBitWidth(bool Vector) const override {
00099     if (Vector) {
00100       if (ST->hasNEON())
00101         return 128;
00102       return 0;
00103     }
00104     return 64;
00105   }
00106 
00107   unsigned getMaxInterleaveFactor() const override;
00108 
00109   unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
00110       override;
00111 
00112   unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
00113       override;
00114 
00115   unsigned getArithmeticInstrCost(
00116       unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
00117       OperandValueKind Opd2Info = OK_AnyValue,
00118       OperandValueProperties Opd1PropInfo = OP_None,
00119       OperandValueProperties Opd2PropInfo = OP_None) const override;
00120 
00121   unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
00122 
00123   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
00124       override;
00125 
00126   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
00127                            unsigned AddressSpace) const override;
00128 
00129   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override;
00130 
00131   /// @}
00132 };
00133 
00134 } // end anonymous namespace
00135 
00136 INITIALIZE_AG_PASS(AArch64TTI, TargetTransformInfo, "aarch64tti",
00137                    "AArch64 Target Transform Info", true, true, false)
00138 char AArch64TTI::ID = 0;
00139 
00140 ImmutablePass *
00141 llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) {
00142   return new AArch64TTI(TM);
00143 }
00144 
00145 /// \brief Calculate the cost of materializing a 64-bit value. This helper
00146 /// method might only calculate a fraction of a larger immediate. Therefore it
00147 /// is valid to return a cost of ZERO.
00148 unsigned AArch64TTI::getIntImmCost(int64_t Val) const {
00149   // Check if the immediate can be encoded within an instruction.
00150   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
00151     return 0;
00152 
00153   if (Val < 0)
00154     Val = ~Val;
00155 
00156   // Calculate how many moves we will need to materialize this constant.
00157   unsigned LZ = countLeadingZeros((uint64_t)Val);
00158   return (64 - LZ + 15) / 16;
00159 }
00160 
00161 /// \brief Calculate the cost of materializing the given constant.
00162 unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
00163   assert(Ty->isIntegerTy());
00164 
00165   unsigned BitSize = Ty->getPrimitiveSizeInBits();
00166   if (BitSize == 0)
00167     return ~0U;
00168 
00169   // Sign-extend all constants to a multiple of 64-bit.
00170   APInt ImmVal = Imm;
00171   if (BitSize & 0x3f)
00172     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
00173 
00174   // Split the constant into 64-bit chunks and calculate the cost for each
00175   // chunk.
00176   unsigned Cost = 0;
00177   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
00178     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
00179     int64_t Val = Tmp.getSExtValue();
00180     Cost += getIntImmCost(Val);
00181   }
00182   // We need at least one instruction to materialze the constant.
00183   return std::max(1U, Cost);
00184 }
00185 
00186 unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
00187                                  const APInt &Imm, Type *Ty) const {
00188   assert(Ty->isIntegerTy());
00189 
00190   unsigned BitSize = Ty->getPrimitiveSizeInBits();
00191   // There is no cost model for constants with a bit size of 0. Return TCC_Free
00192   // here, so that constant hoisting will ignore this constant.
00193   if (BitSize == 0)
00194     return TCC_Free;
00195 
00196   unsigned ImmIdx = ~0U;
00197   switch (Opcode) {
00198   default:
00199     return TCC_Free;
00200   case Instruction::GetElementPtr:
00201     // Always hoist the base address of a GetElementPtr.
00202     if (Idx == 0)
00203       return 2 * TCC_Basic;
00204     return TCC_Free;
00205   case Instruction::Store:
00206     ImmIdx = 0;
00207     break;
00208   case Instruction::Add:
00209   case Instruction::Sub:
00210   case Instruction::Mul:
00211   case Instruction::UDiv:
00212   case Instruction::SDiv:
00213   case Instruction::URem:
00214   case Instruction::SRem:
00215   case Instruction::And:
00216   case Instruction::Or:
00217   case Instruction::Xor:
00218   case Instruction::ICmp:
00219     ImmIdx = 1;
00220     break;
00221   // Always return TCC_Free for the shift value of a shift instruction.
00222   case Instruction::Shl:
00223   case Instruction::LShr:
00224   case Instruction::AShr:
00225     if (Idx == 1)
00226       return TCC_Free;
00227     break;
00228   case Instruction::Trunc:
00229   case Instruction::ZExt:
00230   case Instruction::SExt:
00231   case Instruction::IntToPtr:
00232   case Instruction::PtrToInt:
00233   case Instruction::BitCast:
00234   case Instruction::PHI:
00235   case Instruction::Call:
00236   case Instruction::Select:
00237   case Instruction::Ret:
00238   case Instruction::Load:
00239     break;
00240   }
00241 
00242   if (Idx == ImmIdx) {
00243     unsigned NumConstants = (BitSize + 63) / 64;
00244     unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
00245     return (Cost <= NumConstants * TCC_Basic)
00246       ? static_cast<unsigned>(TCC_Free) : Cost;
00247   }
00248   return AArch64TTI::getIntImmCost(Imm, Ty);
00249 }
00250 
00251 unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
00252                                  const APInt &Imm, Type *Ty) const {
00253   assert(Ty->isIntegerTy());
00254 
00255   unsigned BitSize = Ty->getPrimitiveSizeInBits();
00256   // There is no cost model for constants with a bit size of 0. Return TCC_Free
00257   // here, so that constant hoisting will ignore this constant.
00258   if (BitSize == 0)
00259     return TCC_Free;
00260 
00261   switch (IID) {
00262   default:
00263     return TCC_Free;
00264   case Intrinsic::sadd_with_overflow:
00265   case Intrinsic::uadd_with_overflow:
00266   case Intrinsic::ssub_with_overflow:
00267   case Intrinsic::usub_with_overflow:
00268   case Intrinsic::smul_with_overflow:
00269   case Intrinsic::umul_with_overflow:
00270     if (Idx == 1) {
00271       unsigned NumConstants = (BitSize + 63) / 64;
00272       unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
00273       return (Cost <= NumConstants * TCC_Basic)
00274         ? static_cast<unsigned>(TCC_Free) : Cost;
00275     }
00276     break;
00277   case Intrinsic::experimental_stackmap:
00278     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
00279       return TCC_Free;
00280     break;
00281   case Intrinsic::experimental_patchpoint_void:
00282   case Intrinsic::experimental_patchpoint_i64:
00283     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
00284       return TCC_Free;
00285     break;
00286   }
00287   return AArch64TTI::getIntImmCost(Imm, Ty);
00288 }
00289 
00290 AArch64TTI::PopcntSupportKind
00291 AArch64TTI::getPopcntSupport(unsigned TyWidth) const {
00292   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
00293   if (TyWidth == 32 || TyWidth == 64)
00294     return PSK_FastHardware;
00295   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
00296   return PSK_Software;
00297 }
00298 
00299 unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
00300                                     Type *Src) const {
00301   int ISD = TLI->InstructionOpcodeToISD(Opcode);
00302   assert(ISD && "Invalid opcode");
00303 
00304   EVT SrcTy = TLI->getValueType(Src);
00305   EVT DstTy = TLI->getValueType(Dst);
00306 
00307   if (!SrcTy.isSimple() || !DstTy.isSimple())
00308     return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
00309 
00310   static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
00311     // LowerVectorINT_TO_FP:
00312     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
00313     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
00314     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
00315     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
00316     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
00317     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
00318 
00319     // Complex: to v2f32
00320     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
00321     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
00322     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
00323     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
00324     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
00325     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
00326 
00327     // Complex: to v4f32
00328     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
00329     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
00330     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
00331     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
00332 
00333     // Complex: to v2f64
00334     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
00335     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
00336     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
00337     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
00338     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
00339     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
00340 
00341 
00342     // LowerVectorFP_TO_INT
00343     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
00344     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
00345     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
00346     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
00347     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
00348     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
00349 
00350     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
00351     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
00352     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
00353     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
00354     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
00355     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
00356     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
00357 
00358     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
00359     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
00360     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
00361     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
00362     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
00363 
00364     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
00365     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
00366     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
00367     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
00368     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
00369     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
00370     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
00371   };
00372 
00373   int Idx = ConvertCostTableLookup<MVT>(
00374       ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
00375       SrcTy.getSimpleVT());
00376   if (Idx != -1)
00377     return ConversionTbl[Idx].Cost;
00378 
00379   return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
00380 }
00381 
00382 unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
00383                                       unsigned Index) const {
00384   assert(Val->isVectorTy() && "This must be a vector type");
00385 
00386   if (Index != -1U) {
00387     // Legalize the type.
00388     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
00389 
00390     // This type is legalized to a scalar type.
00391     if (!LT.second.isVector())
00392       return 0;
00393 
00394     // The type may be split. Normalize the index to the new type.
00395     unsigned Width = LT.second.getVectorNumElements();
00396     Index = Index % Width;
00397 
00398     // The element at index zero is already inside the vector.
00399     if (Index == 0)
00400       return 0;
00401   }
00402 
00403   // All other insert/extracts cost this much.
00404   return 2;
00405 }
00406 
00407 unsigned AArch64TTI::getArithmeticInstrCost(
00408     unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
00409     OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
00410     OperandValueProperties Opd2PropInfo) const {
00411   // Legalize the type.
00412   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
00413 
00414   int ISD = TLI->InstructionOpcodeToISD(Opcode);
00415 
00416   switch (ISD) {
00417   default:
00418     return TargetTransformInfo::getArithmeticInstrCost(
00419         Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
00420   case ISD::ADD:
00421   case ISD::MUL:
00422   case ISD::XOR:
00423   case ISD::OR:
00424   case ISD::AND:
00425     // These nodes are marked as 'custom' for combining purposes only.
00426     // We know that they are legal. See LowerAdd in ISelLowering.
00427     return 1 * LT.first;
00428   }
00429 }
00430 
00431 unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
00432   // Address computations in vectorized code with non-consecutive addresses will
00433   // likely result in more instructions compared to scalar code where the
00434   // computation can more often be merged into the index mode. The resulting
00435   // extra micro-ops can significantly decrease throughput.
00436   unsigned NumVectorInstToHideOverhead = 10;
00437 
00438   if (Ty->isVectorTy() && IsComplex)
00439     return NumVectorInstToHideOverhead;
00440 
00441   // In many cases the address computation is not merged into the instruction
00442   // addressing mode.
00443   return 1;
00444 }
00445 
00446 unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
00447                                       Type *CondTy) const {
00448 
00449   int ISD = TLI->InstructionOpcodeToISD(Opcode);
00450   // We don't lower vector selects well that are wider than the register width.
00451   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
00452     // We would need this many instructions to hide the scalarization happening.
00453     unsigned AmortizationCost = 20;
00454     static const TypeConversionCostTblEntry<MVT::SimpleValueType>
00455     VectorSelectTbl[] = {
00456       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
00457       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
00458       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
00459       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
00460       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
00461       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
00462     };
00463 
00464     EVT SelCondTy = TLI->getValueType(CondTy);
00465     EVT SelValTy = TLI->getValueType(ValTy);
00466     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
00467       int Idx =
00468           ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
00469                                  SelValTy.getSimpleVT());
00470       if (Idx != -1)
00471         return VectorSelectTbl[Idx].Cost;
00472     }
00473   }
00474   return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
00475 }
00476 
00477 unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
00478                                    unsigned Alignment,
00479                                    unsigned AddressSpace) const {
00480   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
00481 
00482   if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
00483       Src->getVectorElementType()->isIntegerTy(64)) {
00484     // Unaligned stores are extremely inefficient. We don't split
00485     // unaligned v2i64 stores because the negative impact that has shown in
00486     // practice on inlined memcpy code.
00487     // We make v2i64 stores expensive so that we will only vectorize if there
00488     // are 6 other instructions getting vectorized.
00489     unsigned AmortizationCost = 6;
00490 
00491     return LT.first * 2 * AmortizationCost;
00492   }
00493 
00494   if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
00495       Src->getVectorNumElements() < 8) {
00496     // We scalarize the loads/stores because there is not v.4b register and we
00497     // have to promote the elements to v.4h.
00498     unsigned NumVecElts = Src->getVectorNumElements();
00499     unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
00500     // We generate 2 instructions per vector element.
00501     return NumVectorizableInstsToAmortize * NumVecElts * 2;
00502   }
00503 
00504   return LT.first;
00505 }
00506 
00507 unsigned AArch64TTI::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const {
00508   unsigned Cost = 0;
00509   for (auto *I : Tys) {
00510     if (!I->isVectorTy())
00511       continue;
00512     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
00513       Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
00514         getMemoryOpCost(Instruction::Load, I, 128, 0);
00515   }
00516   return Cost;
00517 }
00518 
00519 unsigned AArch64TTI::getMaxInterleaveFactor() const {
00520   if (ST->isCortexA57())
00521     return 4;
00522   return 2;
00523 }