LLVM API Documentation
00001 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the LiveInterval analysis pass which is used 00011 // by the Linear Scan Register allocator. This pass linearizes the 00012 // basic blocks of the function in DFS order and uses the 00013 // LiveVariables pass to conservatively compute live intervals for 00014 // each virtual and physical register. 00015 // 00016 //===----------------------------------------------------------------------===// 00017 00018 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00019 #include "LiveRangeCalc.h" 00020 #include "llvm/ADT/DenseSet.h" 00021 #include "llvm/ADT/STLExtras.h" 00022 #include "llvm/Analysis/AliasAnalysis.h" 00023 #include "llvm/CodeGen/LiveVariables.h" 00024 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 00025 #include "llvm/CodeGen/MachineDominators.h" 00026 #include "llvm/CodeGen/MachineInstr.h" 00027 #include "llvm/CodeGen/MachineRegisterInfo.h" 00028 #include "llvm/CodeGen/Passes.h" 00029 #include "llvm/CodeGen/VirtRegMap.h" 00030 #include "llvm/IR/Value.h" 00031 #include "llvm/Support/BlockFrequency.h" 00032 #include "llvm/Support/CommandLine.h" 00033 #include "llvm/Support/Debug.h" 00034 #include "llvm/Support/ErrorHandling.h" 00035 #include "llvm/Support/raw_ostream.h" 00036 #include "llvm/Target/TargetInstrInfo.h" 00037 #include "llvm/Target/TargetMachine.h" 00038 #include "llvm/Target/TargetRegisterInfo.h" 00039 #include "llvm/Target/TargetSubtargetInfo.h" 00040 #include <algorithm> 00041 #include <cmath> 00042 #include <limits> 00043 using namespace llvm; 00044 00045 #define DEBUG_TYPE "regalloc" 00046 00047 char LiveIntervals::ID = 0; 00048 char &llvm::LiveIntervalsID = LiveIntervals::ID; 00049 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", 00050 "Live Interval Analysis", false, false) 00051 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 00052 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 00053 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 00054 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 00055 INITIALIZE_PASS_END(LiveIntervals, "liveintervals", 00056 "Live Interval Analysis", false, false) 00057 00058 #ifndef NDEBUG 00059 static cl::opt<bool> EnablePrecomputePhysRegs( 00060 "precompute-phys-liveness", cl::Hidden, 00061 cl::desc("Eagerly compute live intervals for all physreg units.")); 00062 #else 00063 static bool EnablePrecomputePhysRegs = false; 00064 #endif // NDEBUG 00065 00066 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { 00067 AU.setPreservesCFG(); 00068 AU.addRequired<AliasAnalysis>(); 00069 AU.addPreserved<AliasAnalysis>(); 00070 // LiveVariables isn't really required by this analysis, it is only required 00071 // here to make sure it is live during TwoAddressInstructionPass and 00072 // PHIElimination. This is temporary. 00073 AU.addRequired<LiveVariables>(); 00074 AU.addPreserved<LiveVariables>(); 00075 AU.addPreservedID(MachineLoopInfoID); 00076 AU.addRequiredTransitiveID(MachineDominatorsID); 00077 AU.addPreservedID(MachineDominatorsID); 00078 AU.addPreserved<SlotIndexes>(); 00079 AU.addRequiredTransitive<SlotIndexes>(); 00080 MachineFunctionPass::getAnalysisUsage(AU); 00081 } 00082 00083 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID), 00084 DomTree(nullptr), LRCalc(nullptr) { 00085 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 00086 } 00087 00088 LiveIntervals::~LiveIntervals() { 00089 delete LRCalc; 00090 } 00091 00092 void LiveIntervals::releaseMemory() { 00093 // Free the live intervals themselves. 00094 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) 00095 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; 00096 VirtRegIntervals.clear(); 00097 RegMaskSlots.clear(); 00098 RegMaskBits.clear(); 00099 RegMaskBlocks.clear(); 00100 00101 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i) 00102 delete RegUnitRanges[i]; 00103 RegUnitRanges.clear(); 00104 00105 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. 00106 VNInfoAllocator.Reset(); 00107 } 00108 00109 /// runOnMachineFunction - calculates LiveIntervals 00110 /// 00111 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { 00112 MF = &fn; 00113 MRI = &MF->getRegInfo(); 00114 TM = &fn.getTarget(); 00115 TRI = TM->getSubtargetImpl()->getRegisterInfo(); 00116 TII = TM->getSubtargetImpl()->getInstrInfo(); 00117 AA = &getAnalysis<AliasAnalysis>(); 00118 Indexes = &getAnalysis<SlotIndexes>(); 00119 DomTree = &getAnalysis<MachineDominatorTree>(); 00120 if (!LRCalc) 00121 LRCalc = new LiveRangeCalc(); 00122 00123 // Allocate space for all virtual registers. 00124 VirtRegIntervals.resize(MRI->getNumVirtRegs()); 00125 00126 computeVirtRegs(); 00127 computeRegMasks(); 00128 computeLiveInRegUnits(); 00129 00130 if (EnablePrecomputePhysRegs) { 00131 // For stress testing, precompute live ranges of all physical register 00132 // units, including reserved registers. 00133 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 00134 getRegUnit(i); 00135 } 00136 DEBUG(dump()); 00137 return true; 00138 } 00139 00140 /// print - Implement the dump method. 00141 void LiveIntervals::print(raw_ostream &OS, const Module* ) const { 00142 OS << "********** INTERVALS **********\n"; 00143 00144 // Dump the regunits. 00145 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i) 00146 if (LiveRange *LR = RegUnitRanges[i]) 00147 OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n'; 00148 00149 // Dump the virtregs. 00150 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 00151 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 00152 if (hasInterval(Reg)) 00153 OS << getInterval(Reg) << '\n'; 00154 } 00155 00156 OS << "RegMasks:"; 00157 for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i) 00158 OS << ' ' << RegMaskSlots[i]; 00159 OS << '\n'; 00160 00161 printInstrs(OS); 00162 } 00163 00164 void LiveIntervals::printInstrs(raw_ostream &OS) const { 00165 OS << "********** MACHINEINSTRS **********\n"; 00166 MF->print(OS, Indexes); 00167 } 00168 00169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 00170 void LiveIntervals::dumpInstrs() const { 00171 printInstrs(dbgs()); 00172 } 00173 #endif 00174 00175 LiveInterval* LiveIntervals::createInterval(unsigned reg) { 00176 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? 00177 llvm::huge_valf : 0.0F; 00178 return new LiveInterval(reg, Weight); 00179 } 00180 00181 00182 /// computeVirtRegInterval - Compute the live interval of a virtual register, 00183 /// based on defs and uses. 00184 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { 00185 assert(LRCalc && "LRCalc not initialized."); 00186 assert(LI.empty() && "Should only compute empty intervals."); 00187 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 00188 LRCalc->createDeadDefs(LI); 00189 LRCalc->extendToUses(LI); 00190 computeDeadValues(&LI, LI, nullptr, nullptr); 00191 } 00192 00193 void LiveIntervals::computeVirtRegs() { 00194 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 00195 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 00196 if (MRI->reg_nodbg_empty(Reg)) 00197 continue; 00198 createAndComputeVirtRegInterval(Reg); 00199 } 00200 } 00201 00202 void LiveIntervals::computeRegMasks() { 00203 RegMaskBlocks.resize(MF->getNumBlockIDs()); 00204 00205 // Find all instructions with regmask operands. 00206 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 00207 MBBI != E; ++MBBI) { 00208 MachineBasicBlock *MBB = MBBI; 00209 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()]; 00210 RMB.first = RegMaskSlots.size(); 00211 for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end(); 00212 MI != ME; ++MI) 00213 for (MIOperands MO(MI); MO.isValid(); ++MO) { 00214 if (!MO->isRegMask()) 00215 continue; 00216 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); 00217 RegMaskBits.push_back(MO->getRegMask()); 00218 } 00219 // Compute the number of register mask instructions in this block. 00220 RMB.second = RegMaskSlots.size() - RMB.first; 00221 } 00222 } 00223 00224 //===----------------------------------------------------------------------===// 00225 // Register Unit Liveness 00226 //===----------------------------------------------------------------------===// 00227 // 00228 // Fixed interference typically comes from ABI boundaries: Function arguments 00229 // and return values are passed in fixed registers, and so are exception 00230 // pointers entering landing pads. Certain instructions require values to be 00231 // present in specific registers. That is also represented through fixed 00232 // interference. 00233 // 00234 00235 /// computeRegUnitInterval - Compute the live range of a register unit, based 00236 /// on the uses and defs of aliasing registers. The range should be empty, 00237 /// or contain only dead phi-defs from ABI blocks. 00238 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { 00239 assert(LRCalc && "LRCalc not initialized."); 00240 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 00241 00242 // The physregs aliasing Unit are the roots and their super-registers. 00243 // Create all values as dead defs before extending to uses. Note that roots 00244 // may share super-registers. That's OK because createDeadDefs() is 00245 // idempotent. It is very rare for a register unit to have multiple roots, so 00246 // uniquing super-registers is probably not worthwhile. 00247 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { 00248 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true); 00249 Supers.isValid(); ++Supers) { 00250 if (!MRI->reg_empty(*Supers)) 00251 LRCalc->createDeadDefs(LR, *Supers); 00252 } 00253 } 00254 00255 // Now extend LR to reach all uses. 00256 // Ignore uses of reserved registers. We only track defs of those. 00257 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { 00258 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true); 00259 Supers.isValid(); ++Supers) { 00260 unsigned Reg = *Supers; 00261 if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg)) 00262 LRCalc->extendToUses(LR, Reg); 00263 } 00264 } 00265 } 00266 00267 00268 /// computeLiveInRegUnits - Precompute the live ranges of any register units 00269 /// that are live-in to an ABI block somewhere. Register values can appear 00270 /// without a corresponding def when entering the entry block or a landing pad. 00271 /// 00272 void LiveIntervals::computeLiveInRegUnits() { 00273 RegUnitRanges.resize(TRI->getNumRegUnits()); 00274 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); 00275 00276 // Keep track of the live range sets allocated. 00277 SmallVector<unsigned, 8> NewRanges; 00278 00279 // Check all basic blocks for live-ins. 00280 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 00281 MFI != MFE; ++MFI) { 00282 const MachineBasicBlock *MBB = MFI; 00283 00284 // We only care about ABI blocks: Entry + landing pads. 00285 if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty()) 00286 continue; 00287 00288 // Create phi-defs at Begin for all live-in registers. 00289 SlotIndex Begin = Indexes->getMBBStartIdx(MBB); 00290 DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber()); 00291 for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(), 00292 LIE = MBB->livein_end(); LII != LIE; ++LII) { 00293 for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) { 00294 unsigned Unit = *Units; 00295 LiveRange *LR = RegUnitRanges[Unit]; 00296 if (!LR) { 00297 LR = RegUnitRanges[Unit] = new LiveRange(); 00298 NewRanges.push_back(Unit); 00299 } 00300 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); 00301 (void)VNI; 00302 DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id); 00303 } 00304 } 00305 DEBUG(dbgs() << '\n'); 00306 } 00307 DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); 00308 00309 // Compute the 'normal' part of the ranges. 00310 for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) { 00311 unsigned Unit = NewRanges[i]; 00312 computeRegUnitRange(*RegUnitRanges[Unit], Unit); 00313 } 00314 } 00315 00316 00317 /// shrinkToUses - After removing some uses of a register, shrink its live 00318 /// range to just the remaining uses. This method does not compute reaching 00319 /// defs for new uses, and it doesn't remove dead defs. 00320 bool LiveIntervals::shrinkToUses(LiveInterval *li, 00321 SmallVectorImpl<MachineInstr*> *dead) { 00322 DEBUG(dbgs() << "Shrink: " << *li << '\n'); 00323 assert(TargetRegisterInfo::isVirtualRegister(li->reg) 00324 && "Can only shrink virtual registers"); 00325 // Find all the values used, including PHI kills. 00326 SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList; 00327 00328 // Blocks that have already been added to WorkList as live-out. 00329 SmallPtrSet<MachineBasicBlock*, 16> LiveOut; 00330 00331 // Visit all instructions reading li->reg. 00332 for (MachineRegisterInfo::reg_instr_iterator 00333 I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end(); 00334 I != E; ) { 00335 MachineInstr *UseMI = &*(I++); 00336 if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) 00337 continue; 00338 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); 00339 LiveQueryResult LRQ = li->Query(Idx); 00340 VNInfo *VNI = LRQ.valueIn(); 00341 if (!VNI) { 00342 // This shouldn't happen: readsVirtualRegister returns true, but there is 00343 // no live value. It is likely caused by a target getting <undef> flags 00344 // wrong. 00345 DEBUG(dbgs() << Idx << '\t' << *UseMI 00346 << "Warning: Instr claims to read non-existent value in " 00347 << *li << '\n'); 00348 continue; 00349 } 00350 // Special case: An early-clobber tied operand reads and writes the 00351 // register one slot early. 00352 if (VNInfo *DefVNI = LRQ.valueDefined()) 00353 Idx = DefVNI->def; 00354 00355 WorkList.push_back(std::make_pair(Idx, VNI)); 00356 } 00357 00358 // Create new live ranges with only minimal live segments per def. 00359 LiveRange NewLR; 00360 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); 00361 I != E; ++I) { 00362 VNInfo *VNI = *I; 00363 if (VNI->isUnused()) 00364 continue; 00365 NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI)); 00366 } 00367 00368 // Keep track of the PHIs that are in use. 00369 SmallPtrSet<VNInfo*, 8> UsedPHIs; 00370 00371 // Extend intervals to reach all uses in WorkList. 00372 while (!WorkList.empty()) { 00373 SlotIndex Idx = WorkList.back().first; 00374 VNInfo *VNI = WorkList.back().second; 00375 WorkList.pop_back(); 00376 const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot()); 00377 SlotIndex BlockStart = getMBBStartIdx(MBB); 00378 00379 // Extend the live range for VNI to be live at Idx. 00380 if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) { 00381 (void)ExtVNI; 00382 assert(ExtVNI == VNI && "Unexpected existing value number"); 00383 // Is this a PHIDef we haven't seen before? 00384 if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) 00385 continue; 00386 // The PHI is live, make sure the predecessors are live-out. 00387 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 00388 PE = MBB->pred_end(); PI != PE; ++PI) { 00389 if (!LiveOut.insert(*PI)) 00390 continue; 00391 SlotIndex Stop = getMBBEndIdx(*PI); 00392 // A predecessor is not required to have a live-out value for a PHI. 00393 if (VNInfo *PVNI = li->getVNInfoBefore(Stop)) 00394 WorkList.push_back(std::make_pair(Stop, PVNI)); 00395 } 00396 continue; 00397 } 00398 00399 // VNI is live-in to MBB. 00400 DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); 00401 NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); 00402 00403 // Make sure VNI is live-out from the predecessors. 00404 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 00405 PE = MBB->pred_end(); PI != PE; ++PI) { 00406 if (!LiveOut.insert(*PI)) 00407 continue; 00408 SlotIndex Stop = getMBBEndIdx(*PI); 00409 assert(li->getVNInfoBefore(Stop) == VNI && 00410 "Wrong value out of predecessor"); 00411 WorkList.push_back(std::make_pair(Stop, VNI)); 00412 } 00413 } 00414 00415 // Handle dead values. 00416 bool CanSeparate = false; 00417 computeDeadValues(li, NewLR, &CanSeparate, dead); 00418 00419 // Move the trimmed segments back. 00420 li->segments.swap(NewLR.segments); 00421 DEBUG(dbgs() << "Shrunk: " << *li << '\n'); 00422 return CanSeparate; 00423 } 00424 00425 void LiveIntervals::computeDeadValues(LiveInterval *li, 00426 LiveRange &LR, 00427 bool *CanSeparate, 00428 SmallVectorImpl<MachineInstr*> *dead) { 00429 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); 00430 I != E; ++I) { 00431 VNInfo *VNI = *I; 00432 if (VNI->isUnused()) 00433 continue; 00434 LiveRange::iterator LRI = LR.FindSegmentContaining(VNI->def); 00435 assert(LRI != LR.end() && "Missing segment for PHI"); 00436 if (LRI->end != VNI->def.getDeadSlot()) 00437 continue; 00438 if (VNI->isPHIDef()) { 00439 // This is a dead PHI. Remove it. 00440 VNI->markUnused(); 00441 LR.removeSegment(LRI->start, LRI->end); 00442 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); 00443 if (CanSeparate) 00444 *CanSeparate = true; 00445 } else { 00446 // This is a dead def. Make sure the instruction knows. 00447 MachineInstr *MI = getInstructionFromIndex(VNI->def); 00448 assert(MI && "No instruction defining live value"); 00449 MI->addRegisterDead(li->reg, TRI); 00450 if (dead && MI->allDefsAreDead()) { 00451 DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); 00452 dead->push_back(MI); 00453 } 00454 } 00455 } 00456 } 00457 00458 void LiveIntervals::extendToIndices(LiveRange &LR, 00459 ArrayRef<SlotIndex> Indices) { 00460 assert(LRCalc && "LRCalc not initialized."); 00461 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 00462 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 00463 LRCalc->extend(LR, Indices[i]); 00464 } 00465 00466 void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill, 00467 SmallVectorImpl<SlotIndex> *EndPoints) { 00468 LiveQueryResult LRQ = LI->Query(Kill); 00469 VNInfo *VNI = LRQ.valueOut(); 00470 if (!VNI) 00471 return; 00472 00473 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); 00474 SlotIndex MBBStart, MBBEnd; 00475 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB); 00476 00477 // If VNI isn't live out from KillMBB, the value is trivially pruned. 00478 if (LRQ.endPoint() < MBBEnd) { 00479 LI->removeSegment(Kill, LRQ.endPoint()); 00480 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 00481 return; 00482 } 00483 00484 // VNI is live out of KillMBB. 00485 LI->removeSegment(Kill, MBBEnd); 00486 if (EndPoints) EndPoints->push_back(MBBEnd); 00487 00488 // Find all blocks that are reachable from KillMBB without leaving VNI's live 00489 // range. It is possible that KillMBB itself is reachable, so start a DFS 00490 // from each successor. 00491 typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy; 00492 VisitedTy Visited; 00493 for (MachineBasicBlock::succ_iterator 00494 SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end(); 00495 SuccI != SuccE; ++SuccI) { 00496 for (df_ext_iterator<MachineBasicBlock*, VisitedTy> 00497 I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited); 00498 I != E;) { 00499 MachineBasicBlock *MBB = *I; 00500 00501 // Check if VNI is live in to MBB. 00502 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); 00503 LiveQueryResult LRQ = LI->Query(MBBStart); 00504 if (LRQ.valueIn() != VNI) { 00505 // This block isn't part of the VNI segment. Prune the search. 00506 I.skipChildren(); 00507 continue; 00508 } 00509 00510 // Prune the search if VNI is killed in MBB. 00511 if (LRQ.endPoint() < MBBEnd) { 00512 LI->removeSegment(MBBStart, LRQ.endPoint()); 00513 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 00514 I.skipChildren(); 00515 continue; 00516 } 00517 00518 // VNI is live through MBB. 00519 LI->removeSegment(MBBStart, MBBEnd); 00520 if (EndPoints) EndPoints->push_back(MBBEnd); 00521 ++I; 00522 } 00523 } 00524 } 00525 00526 //===----------------------------------------------------------------------===// 00527 // Register allocator hooks. 00528 // 00529 00530 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { 00531 // Keep track of regunit ranges. 00532 SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU; 00533 00534 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 00535 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 00536 if (MRI->reg_nodbg_empty(Reg)) 00537 continue; 00538 LiveInterval *LI = &getInterval(Reg); 00539 if (LI->empty()) 00540 continue; 00541 00542 // Find the regunit intervals for the assigned register. They may overlap 00543 // the virtual register live range, cancelling any kills. 00544 RU.clear(); 00545 for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid(); 00546 ++Units) { 00547 LiveRange &RURanges = getRegUnit(*Units); 00548 if (RURanges.empty()) 00549 continue; 00550 RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end))); 00551 } 00552 00553 // Every instruction that kills Reg corresponds to a segment range end 00554 // point. 00555 for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; 00556 ++RI) { 00557 // A block index indicates an MBB edge. 00558 if (RI->end.isBlock()) 00559 continue; 00560 MachineInstr *MI = getInstructionFromIndex(RI->end); 00561 if (!MI) 00562 continue; 00563 00564 // Check if any of the regunits are live beyond the end of RI. That could 00565 // happen when a physreg is defined as a copy of a virtreg: 00566 // 00567 // %EAX = COPY %vreg5 00568 // FOO %vreg5 <--- MI, cancel kill because %EAX is live. 00569 // BAR %EAX<kill> 00570 // 00571 // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX. 00572 bool CancelKill = false; 00573 for (unsigned u = 0, e = RU.size(); u != e; ++u) { 00574 LiveRange &RRanges = *RU[u].first; 00575 LiveRange::iterator &I = RU[u].second; 00576 if (I == RRanges.end()) 00577 continue; 00578 I = RRanges.advanceTo(I, RI->end); 00579 if (I == RRanges.end() || I->start >= RI->end) 00580 continue; 00581 // I is overlapping RI. 00582 CancelKill = true; 00583 break; 00584 } 00585 if (CancelKill) 00586 MI->clearRegisterKills(Reg, nullptr); 00587 else 00588 MI->addRegisterKilled(Reg, nullptr); 00589 } 00590 } 00591 } 00592 00593 MachineBasicBlock* 00594 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { 00595 // A local live range must be fully contained inside the block, meaning it is 00596 // defined and killed at instructions, not at block boundaries. It is not 00597 // live in or or out of any block. 00598 // 00599 // It is technically possible to have a PHI-defined live range identical to a 00600 // single block, but we are going to return false in that case. 00601 00602 SlotIndex Start = LI.beginIndex(); 00603 if (Start.isBlock()) 00604 return nullptr; 00605 00606 SlotIndex Stop = LI.endIndex(); 00607 if (Stop.isBlock()) 00608 return nullptr; 00609 00610 // getMBBFromIndex doesn't need to search the MBB table when both indexes 00611 // belong to proper instructions. 00612 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); 00613 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); 00614 return MBB1 == MBB2 ? MBB1 : nullptr; 00615 } 00616 00617 bool 00618 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { 00619 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 00620 I != E; ++I) { 00621 const VNInfo *PHI = *I; 00622 if (PHI->isUnused() || !PHI->isPHIDef()) 00623 continue; 00624 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); 00625 // Conservatively return true instead of scanning huge predecessor lists. 00626 if (PHIMBB->pred_size() > 100) 00627 return true; 00628 for (MachineBasicBlock::const_pred_iterator 00629 PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI) 00630 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI))) 00631 return true; 00632 } 00633 return false; 00634 } 00635 00636 float 00637 LiveIntervals::getSpillWeight(bool isDef, bool isUse, 00638 const MachineBlockFrequencyInfo *MBFI, 00639 const MachineInstr *MI) { 00640 BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent()); 00641 const float Scale = 1.0f / MBFI->getEntryFreq(); 00642 return (isDef + isUse) * (Freq.getFrequency() * Scale); 00643 } 00644 00645 LiveRange::Segment 00646 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) { 00647 LiveInterval& Interval = createEmptyInterval(reg); 00648 VNInfo* VN = Interval.getNextValue( 00649 SlotIndex(getInstructionIndex(startInst).getRegSlot()), 00650 getVNInfoAllocator()); 00651 LiveRange::Segment S( 00652 SlotIndex(getInstructionIndex(startInst).getRegSlot()), 00653 getMBBEndIdx(startInst->getParent()), VN); 00654 Interval.addSegment(S); 00655 00656 return S; 00657 } 00658 00659 00660 //===----------------------------------------------------------------------===// 00661 // Register mask functions 00662 //===----------------------------------------------------------------------===// 00663 00664 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, 00665 BitVector &UsableRegs) { 00666 if (LI.empty()) 00667 return false; 00668 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); 00669 00670 // Use a smaller arrays for local live ranges. 00671 ArrayRef<SlotIndex> Slots; 00672 ArrayRef<const uint32_t*> Bits; 00673 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { 00674 Slots = getRegMaskSlotsInBlock(MBB->getNumber()); 00675 Bits = getRegMaskBitsInBlock(MBB->getNumber()); 00676 } else { 00677 Slots = getRegMaskSlots(); 00678 Bits = getRegMaskBits(); 00679 } 00680 00681 // We are going to enumerate all the register mask slots contained in LI. 00682 // Start with a binary search of RegMaskSlots to find a starting point. 00683 ArrayRef<SlotIndex>::iterator SlotI = 00684 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); 00685 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 00686 00687 // No slots in range, LI begins after the last call. 00688 if (SlotI == SlotE) 00689 return false; 00690 00691 bool Found = false; 00692 for (;;) { 00693 assert(*SlotI >= LiveI->start); 00694 // Loop over all slots overlapping this segment. 00695 while (*SlotI < LiveI->end) { 00696 // *SlotI overlaps LI. Collect mask bits. 00697 if (!Found) { 00698 // This is the first overlap. Initialize UsableRegs to all ones. 00699 UsableRegs.clear(); 00700 UsableRegs.resize(TRI->getNumRegs(), true); 00701 Found = true; 00702 } 00703 // Remove usable registers clobbered by this mask. 00704 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); 00705 if (++SlotI == SlotE) 00706 return Found; 00707 } 00708 // *SlotI is beyond the current LI segment. 00709 LiveI = LI.advanceTo(LiveI, *SlotI); 00710 if (LiveI == LiveE) 00711 return Found; 00712 // Advance SlotI until it overlaps. 00713 while (*SlotI < LiveI->start) 00714 if (++SlotI == SlotE) 00715 return Found; 00716 } 00717 } 00718 00719 //===----------------------------------------------------------------------===// 00720 // IntervalUpdate class. 00721 //===----------------------------------------------------------------------===// 00722 00723 // HMEditor is a toolkit used by handleMove to trim or extend live intervals. 00724 class LiveIntervals::HMEditor { 00725 private: 00726 LiveIntervals& LIS; 00727 const MachineRegisterInfo& MRI; 00728 const TargetRegisterInfo& TRI; 00729 SlotIndex OldIdx; 00730 SlotIndex NewIdx; 00731 SmallPtrSet<LiveRange*, 8> Updated; 00732 bool UpdateFlags; 00733 00734 public: 00735 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, 00736 const TargetRegisterInfo& TRI, 00737 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) 00738 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), 00739 UpdateFlags(UpdateFlags) {} 00740 00741 // FIXME: UpdateFlags is a workaround that creates live intervals for all 00742 // physregs, even those that aren't needed for regalloc, in order to update 00743 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill 00744 // flags, and postRA passes will use a live register utility instead. 00745 LiveRange *getRegUnitLI(unsigned Unit) { 00746 if (UpdateFlags) 00747 return &LIS.getRegUnit(Unit); 00748 return LIS.getCachedRegUnit(Unit); 00749 } 00750 00751 /// Update all live ranges touched by MI, assuming a move from OldIdx to 00752 /// NewIdx. 00753 void updateAllRanges(MachineInstr *MI) { 00754 DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI); 00755 bool hasRegMask = false; 00756 for (MIOperands MO(MI); MO.isValid(); ++MO) { 00757 if (MO->isRegMask()) 00758 hasRegMask = true; 00759 if (!MO->isReg()) 00760 continue; 00761 // Aggressively clear all kill flags. 00762 // They are reinserted by VirtRegRewriter. 00763 if (MO->isUse()) 00764 MO->setIsKill(false); 00765 00766 unsigned Reg = MO->getReg(); 00767 if (!Reg) 00768 continue; 00769 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 00770 LiveInterval &LI = LIS.getInterval(Reg); 00771 updateRange(LI, Reg); 00772 continue; 00773 } 00774 00775 // For physregs, only update the regunits that actually have a 00776 // precomputed live range. 00777 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) 00778 if (LiveRange *LR = getRegUnitLI(*Units)) 00779 updateRange(*LR, *Units); 00780 } 00781 if (hasRegMask) 00782 updateRegMaskSlots(); 00783 } 00784 00785 private: 00786 /// Update a single live range, assuming an instruction has been moved from 00787 /// OldIdx to NewIdx. 00788 void updateRange(LiveRange &LR, unsigned Reg) { 00789 if (!Updated.insert(&LR)) 00790 return; 00791 DEBUG({ 00792 dbgs() << " "; 00793 if (TargetRegisterInfo::isVirtualRegister(Reg)) 00794 dbgs() << PrintReg(Reg); 00795 else 00796 dbgs() << PrintRegUnit(Reg, &TRI); 00797 dbgs() << ":\t" << LR << '\n'; 00798 }); 00799 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) 00800 handleMoveDown(LR); 00801 else 00802 handleMoveUp(LR, Reg); 00803 DEBUG(dbgs() << " -->\t" << LR << '\n'); 00804 LR.verify(); 00805 } 00806 00807 /// Update LR to reflect an instruction has been moved downwards from OldIdx 00808 /// to NewIdx. 00809 /// 00810 /// 1. Live def at OldIdx: 00811 /// Move def to NewIdx, assert endpoint after NewIdx. 00812 /// 00813 /// 2. Live def at OldIdx, killed at NewIdx: 00814 /// Change to dead def at NewIdx. 00815 /// (Happens when bundling def+kill together). 00816 /// 00817 /// 3. Dead def at OldIdx: 00818 /// Move def to NewIdx, possibly across another live value. 00819 /// 00820 /// 4. Def at OldIdx AND at NewIdx: 00821 /// Remove segment [OldIdx;NewIdx) and value defined at OldIdx. 00822 /// (Happens when bundling multiple defs together). 00823 /// 00824 /// 5. Value read at OldIdx, killed before NewIdx: 00825 /// Extend kill to NewIdx. 00826 /// 00827 void handleMoveDown(LiveRange &LR) { 00828 // First look for a kill at OldIdx. 00829 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex()); 00830 LiveRange::iterator E = LR.end(); 00831 // Is LR even live at OldIdx? 00832 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) 00833 return; 00834 00835 // Handle a live-in value. 00836 if (!SlotIndex::isSameInstr(I->start, OldIdx)) { 00837 bool isKill = SlotIndex::isSameInstr(OldIdx, I->end); 00838 // If the live-in value already extends to NewIdx, there is nothing to do. 00839 if (!SlotIndex::isEarlierInstr(I->end, NewIdx)) 00840 return; 00841 // Aggressively remove all kill flags from the old kill point. 00842 // Kill flags shouldn't be used while live intervals exist, they will be 00843 // reinserted by VirtRegRewriter. 00844 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end)) 00845 for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO) 00846 if (MO->isReg() && MO->isUse()) 00847 MO->setIsKill(false); 00848 // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by 00849 // overlapping ranges. Case 5 above. 00850 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); 00851 // If this was a kill, there may also be a def. Otherwise we're done. 00852 if (!isKill) 00853 return; 00854 ++I; 00855 } 00856 00857 // Check for a def at OldIdx. 00858 if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start)) 00859 return; 00860 // We have a def at OldIdx. 00861 VNInfo *DefVNI = I->valno; 00862 assert(DefVNI->def == I->start && "Inconsistent def"); 00863 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); 00864 // If the defined value extends beyond NewIdx, just move the def down. 00865 // This is case 1 above. 00866 if (SlotIndex::isEarlierInstr(NewIdx, I->end)) { 00867 I->start = DefVNI->def; 00868 return; 00869 } 00870 // The remaining possibilities are now: 00871 // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx). 00872 // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot(). 00873 // In either case, it is possible that there is an existing def at NewIdx. 00874 assert((I->end == OldIdx.getDeadSlot() || 00875 SlotIndex::isSameInstr(I->end, NewIdx)) && 00876 "Cannot move def below kill"); 00877 LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot()); 00878 if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) { 00879 // There is an existing def at NewIdx, case 4 above. The def at OldIdx is 00880 // coalesced into that value. 00881 assert(NewI->valno != DefVNI && "Multiple defs of value?"); 00882 LR.removeValNo(DefVNI); 00883 return; 00884 } 00885 // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx. 00886 // If the def at OldIdx was dead, we allow it to be moved across other LR 00887 // values. The new range should be placed immediately before NewI, move any 00888 // intermediate ranges up. 00889 assert(NewI != I && "Inconsistent iterators"); 00890 std::copy(std::next(I), NewI, I); 00891 *std::prev(NewI) 00892 = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); 00893 } 00894 00895 /// Update LR to reflect an instruction has been moved upwards from OldIdx 00896 /// to NewIdx. 00897 /// 00898 /// 1. Live def at OldIdx: 00899 /// Hoist def to NewIdx. 00900 /// 00901 /// 2. Dead def at OldIdx: 00902 /// Hoist def+end to NewIdx, possibly move across other values. 00903 /// 00904 /// 3. Dead def at OldIdx AND existing def at NewIdx: 00905 /// Remove value defined at OldIdx, coalescing it with existing value. 00906 /// 00907 /// 4. Live def at OldIdx AND existing def at NewIdx: 00908 /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx. 00909 /// (Happens when bundling multiple defs together). 00910 /// 00911 /// 5. Value killed at OldIdx: 00912 /// Hoist kill to NewIdx, then scan for last kill between NewIdx and 00913 /// OldIdx. 00914 /// 00915 void handleMoveUp(LiveRange &LR, unsigned Reg) { 00916 // First look for a kill at OldIdx. 00917 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex()); 00918 LiveRange::iterator E = LR.end(); 00919 // Is LR even live at OldIdx? 00920 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) 00921 return; 00922 00923 // Handle a live-in value. 00924 if (!SlotIndex::isSameInstr(I->start, OldIdx)) { 00925 // If the live-in value isn't killed here, there is nothing to do. 00926 if (!SlotIndex::isSameInstr(OldIdx, I->end)) 00927 return; 00928 // Adjust I->end to end at NewIdx. If we are hoisting a kill above 00929 // another use, we need to search for that use. Case 5 above. 00930 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); 00931 ++I; 00932 // If OldIdx also defines a value, there couldn't have been another use. 00933 if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) { 00934 // No def, search for the new kill. 00935 // This can never be an early clobber kill since there is no def. 00936 std::prev(I)->end = findLastUseBefore(Reg).getRegSlot(); 00937 return; 00938 } 00939 } 00940 00941 // Now deal with the def at OldIdx. 00942 assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?"); 00943 VNInfo *DefVNI = I->valno; 00944 assert(DefVNI->def == I->start && "Inconsistent def"); 00945 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); 00946 00947 // Check for an existing def at NewIdx. 00948 LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot()); 00949 if (SlotIndex::isSameInstr(NewI->start, NewIdx)) { 00950 assert(NewI->valno != DefVNI && "Same value defined more than once?"); 00951 // There is an existing def at NewIdx. 00952 if (I->end.isDead()) { 00953 // Case 3: Remove the dead def at OldIdx. 00954 LR.removeValNo(DefVNI); 00955 return; 00956 } 00957 // Case 4: Replace def at NewIdx with live def at OldIdx. 00958 I->start = DefVNI->def; 00959 LR.removeValNo(NewI->valno); 00960 return; 00961 } 00962 00963 // There is no existing def at NewIdx. Hoist DefVNI. 00964 if (!I->end.isDead()) { 00965 // Leave the end point of a live def. 00966 I->start = DefVNI->def; 00967 return; 00968 } 00969 00970 // DefVNI is a dead def. It may have been moved across other values in LR, 00971 // so move I up to NewI. Slide [NewI;I) down one position. 00972 std::copy_backward(NewI, I, std::next(I)); 00973 *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); 00974 } 00975 00976 void updateRegMaskSlots() { 00977 SmallVectorImpl<SlotIndex>::iterator RI = 00978 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), 00979 OldIdx); 00980 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && 00981 "No RegMask at OldIdx."); 00982 *RI = NewIdx.getRegSlot(); 00983 assert((RI == LIS.RegMaskSlots.begin() || 00984 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && 00985 "Cannot move regmask instruction above another call"); 00986 assert((std::next(RI) == LIS.RegMaskSlots.end() || 00987 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && 00988 "Cannot move regmask instruction below another call"); 00989 } 00990 00991 // Return the last use of reg between NewIdx and OldIdx. 00992 SlotIndex findLastUseBefore(unsigned Reg) { 00993 00994 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 00995 SlotIndex LastUse = NewIdx; 00996 for (MachineRegisterInfo::use_instr_nodbg_iterator 00997 UI = MRI.use_instr_nodbg_begin(Reg), 00998 UE = MRI.use_instr_nodbg_end(); 00999 UI != UE; ++UI) { 01000 const MachineInstr* MI = &*UI; 01001 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); 01002 if (InstSlot > LastUse && InstSlot < OldIdx) 01003 LastUse = InstSlot; 01004 } 01005 return LastUse; 01006 } 01007 01008 // This is a regunit interval, so scanning the use list could be very 01009 // expensive. Scan upwards from OldIdx instead. 01010 assert(NewIdx < OldIdx && "Expected upwards move"); 01011 SlotIndexes *Indexes = LIS.getSlotIndexes(); 01012 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx); 01013 01014 // OldIdx may not correspond to an instruction any longer, so set MII to 01015 // point to the next instruction after OldIdx, or MBB->end(). 01016 MachineBasicBlock::iterator MII = MBB->end(); 01017 if (MachineInstr *MI = Indexes->getInstructionFromIndex( 01018 Indexes->getNextNonNullIndex(OldIdx))) 01019 if (MI->getParent() == MBB) 01020 MII = MI; 01021 01022 MachineBasicBlock::iterator Begin = MBB->begin(); 01023 while (MII != Begin) { 01024 if ((--MII)->isDebugValue()) 01025 continue; 01026 SlotIndex Idx = Indexes->getInstructionIndex(MII); 01027 01028 // Stop searching when NewIdx is reached. 01029 if (!SlotIndex::isEarlierInstr(NewIdx, Idx)) 01030 return NewIdx; 01031 01032 // Check if MII uses Reg. 01033 for (MIBundleOperands MO(MII); MO.isValid(); ++MO) 01034 if (MO->isReg() && 01035 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) && 01036 TRI.hasRegUnit(MO->getReg(), Reg)) 01037 return Idx; 01038 } 01039 // Didn't reach NewIdx. It must be the first instruction in the block. 01040 return NewIdx; 01041 } 01042 }; 01043 01044 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) { 01045 assert(!MI->isBundled() && "Can't handle bundled instructions yet."); 01046 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 01047 Indexes->removeMachineInstrFromMaps(MI); 01048 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); 01049 assert(getMBBStartIdx(MI->getParent()) <= OldIndex && 01050 OldIndex < getMBBEndIdx(MI->getParent()) && 01051 "Cannot handle moves across basic block boundaries."); 01052 01053 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 01054 HME.updateAllRanges(MI); 01055 } 01056 01057 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, 01058 MachineInstr* BundleStart, 01059 bool UpdateFlags) { 01060 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 01061 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); 01062 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 01063 HME.updateAllRanges(MI); 01064 } 01065 01066 void 01067 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, 01068 MachineBasicBlock::iterator Begin, 01069 MachineBasicBlock::iterator End, 01070 ArrayRef<unsigned> OrigRegs) { 01071 // Find anchor points, which are at the beginning/end of blocks or at 01072 // instructions that already have indexes. 01073 while (Begin != MBB->begin() && !Indexes->hasIndex(Begin)) 01074 --Begin; 01075 while (End != MBB->end() && !Indexes->hasIndex(End)) 01076 ++End; 01077 01078 SlotIndex endIdx; 01079 if (End == MBB->end()) 01080 endIdx = getMBBEndIdx(MBB).getPrevSlot(); 01081 else 01082 endIdx = getInstructionIndex(End); 01083 01084 Indexes->repairIndexesInRange(MBB, Begin, End); 01085 01086 for (MachineBasicBlock::iterator I = End; I != Begin;) { 01087 --I; 01088 MachineInstr *MI = I; 01089 if (MI->isDebugValue()) 01090 continue; 01091 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 01092 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 01093 if (MOI->isReg() && 01094 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) && 01095 !hasInterval(MOI->getReg())) { 01096 createAndComputeVirtRegInterval(MOI->getReg()); 01097 } 01098 } 01099 } 01100 01101 for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) { 01102 unsigned Reg = OrigRegs[i]; 01103 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 01104 continue; 01105 01106 LiveInterval &LI = getInterval(Reg); 01107 // FIXME: Should we support undefs that gain defs? 01108 if (!LI.hasAtLeastOneValue()) 01109 continue; 01110 01111 LiveInterval::iterator LII = LI.find(endIdx); 01112 SlotIndex lastUseIdx; 01113 if (LII != LI.end() && LII->start < endIdx) 01114 lastUseIdx = LII->end; 01115 else 01116 --LII; 01117 01118 for (MachineBasicBlock::iterator I = End; I != Begin;) { 01119 --I; 01120 MachineInstr *MI = I; 01121 if (MI->isDebugValue()) 01122 continue; 01123 01124 SlotIndex instrIdx = getInstructionIndex(MI); 01125 bool isStartValid = getInstructionFromIndex(LII->start); 01126 bool isEndValid = getInstructionFromIndex(LII->end); 01127 01128 // FIXME: This doesn't currently handle early-clobber or multiple removed 01129 // defs inside of the region to repair. 01130 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 01131 OE = MI->operands_end(); OI != OE; ++OI) { 01132 const MachineOperand &MO = *OI; 01133 if (!MO.isReg() || MO.getReg() != Reg) 01134 continue; 01135 01136 if (MO.isDef()) { 01137 if (!isStartValid) { 01138 if (LII->end.isDead()) { 01139 SlotIndex prevStart; 01140 if (LII != LI.begin()) 01141 prevStart = std::prev(LII)->start; 01142 01143 // FIXME: This could be more efficient if there was a 01144 // removeSegment method that returned an iterator. 01145 LI.removeSegment(*LII, true); 01146 if (prevStart.isValid()) 01147 LII = LI.find(prevStart); 01148 else 01149 LII = LI.begin(); 01150 } else { 01151 LII->start = instrIdx.getRegSlot(); 01152 LII->valno->def = instrIdx.getRegSlot(); 01153 if (MO.getSubReg() && !MO.isUndef()) 01154 lastUseIdx = instrIdx.getRegSlot(); 01155 else 01156 lastUseIdx = SlotIndex(); 01157 continue; 01158 } 01159 } 01160 01161 if (!lastUseIdx.isValid()) { 01162 VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(), 01163 VNInfoAllocator); 01164 LiveRange::Segment S(instrIdx.getRegSlot(), 01165 instrIdx.getDeadSlot(), VNI); 01166 LII = LI.addSegment(S); 01167 } else if (LII->start != instrIdx.getRegSlot()) { 01168 VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(), 01169 VNInfoAllocator); 01170 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); 01171 LII = LI.addSegment(S); 01172 } 01173 01174 if (MO.getSubReg() && !MO.isUndef()) 01175 lastUseIdx = instrIdx.getRegSlot(); 01176 else 01177 lastUseIdx = SlotIndex(); 01178 } else if (MO.isUse()) { 01179 // FIXME: This should probably be handled outside of this branch, 01180 // either as part of the def case (for defs inside of the region) or 01181 // after the loop over the region. 01182 if (!isEndValid && !LII->end.isBlock()) 01183 LII->end = instrIdx.getRegSlot(); 01184 if (!lastUseIdx.isValid()) 01185 lastUseIdx = instrIdx.getRegSlot(); 01186 } 01187 } 01188 } 01189 } 01190 }