LLVM API Documentation
00001 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // The LiveRangeEdit class represents changes done to a virtual register when it 00011 // is spilled or split. 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/CodeGen/LiveRangeEdit.h" 00015 #include "llvm/ADT/Statistic.h" 00016 #include "llvm/CodeGen/CalcSpillWeights.h" 00017 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00018 #include "llvm/CodeGen/MachineRegisterInfo.h" 00019 #include "llvm/CodeGen/VirtRegMap.h" 00020 #include "llvm/Support/Debug.h" 00021 #include "llvm/Support/raw_ostream.h" 00022 #include "llvm/Target/TargetInstrInfo.h" 00023 00024 using namespace llvm; 00025 00026 #define DEBUG_TYPE "regalloc" 00027 00028 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 00029 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 00030 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 00031 00032 void LiveRangeEdit::Delegate::anchor() { } 00033 00034 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) { 00035 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 00036 if (VRM) { 00037 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 00038 } 00039 LiveInterval &LI = LIS.createEmptyInterval(VReg); 00040 return LI; 00041 } 00042 00043 unsigned LiveRangeEdit::createFrom(unsigned OldReg) { 00044 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 00045 if (VRM) { 00046 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 00047 } 00048 return VReg; 00049 } 00050 00051 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 00052 const MachineInstr *DefMI, 00053 AliasAnalysis *aa) { 00054 assert(DefMI && "Missing instruction"); 00055 ScannedRemattable = true; 00056 if (!TII.isTriviallyReMaterializable(DefMI, aa)) 00057 return false; 00058 Remattable.insert(VNI); 00059 return true; 00060 } 00061 00062 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { 00063 for (LiveInterval::vni_iterator I = getParent().vni_begin(), 00064 E = getParent().vni_end(); I != E; ++I) { 00065 VNInfo *VNI = *I; 00066 if (VNI->isUnused()) 00067 continue; 00068 MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def); 00069 if (!DefMI) 00070 continue; 00071 checkRematerializable(VNI, DefMI, aa); 00072 } 00073 ScannedRemattable = true; 00074 } 00075 00076 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { 00077 if (!ScannedRemattable) 00078 scanRemattable(aa); 00079 return !Remattable.empty(); 00080 } 00081 00082 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 00083 /// OrigIdx are also available with the same value at UseIdx. 00084 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 00085 SlotIndex OrigIdx, 00086 SlotIndex UseIdx) const { 00087 OrigIdx = OrigIdx.getRegSlot(true); 00088 UseIdx = UseIdx.getRegSlot(true); 00089 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { 00090 const MachineOperand &MO = OrigMI->getOperand(i); 00091 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 00092 continue; 00093 00094 // We can't remat physreg uses, unless it is a constant. 00095 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 00096 if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent())) 00097 continue; 00098 return false; 00099 } 00100 00101 LiveInterval &li = LIS.getInterval(MO.getReg()); 00102 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 00103 if (!OVNI) 00104 continue; 00105 00106 // Don't allow rematerialization immediately after the original def. 00107 // It would be incorrect if OrigMI redefines the register. 00108 // See PR14098. 00109 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 00110 return false; 00111 00112 if (OVNI != li.getVNInfoAt(UseIdx)) 00113 return false; 00114 } 00115 return true; 00116 } 00117 00118 bool LiveRangeEdit::canRematerializeAt(Remat &RM, 00119 SlotIndex UseIdx, 00120 bool cheapAsAMove) { 00121 assert(ScannedRemattable && "Call anyRematerializable first"); 00122 00123 // Use scanRemattable info. 00124 if (!Remattable.count(RM.ParentVNI)) 00125 return false; 00126 00127 // No defining instruction provided. 00128 SlotIndex DefIdx; 00129 if (RM.OrigMI) 00130 DefIdx = LIS.getInstructionIndex(RM.OrigMI); 00131 else { 00132 DefIdx = RM.ParentVNI->def; 00133 RM.OrigMI = LIS.getInstructionFromIndex(DefIdx); 00134 assert(RM.OrigMI && "No defining instruction for remattable value"); 00135 } 00136 00137 // If only cheap remats were requested, bail out early. 00138 if (cheapAsAMove && !TII.isAsCheapAsAMove(RM.OrigMI)) 00139 return false; 00140 00141 // Verify that all used registers are available with the same values. 00142 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 00143 return false; 00144 00145 return true; 00146 } 00147 00148 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 00149 MachineBasicBlock::iterator MI, 00150 unsigned DestReg, 00151 const Remat &RM, 00152 const TargetRegisterInfo &tri, 00153 bool Late) { 00154 assert(RM.OrigMI && "Invalid remat"); 00155 TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri); 00156 Rematted.insert(RM.ParentVNI); 00157 return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late) 00158 .getRegSlot(); 00159 } 00160 00161 void LiveRangeEdit::eraseVirtReg(unsigned Reg) { 00162 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 00163 LIS.removeInterval(Reg); 00164 } 00165 00166 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 00167 SmallVectorImpl<MachineInstr*> &Dead) { 00168 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 00169 00170 // Check that there is a single def and a single use. 00171 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 00172 MachineInstr *MI = MO.getParent(); 00173 if (MO.isDef()) { 00174 if (DefMI && DefMI != MI) 00175 return false; 00176 if (!MI->canFoldAsLoad()) 00177 return false; 00178 DefMI = MI; 00179 } else if (!MO.isUndef()) { 00180 if (UseMI && UseMI != MI) 00181 return false; 00182 // FIXME: Targets don't know how to fold subreg uses. 00183 if (MO.getSubReg()) 00184 return false; 00185 UseMI = MI; 00186 } 00187 } 00188 if (!DefMI || !UseMI) 00189 return false; 00190 00191 // Since we're moving the DefMI load, make sure we're not extending any live 00192 // ranges. 00193 if (!allUsesAvailableAt(DefMI, 00194 LIS.getInstructionIndex(DefMI), 00195 LIS.getInstructionIndex(UseMI))) 00196 return false; 00197 00198 // We also need to make sure it is safe to move the load. 00199 // Assume there are stores between DefMI and UseMI. 00200 bool SawStore = true; 00201 if (!DefMI->isSafeToMove(&TII, nullptr, SawStore)) 00202 return false; 00203 00204 DEBUG(dbgs() << "Try to fold single def: " << *DefMI 00205 << " into single use: " << *UseMI); 00206 00207 SmallVector<unsigned, 8> Ops; 00208 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) 00209 return false; 00210 00211 MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI); 00212 if (!FoldMI) 00213 return false; 00214 DEBUG(dbgs() << " folded: " << *FoldMI); 00215 LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI); 00216 UseMI->eraseFromParent(); 00217 DefMI->addRegisterDead(LI->reg, nullptr); 00218 Dead.push_back(DefMI); 00219 ++NumDCEFoldedLoads; 00220 return true; 00221 } 00222 00223 /// Find all live intervals that need to shrink, then remove the instruction. 00224 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { 00225 assert(MI->allDefsAreDead() && "Def isn't really dead"); 00226 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 00227 00228 // Never delete a bundled instruction. 00229 if (MI->isBundled()) { 00230 return; 00231 } 00232 // Never delete inline asm. 00233 if (MI->isInlineAsm()) { 00234 DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 00235 return; 00236 } 00237 00238 // Use the same criteria as DeadMachineInstructionElim. 00239 bool SawStore = false; 00240 if (!MI->isSafeToMove(&TII, nullptr, SawStore)) { 00241 DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 00242 return; 00243 } 00244 00245 DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 00246 00247 // Collect virtual registers to be erased after MI is gone. 00248 SmallVector<unsigned, 8> RegsToErase; 00249 bool ReadsPhysRegs = false; 00250 00251 // Check for live intervals that may shrink 00252 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 00253 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 00254 if (!MOI->isReg()) 00255 continue; 00256 unsigned Reg = MOI->getReg(); 00257 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 00258 // Check if MI reads any unreserved physregs. 00259 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) 00260 ReadsPhysRegs = true; 00261 else if (MOI->isDef()) { 00262 for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo()); 00263 Units.isValid(); ++Units) { 00264 if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) { 00265 if (VNInfo *VNI = LR->getVNInfoAt(Idx)) 00266 LR->removeValNo(VNI); 00267 } 00268 } 00269 } 00270 continue; 00271 } 00272 LiveInterval &LI = LIS.getInterval(Reg); 00273 00274 // Shrink read registers, unless it is likely to be expensive and 00275 // unlikely to change anything. We typically don't want to shrink the 00276 // PIC base register that has lots of uses everywhere. 00277 // Always shrink COPY uses that probably come from live range splitting. 00278 if (MI->readsVirtualRegister(Reg) && 00279 (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) || 00280 LI.Query(Idx).isKill())) 00281 ToShrink.insert(&LI); 00282 00283 // Remove defined value. 00284 if (MOI->isDef()) { 00285 if (VNInfo *VNI = LI.getVNInfoAt(Idx)) { 00286 if (TheDelegate) 00287 TheDelegate->LRE_WillShrinkVirtReg(LI.reg); 00288 LI.removeValNo(VNI); 00289 if (LI.empty()) 00290 RegsToErase.push_back(Reg); 00291 } 00292 } 00293 } 00294 00295 // Currently, we don't support DCE of physreg live ranges. If MI reads 00296 // any unreserved physregs, don't erase the instruction, but turn it into 00297 // a KILL instead. This way, the physreg live ranges don't end up 00298 // dangling. 00299 // FIXME: It would be better to have something like shrinkToUses() for 00300 // physregs. That could potentially enable more DCE and it would free up 00301 // the physreg. It would not happen often, though. 00302 if (ReadsPhysRegs) { 00303 MI->setDesc(TII.get(TargetOpcode::KILL)); 00304 // Remove all operands that aren't physregs. 00305 for (unsigned i = MI->getNumOperands(); i; --i) { 00306 const MachineOperand &MO = MI->getOperand(i-1); 00307 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 00308 continue; 00309 MI->RemoveOperand(i-1); 00310 } 00311 DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 00312 } else { 00313 if (TheDelegate) 00314 TheDelegate->LRE_WillEraseInstruction(MI); 00315 LIS.RemoveMachineInstrFromMaps(MI); 00316 MI->eraseFromParent(); 00317 ++NumDCEDeleted; 00318 } 00319 00320 // Erase any virtregs that are now empty and unused. There may be <undef> 00321 // uses around. Keep the empty live range in that case. 00322 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 00323 unsigned Reg = RegsToErase[i]; 00324 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 00325 ToShrink.remove(&LIS.getInterval(Reg)); 00326 eraseVirtReg(Reg); 00327 } 00328 } 00329 } 00330 00331 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead, 00332 ArrayRef<unsigned> RegsBeingSpilled) { 00333 ToShrinkSet ToShrink; 00334 00335 for (;;) { 00336 // Erase all dead defs. 00337 while (!Dead.empty()) 00338 eliminateDeadDef(Dead.pop_back_val(), ToShrink); 00339 00340 if (ToShrink.empty()) 00341 break; 00342 00343 // Shrink just one live interval. Then delete new dead defs. 00344 LiveInterval *LI = ToShrink.back(); 00345 ToShrink.pop_back(); 00346 if (foldAsLoad(LI, Dead)) 00347 continue; 00348 if (TheDelegate) 00349 TheDelegate->LRE_WillShrinkVirtReg(LI->reg); 00350 if (!LIS.shrinkToUses(LI, &Dead)) 00351 continue; 00352 00353 // Don't create new intervals for a register being spilled. 00354 // The new intervals would have to be spilled anyway so its not worth it. 00355 // Also they currently aren't spilled so creating them and not spilling 00356 // them results in incorrect code. 00357 bool BeingSpilled = false; 00358 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { 00359 if (LI->reg == RegsBeingSpilled[i]) { 00360 BeingSpilled = true; 00361 break; 00362 } 00363 } 00364 00365 if (BeingSpilled) continue; 00366 00367 // LI may have been separated, create new intervals. 00368 LI->RenumberValues(); 00369 ConnectedVNInfoEqClasses ConEQ(LIS); 00370 unsigned NumComp = ConEQ.Classify(LI); 00371 if (NumComp <= 1) 00372 continue; 00373 ++NumFracRanges; 00374 bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg; 00375 DEBUG(dbgs() << NumComp << " components: " << *LI << '\n'); 00376 SmallVector<LiveInterval*, 8> Dups(1, LI); 00377 for (unsigned i = 1; i != NumComp; ++i) { 00378 Dups.push_back(&createEmptyIntervalFrom(LI->reg)); 00379 // If LI is an original interval that hasn't been split yet, make the new 00380 // intervals their own originals instead of referring to LI. The original 00381 // interval must contain all the split products, and LI doesn't. 00382 if (IsOriginal) 00383 VRM->setIsSplitFromReg(Dups.back()->reg, 0); 00384 if (TheDelegate) 00385 TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg); 00386 } 00387 ConEQ.Distribute(&Dups[0], MRI); 00388 DEBUG({ 00389 for (unsigned i = 0; i != NumComp; ++i) 00390 dbgs() << '\t' << *Dups[i] << '\n'; 00391 }); 00392 } 00393 } 00394 00395 // Keep track of new virtual registers created via 00396 // MachineRegisterInfo::createVirtualRegister. 00397 void 00398 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) 00399 { 00400 if (VRM) 00401 VRM->grow(); 00402 00403 NewRegs.push_back(VReg); 00404 } 00405 00406 void 00407 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 00408 const MachineLoopInfo &Loops, 00409 const MachineBlockFrequencyInfo &MBFI) { 00410 VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI); 00411 for (unsigned I = 0, Size = size(); I < Size; ++I) { 00412 LiveInterval &LI = LIS.getInterval(get(I)); 00413 if (MRI.recomputeRegClass(LI.reg, MF.getTarget())) 00414 DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to " 00415 << MRI.getRegClass(LI.reg)->getName() << '\n'); 00416 VRAI.calculateSpillWeightAndHint(LI); 00417 } 00418 }