LLVM API Documentation
00001 //===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains the Mips implementation of the TargetInstrInfo class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "MipsInstrInfo.h" 00015 #include "InstPrinter/MipsInstPrinter.h" 00016 #include "MipsAnalyzeImmediate.h" 00017 #include "MipsMachineFunction.h" 00018 #include "MipsTargetMachine.h" 00019 #include "llvm/ADT/STLExtras.h" 00020 #include "llvm/CodeGen/MachineInstrBuilder.h" 00021 #include "llvm/CodeGen/MachineRegisterInfo.h" 00022 #include "llvm/Support/ErrorHandling.h" 00023 #include "llvm/Support/TargetRegistry.h" 00024 00025 using namespace llvm; 00026 00027 #define GET_INSTRINFO_CTOR_DTOR 00028 #include "MipsGenInstrInfo.inc" 00029 00030 // Pin the vtable to this file. 00031 void MipsInstrInfo::anchor() {} 00032 00033 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 00034 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 00035 Subtarget(STI), UncondBrOpc(UncondBr) {} 00036 00037 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 00038 if (STI.inMips16Mode()) 00039 return llvm::createMips16InstrInfo(STI); 00040 00041 return llvm::createMipsSEInstrInfo(STI); 00042 } 00043 00044 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 00045 return op.isImm() && op.getImm() == 0; 00046 } 00047 00048 /// insertNoop - If data hazard condition is found insert the target nop 00049 /// instruction. 00050 void MipsInstrInfo:: 00051 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 00052 { 00053 DebugLoc DL; 00054 BuildMI(MBB, MI, DL, get(Mips::NOP)); 00055 } 00056 00057 MachineMemOperand *MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 00058 unsigned Flag) const { 00059 MachineFunction &MF = *MBB.getParent(); 00060 MachineFrameInfo &MFI = *MF.getFrameInfo(); 00061 unsigned Align = MFI.getObjectAlignment(FI); 00062 00063 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), Flag, 00064 MFI.getObjectSize(FI), Align); 00065 } 00066 00067 //===----------------------------------------------------------------------===// 00068 // Branch Analysis 00069 //===----------------------------------------------------------------------===// 00070 00071 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 00072 MachineBasicBlock *&BB, 00073 SmallVectorImpl<MachineOperand> &Cond) const { 00074 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 00075 int NumOp = Inst->getNumExplicitOperands(); 00076 00077 // for both int and fp branches, the last explicit operand is the 00078 // MBB. 00079 BB = Inst->getOperand(NumOp-1).getMBB(); 00080 Cond.push_back(MachineOperand::CreateImm(Opc)); 00081 00082 for (int i=0; i<NumOp-1; i++) 00083 Cond.push_back(Inst->getOperand(i)); 00084 } 00085 00086 bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 00087 MachineBasicBlock *&TBB, 00088 MachineBasicBlock *&FBB, 00089 SmallVectorImpl<MachineOperand> &Cond, 00090 bool AllowModify) const { 00091 SmallVector<MachineInstr*, 2> BranchInstrs; 00092 BranchType BT = AnalyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 00093 00094 return (BT == BT_None) || (BT == BT_Indirect); 00095 } 00096 00097 void 00098 MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 00099 DebugLoc DL, 00100 const SmallVectorImpl<MachineOperand> &Cond) const { 00101 unsigned Opc = Cond[0].getImm(); 00102 const MCInstrDesc &MCID = get(Opc); 00103 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 00104 00105 for (unsigned i = 1; i < Cond.size(); ++i) { 00106 if (Cond[i].isReg()) 00107 MIB.addReg(Cond[i].getReg()); 00108 else if (Cond[i].isImm()) 00109 MIB.addImm(Cond[i].getImm()); 00110 else 00111 assert(true && "Cannot copy operand"); 00112 } 00113 MIB.addMBB(TBB); 00114 } 00115 00116 unsigned MipsInstrInfo::InsertBranch( 00117 MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 00118 const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const { 00119 // Shouldn't be a fall through. 00120 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 00121 00122 // # of condition operands: 00123 // Unconditional branches: 0 00124 // Floating point branches: 1 (opc) 00125 // Int BranchZero: 2 (opc, reg) 00126 // Int Branch: 3 (opc, reg0, reg1) 00127 assert((Cond.size() <= 3) && 00128 "# of Mips branch conditions must be <= 3!"); 00129 00130 // Two-way Conditional branch. 00131 if (FBB) { 00132 BuildCondBr(MBB, TBB, DL, Cond); 00133 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 00134 return 2; 00135 } 00136 00137 // One way branch. 00138 // Unconditional branch. 00139 if (Cond.empty()) 00140 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 00141 else // Conditional branch. 00142 BuildCondBr(MBB, TBB, DL, Cond); 00143 return 1; 00144 } 00145 00146 unsigned MipsInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 00147 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 00148 MachineBasicBlock::reverse_iterator FirstBr; 00149 unsigned removed; 00150 00151 // Skip all the debug instructions. 00152 while (I != REnd && I->isDebugValue()) 00153 ++I; 00154 00155 FirstBr = I; 00156 00157 // Up to 2 branches are removed. 00158 // Note that indirect branches are not removed. 00159 for (removed = 0; I != REnd && removed < 2; ++I, ++removed) 00160 if (!getAnalyzableBrOpc(I->getOpcode())) 00161 break; 00162 00163 MBB.erase(I.base(), FirstBr.base()); 00164 00165 return removed; 00166 } 00167 00168 /// ReverseBranchCondition - Return the inverse opcode of the 00169 /// specified Branch instruction. 00170 bool MipsInstrInfo::ReverseBranchCondition( 00171 SmallVectorImpl<MachineOperand> &Cond) const { 00172 assert( (Cond.size() && Cond.size() <= 3) && 00173 "Invalid Mips branch condition!"); 00174 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 00175 return false; 00176 } 00177 00178 MipsInstrInfo::BranchType MipsInstrInfo::AnalyzeBranch( 00179 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 00180 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 00181 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 00182 00183 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 00184 00185 // Skip all the debug instructions. 00186 while (I != REnd && I->isDebugValue()) 00187 ++I; 00188 00189 if (I == REnd || !isUnpredicatedTerminator(&*I)) { 00190 // This block ends with no branches (it just falls through to its succ). 00191 // Leave TBB/FBB null. 00192 TBB = FBB = nullptr; 00193 return BT_NoBranch; 00194 } 00195 00196 MachineInstr *LastInst = &*I; 00197 unsigned LastOpc = LastInst->getOpcode(); 00198 BranchInstrs.push_back(LastInst); 00199 00200 // Not an analyzable branch (e.g., indirect jump). 00201 if (!getAnalyzableBrOpc(LastOpc)) 00202 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 00203 00204 // Get the second to last instruction in the block. 00205 unsigned SecondLastOpc = 0; 00206 MachineInstr *SecondLastInst = nullptr; 00207 00208 if (++I != REnd) { 00209 SecondLastInst = &*I; 00210 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 00211 00212 // Not an analyzable branch (must be an indirect jump). 00213 if (isUnpredicatedTerminator(SecondLastInst) && !SecondLastOpc) 00214 return BT_None; 00215 } 00216 00217 // If there is only one terminator instruction, process it. 00218 if (!SecondLastOpc) { 00219 // Unconditional branch. 00220 if (LastOpc == UncondBrOpc) { 00221 TBB = LastInst->getOperand(0).getMBB(); 00222 return BT_Uncond; 00223 } 00224 00225 // Conditional branch 00226 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 00227 return BT_Cond; 00228 } 00229 00230 // If we reached here, there are two branches. 00231 // If there are three terminators, we don't know what sort of block this is. 00232 if (++I != REnd && isUnpredicatedTerminator(&*I)) 00233 return BT_None; 00234 00235 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 00236 00237 // If second to last instruction is an unconditional branch, 00238 // analyze it and remove the last instruction. 00239 if (SecondLastOpc == UncondBrOpc) { 00240 // Return if the last instruction cannot be removed. 00241 if (!AllowModify) 00242 return BT_None; 00243 00244 TBB = SecondLastInst->getOperand(0).getMBB(); 00245 LastInst->eraseFromParent(); 00246 BranchInstrs.pop_back(); 00247 return BT_Uncond; 00248 } 00249 00250 // Conditional branch followed by an unconditional branch. 00251 // The last one must be unconditional. 00252 if (LastOpc != UncondBrOpc) 00253 return BT_None; 00254 00255 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 00256 FBB = LastInst->getOperand(0).getMBB(); 00257 00258 return BT_CondUncond; 00259 } 00260 00261 /// Return the number of bytes of code the specified instruction may be. 00262 unsigned MipsInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 00263 switch (MI->getOpcode()) { 00264 default: 00265 return MI->getDesc().getSize(); 00266 case TargetOpcode::INLINEASM: { // Inline Asm: Variable size. 00267 const MachineFunction *MF = MI->getParent()->getParent(); 00268 const char *AsmStr = MI->getOperand(0).getSymbolName(); 00269 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 00270 } 00271 case Mips::CONSTPOOL_ENTRY: 00272 // If this machine instr is a constant pool entry, its size is recorded as 00273 // operand #2. 00274 return MI->getOperand(2).getImm(); 00275 } 00276 } 00277 00278 MachineInstrBuilder 00279 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 00280 MachineBasicBlock::iterator I) const { 00281 MachineInstrBuilder MIB; 00282 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 00283 00284 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) 00285 MIB.addOperand(I->getOperand(J)); 00286 00287 MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end()); 00288 return MIB; 00289 }