LLVM API Documentation
00001 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains code to lower X86 MachineInstrs to their corresponding 00011 // MCInst records. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "X86AsmPrinter.h" 00016 #include "X86RegisterInfo.h" 00017 #include "InstPrinter/X86ATTInstPrinter.h" 00018 #include "MCTargetDesc/X86BaseInfo.h" 00019 #include "Utils/X86ShuffleDecode.h" 00020 #include "llvm/ADT/SmallString.h" 00021 #include "llvm/CodeGen/MachineFunction.h" 00022 #include "llvm/CodeGen/MachineConstantPool.h" 00023 #include "llvm/CodeGen/MachineOperand.h" 00024 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 00025 #include "llvm/CodeGen/StackMaps.h" 00026 #include "llvm/IR/DataLayout.h" 00027 #include "llvm/IR/GlobalValue.h" 00028 #include "llvm/IR/Mangler.h" 00029 #include "llvm/MC/MCAsmInfo.h" 00030 #include "llvm/MC/MCCodeEmitter.h" 00031 #include "llvm/MC/MCContext.h" 00032 #include "llvm/MC/MCExpr.h" 00033 #include "llvm/MC/MCInst.h" 00034 #include "llvm/MC/MCInstBuilder.h" 00035 #include "llvm/MC/MCStreamer.h" 00036 #include "llvm/MC/MCSymbol.h" 00037 #include "llvm/Support/TargetRegistry.h" 00038 using namespace llvm; 00039 00040 namespace { 00041 00042 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst. 00043 class X86MCInstLower { 00044 MCContext &Ctx; 00045 const MachineFunction &MF; 00046 const TargetMachine &TM; 00047 const MCAsmInfo &MAI; 00048 X86AsmPrinter &AsmPrinter; 00049 public: 00050 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter); 00051 00052 void Lower(const MachineInstr *MI, MCInst &OutMI) const; 00053 00054 MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const; 00055 MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const; 00056 00057 private: 00058 MachineModuleInfoMachO &getMachOMMI() const; 00059 Mangler *getMang() const { 00060 return AsmPrinter.Mang; 00061 } 00062 }; 00063 00064 } // end anonymous namespace 00065 00066 // Emit a minimal sequence of nops spanning NumBytes bytes. 00067 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, 00068 const MCSubtargetInfo &STI); 00069 00070 namespace llvm { 00071 X86AsmPrinter::StackMapShadowTracker::StackMapShadowTracker(TargetMachine &TM) 00072 : TM(TM), InShadow(false), RequiredShadowSize(0), CurrentShadowSize(0) {} 00073 00074 X86AsmPrinter::StackMapShadowTracker::~StackMapShadowTracker() {} 00075 00076 void 00077 X86AsmPrinter::StackMapShadowTracker::startFunction(MachineFunction &MF) { 00078 CodeEmitter.reset(TM.getTarget().createMCCodeEmitter( 00079 *TM.getSubtargetImpl()->getInstrInfo(), 00080 *TM.getSubtargetImpl()->getRegisterInfo(), *TM.getSubtargetImpl(), 00081 MF.getContext())); 00082 } 00083 00084 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst, 00085 const MCSubtargetInfo &STI) { 00086 if (InShadow) { 00087 SmallString<256> Code; 00088 SmallVector<MCFixup, 4> Fixups; 00089 raw_svector_ostream VecOS(Code); 00090 CodeEmitter->EncodeInstruction(Inst, VecOS, Fixups, STI); 00091 VecOS.flush(); 00092 CurrentShadowSize += Code.size(); 00093 if (CurrentShadowSize >= RequiredShadowSize) 00094 InShadow = false; // The shadow is big enough. Stop counting. 00095 } 00096 } 00097 00098 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding( 00099 MCStreamer &OutStreamer, const MCSubtargetInfo &STI) { 00100 if (InShadow && CurrentShadowSize < RequiredShadowSize) { 00101 InShadow = false; 00102 EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize, 00103 TM.getSubtarget<X86Subtarget>().is64Bit(), STI); 00104 } 00105 } 00106 00107 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) { 00108 OutStreamer.EmitInstruction(Inst, getSubtargetInfo()); 00109 SMShadowTracker.count(Inst, getSubtargetInfo()); 00110 } 00111 } // end llvm namespace 00112 00113 X86MCInstLower::X86MCInstLower(const MachineFunction &mf, 00114 X86AsmPrinter &asmprinter) 00115 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), 00116 MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {} 00117 00118 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const { 00119 return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>(); 00120 } 00121 00122 00123 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol 00124 /// operand to an MCSymbol. 00125 MCSymbol *X86MCInstLower:: 00126 GetSymbolFromOperand(const MachineOperand &MO) const { 00127 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 00128 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference"); 00129 00130 SmallString<128> Name; 00131 StringRef Suffix; 00132 00133 switch (MO.getTargetFlags()) { 00134 case X86II::MO_DLLIMPORT: 00135 // Handle dllimport linkage. 00136 Name += "__imp_"; 00137 break; 00138 case X86II::MO_DARWIN_STUB: 00139 Suffix = "$stub"; 00140 break; 00141 case X86II::MO_DARWIN_NONLAZY: 00142 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: 00143 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: 00144 Suffix = "$non_lazy_ptr"; 00145 break; 00146 } 00147 00148 if (!Suffix.empty()) 00149 Name += DL->getPrivateGlobalPrefix(); 00150 00151 unsigned PrefixLen = Name.size(); 00152 00153 if (MO.isGlobal()) { 00154 const GlobalValue *GV = MO.getGlobal(); 00155 AsmPrinter.getNameWithPrefix(Name, GV); 00156 } else if (MO.isSymbol()) { 00157 getMang()->getNameWithPrefix(Name, MO.getSymbolName()); 00158 } else if (MO.isMBB()) { 00159 Name += MO.getMBB()->getSymbol()->getName(); 00160 } 00161 unsigned OrigLen = Name.size() - PrefixLen; 00162 00163 Name += Suffix; 00164 MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name); 00165 00166 StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen); 00167 00168 // If the target flags on the operand changes the name of the symbol, do that 00169 // before we return the symbol. 00170 switch (MO.getTargetFlags()) { 00171 default: break; 00172 case X86II::MO_DARWIN_NONLAZY: 00173 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: { 00174 MachineModuleInfoImpl::StubValueTy &StubSym = 00175 getMachOMMI().getGVStubEntry(Sym); 00176 if (!StubSym.getPointer()) { 00177 assert(MO.isGlobal() && "Extern symbol not handled yet"); 00178 StubSym = 00179 MachineModuleInfoImpl:: 00180 StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()), 00181 !MO.getGlobal()->hasInternalLinkage()); 00182 } 00183 break; 00184 } 00185 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: { 00186 MachineModuleInfoImpl::StubValueTy &StubSym = 00187 getMachOMMI().getHiddenGVStubEntry(Sym); 00188 if (!StubSym.getPointer()) { 00189 assert(MO.isGlobal() && "Extern symbol not handled yet"); 00190 StubSym = 00191 MachineModuleInfoImpl:: 00192 StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()), 00193 !MO.getGlobal()->hasInternalLinkage()); 00194 } 00195 break; 00196 } 00197 case X86II::MO_DARWIN_STUB: { 00198 MachineModuleInfoImpl::StubValueTy &StubSym = 00199 getMachOMMI().getFnStubEntry(Sym); 00200 if (StubSym.getPointer()) 00201 return Sym; 00202 00203 if (MO.isGlobal()) { 00204 StubSym = 00205 MachineModuleInfoImpl:: 00206 StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()), 00207 !MO.getGlobal()->hasInternalLinkage()); 00208 } else { 00209 StubSym = 00210 MachineModuleInfoImpl:: 00211 StubValueTy(Ctx.GetOrCreateSymbol(OrigName), false); 00212 } 00213 break; 00214 } 00215 } 00216 00217 return Sym; 00218 } 00219 00220 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, 00221 MCSymbol *Sym) const { 00222 // FIXME: We would like an efficient form for this, so we don't have to do a 00223 // lot of extra uniquing. 00224 const MCExpr *Expr = nullptr; 00225 MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None; 00226 00227 switch (MO.getTargetFlags()) { 00228 default: llvm_unreachable("Unknown target flag on GV operand"); 00229 case X86II::MO_NO_FLAG: // No flag. 00230 // These affect the name of the symbol, not any suffix. 00231 case X86II::MO_DARWIN_NONLAZY: 00232 case X86II::MO_DLLIMPORT: 00233 case X86II::MO_DARWIN_STUB: 00234 break; 00235 00236 case X86II::MO_TLVP: RefKind = MCSymbolRefExpr::VK_TLVP; break; 00237 case X86II::MO_TLVP_PIC_BASE: 00238 Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx); 00239 // Subtract the pic base. 00240 Expr = MCBinaryExpr::CreateSub(Expr, 00241 MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), 00242 Ctx), 00243 Ctx); 00244 break; 00245 case X86II::MO_SECREL: RefKind = MCSymbolRefExpr::VK_SECREL; break; 00246 case X86II::MO_TLSGD: RefKind = MCSymbolRefExpr::VK_TLSGD; break; 00247 case X86II::MO_TLSLD: RefKind = MCSymbolRefExpr::VK_TLSLD; break; 00248 case X86II::MO_TLSLDM: RefKind = MCSymbolRefExpr::VK_TLSLDM; break; 00249 case X86II::MO_GOTTPOFF: RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break; 00250 case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break; 00251 case X86II::MO_TPOFF: RefKind = MCSymbolRefExpr::VK_TPOFF; break; 00252 case X86II::MO_DTPOFF: RefKind = MCSymbolRefExpr::VK_DTPOFF; break; 00253 case X86II::MO_NTPOFF: RefKind = MCSymbolRefExpr::VK_NTPOFF; break; 00254 case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break; 00255 case X86II::MO_GOTPCREL: RefKind = MCSymbolRefExpr::VK_GOTPCREL; break; 00256 case X86II::MO_GOT: RefKind = MCSymbolRefExpr::VK_GOT; break; 00257 case X86II::MO_GOTOFF: RefKind = MCSymbolRefExpr::VK_GOTOFF; break; 00258 case X86II::MO_PLT: RefKind = MCSymbolRefExpr::VK_PLT; break; 00259 case X86II::MO_PIC_BASE_OFFSET: 00260 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: 00261 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: 00262 Expr = MCSymbolRefExpr::Create(Sym, Ctx); 00263 // Subtract the pic base. 00264 Expr = MCBinaryExpr::CreateSub(Expr, 00265 MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx), 00266 Ctx); 00267 if (MO.isJTI() && MAI.hasSetDirective()) { 00268 // If .set directive is supported, use it to reduce the number of 00269 // relocations the assembler will generate for differences between 00270 // local labels. This is only safe when the symbols are in the same 00271 // section so we are restricting it to jumptable references. 00272 MCSymbol *Label = Ctx.CreateTempSymbol(); 00273 AsmPrinter.OutStreamer.EmitAssignment(Label, Expr); 00274 Expr = MCSymbolRefExpr::Create(Label, Ctx); 00275 } 00276 break; 00277 } 00278 00279 if (!Expr) 00280 Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx); 00281 00282 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset()) 00283 Expr = MCBinaryExpr::CreateAdd(Expr, 00284 MCConstantExpr::Create(MO.getOffset(), Ctx), 00285 Ctx); 00286 return MCOperand::CreateExpr(Expr); 00287 } 00288 00289 00290 /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with 00291 /// a short fixed-register form. 00292 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) { 00293 unsigned ImmOp = Inst.getNumOperands() - 1; 00294 assert(Inst.getOperand(0).isReg() && 00295 (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) && 00296 ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() && 00297 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) || 00298 Inst.getNumOperands() == 2) && "Unexpected instruction!"); 00299 00300 // Check whether the destination register can be fixed. 00301 unsigned Reg = Inst.getOperand(0).getReg(); 00302 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) 00303 return; 00304 00305 // If so, rewrite the instruction. 00306 MCOperand Saved = Inst.getOperand(ImmOp); 00307 Inst = MCInst(); 00308 Inst.setOpcode(Opcode); 00309 Inst.addOperand(Saved); 00310 } 00311 00312 /// \brief If a movsx instruction has a shorter encoding for the used register 00313 /// simplify the instruction to use it instead. 00314 static void SimplifyMOVSX(MCInst &Inst) { 00315 unsigned NewOpcode = 0; 00316 unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg(); 00317 switch (Inst.getOpcode()) { 00318 default: 00319 llvm_unreachable("Unexpected instruction!"); 00320 case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw 00321 if (Op0 == X86::AX && Op1 == X86::AL) 00322 NewOpcode = X86::CBW; 00323 break; 00324 case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl 00325 if (Op0 == X86::EAX && Op1 == X86::AX) 00326 NewOpcode = X86::CWDE; 00327 break; 00328 case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq 00329 if (Op0 == X86::RAX && Op1 == X86::EAX) 00330 NewOpcode = X86::CDQE; 00331 break; 00332 } 00333 00334 if (NewOpcode != 0) { 00335 Inst = MCInst(); 00336 Inst.setOpcode(NewOpcode); 00337 } 00338 } 00339 00340 /// \brief Simplify things like MOV32rm to MOV32o32a. 00341 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst, 00342 unsigned Opcode) { 00343 // Don't make these simplifications in 64-bit mode; other assemblers don't 00344 // perform them because they make the code larger. 00345 if (Printer.getSubtarget().is64Bit()) 00346 return; 00347 00348 bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg(); 00349 unsigned AddrBase = IsStore; 00350 unsigned RegOp = IsStore ? 0 : 5; 00351 unsigned AddrOp = AddrBase + 3; 00352 assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() && 00353 Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() && 00354 Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() && 00355 Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() && 00356 Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() && 00357 (Inst.getOperand(AddrOp).isExpr() || 00358 Inst.getOperand(AddrOp).isImm()) && 00359 "Unexpected instruction!"); 00360 00361 // Check whether the destination register can be fixed. 00362 unsigned Reg = Inst.getOperand(RegOp).getReg(); 00363 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) 00364 return; 00365 00366 // Check whether this is an absolute address. 00367 // FIXME: We know TLVP symbol refs aren't, but there should be a better way 00368 // to do this here. 00369 bool Absolute = true; 00370 if (Inst.getOperand(AddrOp).isExpr()) { 00371 const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr(); 00372 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE)) 00373 if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP) 00374 Absolute = false; 00375 } 00376 00377 if (Absolute && 00378 (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 || 00379 Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 || 00380 Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0)) 00381 return; 00382 00383 // If so, rewrite the instruction. 00384 MCOperand Saved = Inst.getOperand(AddrOp); 00385 MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg); 00386 Inst = MCInst(); 00387 Inst.setOpcode(Opcode); 00388 Inst.addOperand(Saved); 00389 Inst.addOperand(Seg); 00390 } 00391 00392 static unsigned getRetOpcode(const X86Subtarget &Subtarget) 00393 { 00394 return Subtarget.is64Bit() ? X86::RETQ : X86::RETL; 00395 } 00396 00397 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { 00398 OutMI.setOpcode(MI->getOpcode()); 00399 00400 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00401 const MachineOperand &MO = MI->getOperand(i); 00402 00403 MCOperand MCOp; 00404 switch (MO.getType()) { 00405 default: 00406 MI->dump(); 00407 llvm_unreachable("unknown operand type"); 00408 case MachineOperand::MO_Register: 00409 // Ignore all implicit register operands. 00410 if (MO.isImplicit()) continue; 00411 MCOp = MCOperand::CreateReg(MO.getReg()); 00412 break; 00413 case MachineOperand::MO_Immediate: 00414 MCOp = MCOperand::CreateImm(MO.getImm()); 00415 break; 00416 case MachineOperand::MO_MachineBasicBlock: 00417 case MachineOperand::MO_GlobalAddress: 00418 case MachineOperand::MO_ExternalSymbol: 00419 MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO)); 00420 break; 00421 case MachineOperand::MO_JumpTableIndex: 00422 MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex())); 00423 break; 00424 case MachineOperand::MO_ConstantPoolIndex: 00425 MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex())); 00426 break; 00427 case MachineOperand::MO_BlockAddress: 00428 MCOp = LowerSymbolOperand(MO, 00429 AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress())); 00430 break; 00431 case MachineOperand::MO_RegisterMask: 00432 // Ignore call clobbers. 00433 continue; 00434 } 00435 00436 OutMI.addOperand(MCOp); 00437 } 00438 00439 // Handle a few special cases to eliminate operand modifiers. 00440 ReSimplify: 00441 switch (OutMI.getOpcode()) { 00442 case X86::LEA64_32r: 00443 case X86::LEA64r: 00444 case X86::LEA16r: 00445 case X86::LEA32r: 00446 // LEA should have a segment register, but it must be empty. 00447 assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands && 00448 "Unexpected # of LEA operands"); 00449 assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 && 00450 "LEA has segment specified!"); 00451 break; 00452 00453 case X86::MOV32ri64: 00454 OutMI.setOpcode(X86::MOV32ri); 00455 break; 00456 00457 // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B 00458 // if one of the registers is extended, but other isn't. 00459 case X86::VMOVAPDrr: 00460 case X86::VMOVAPDYrr: 00461 case X86::VMOVAPSrr: 00462 case X86::VMOVAPSYrr: 00463 case X86::VMOVDQArr: 00464 case X86::VMOVDQAYrr: 00465 case X86::VMOVDQUrr: 00466 case X86::VMOVDQUYrr: 00467 case X86::VMOVUPDrr: 00468 case X86::VMOVUPDYrr: 00469 case X86::VMOVUPSrr: 00470 case X86::VMOVUPSYrr: { 00471 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && 00472 X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) { 00473 unsigned NewOpc; 00474 switch (OutMI.getOpcode()) { 00475 default: llvm_unreachable("Invalid opcode"); 00476 case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; 00477 case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; 00478 case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; 00479 case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; 00480 case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; 00481 case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; 00482 case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; 00483 case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; 00484 case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; 00485 case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; 00486 case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; 00487 case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; 00488 } 00489 OutMI.setOpcode(NewOpc); 00490 } 00491 break; 00492 } 00493 case X86::VMOVSDrr: 00494 case X86::VMOVSSrr: { 00495 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && 00496 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { 00497 unsigned NewOpc; 00498 switch (OutMI.getOpcode()) { 00499 default: llvm_unreachable("Invalid opcode"); 00500 case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; 00501 case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; 00502 } 00503 OutMI.setOpcode(NewOpc); 00504 } 00505 break; 00506 } 00507 00508 // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register 00509 // inputs modeled as normal uses instead of implicit uses. As such, truncate 00510 // off all but the first operand (the callee). FIXME: Change isel. 00511 case X86::TAILJMPr64: 00512 case X86::CALL64r: 00513 case X86::CALL64pcrel32: { 00514 unsigned Opcode = OutMI.getOpcode(); 00515 MCOperand Saved = OutMI.getOperand(0); 00516 OutMI = MCInst(); 00517 OutMI.setOpcode(Opcode); 00518 OutMI.addOperand(Saved); 00519 break; 00520 } 00521 00522 case X86::EH_RETURN: 00523 case X86::EH_RETURN64: { 00524 OutMI = MCInst(); 00525 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); 00526 break; 00527 } 00528 00529 // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions. 00530 case X86::TAILJMPr: 00531 case X86::TAILJMPd: 00532 case X86::TAILJMPd64: { 00533 unsigned Opcode; 00534 switch (OutMI.getOpcode()) { 00535 default: llvm_unreachable("Invalid opcode"); 00536 case X86::TAILJMPr: Opcode = X86::JMP32r; break; 00537 case X86::TAILJMPd: 00538 case X86::TAILJMPd64: Opcode = X86::JMP_1; break; 00539 } 00540 00541 MCOperand Saved = OutMI.getOperand(0); 00542 OutMI = MCInst(); 00543 OutMI.setOpcode(Opcode); 00544 OutMI.addOperand(Saved); 00545 break; 00546 } 00547 00548 // These are pseudo-ops for OR to help with the OR->ADD transformation. We do 00549 // this with an ugly goto in case the resultant OR uses EAX and needs the 00550 // short form. 00551 case X86::ADD16rr_DB: OutMI.setOpcode(X86::OR16rr); goto ReSimplify; 00552 case X86::ADD32rr_DB: OutMI.setOpcode(X86::OR32rr); goto ReSimplify; 00553 case X86::ADD64rr_DB: OutMI.setOpcode(X86::OR64rr); goto ReSimplify; 00554 case X86::ADD16ri_DB: OutMI.setOpcode(X86::OR16ri); goto ReSimplify; 00555 case X86::ADD32ri_DB: OutMI.setOpcode(X86::OR32ri); goto ReSimplify; 00556 case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify; 00557 case X86::ADD16ri8_DB: OutMI.setOpcode(X86::OR16ri8); goto ReSimplify; 00558 case X86::ADD32ri8_DB: OutMI.setOpcode(X86::OR32ri8); goto ReSimplify; 00559 case X86::ADD64ri8_DB: OutMI.setOpcode(X86::OR64ri8); goto ReSimplify; 00560 00561 // The assembler backend wants to see branches in their small form and relax 00562 // them to their large form. The JIT can only handle the large form because 00563 // it does not do relaxation. For now, translate the large form to the 00564 // small one here. 00565 case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break; 00566 case X86::JO_4: OutMI.setOpcode(X86::JO_1); break; 00567 case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break; 00568 case X86::JB_4: OutMI.setOpcode(X86::JB_1); break; 00569 case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break; 00570 case X86::JE_4: OutMI.setOpcode(X86::JE_1); break; 00571 case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break; 00572 case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break; 00573 case X86::JA_4: OutMI.setOpcode(X86::JA_1); break; 00574 case X86::JS_4: OutMI.setOpcode(X86::JS_1); break; 00575 case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break; 00576 case X86::JP_4: OutMI.setOpcode(X86::JP_1); break; 00577 case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break; 00578 case X86::JL_4: OutMI.setOpcode(X86::JL_1); break; 00579 case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break; 00580 case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break; 00581 case X86::JG_4: OutMI.setOpcode(X86::JG_1); break; 00582 00583 // Atomic load and store require a separate pseudo-inst because Acquire 00584 // implies mayStore and Release implies mayLoad; fix these to regular MOV 00585 // instructions here 00586 case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify; 00587 case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify; 00588 case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify; 00589 case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify; 00590 case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify; 00591 case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify; 00592 case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify; 00593 case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify; 00594 case X86::RELEASE_MOV8mi: OutMI.setOpcode(X86::MOV8mi); goto ReSimplify; 00595 case X86::RELEASE_MOV16mi: OutMI.setOpcode(X86::MOV16mi); goto ReSimplify; 00596 case X86::RELEASE_MOV32mi: OutMI.setOpcode(X86::MOV32mi); goto ReSimplify; 00597 case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify; 00598 case X86::RELEASE_ADD8mi: OutMI.setOpcode(X86::ADD8mi); goto ReSimplify; 00599 case X86::RELEASE_ADD32mi: OutMI.setOpcode(X86::ADD32mi); goto ReSimplify; 00600 case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify; 00601 case X86::RELEASE_AND8mi: OutMI.setOpcode(X86::AND8mi); goto ReSimplify; 00602 case X86::RELEASE_AND32mi: OutMI.setOpcode(X86::AND32mi); goto ReSimplify; 00603 case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify; 00604 case X86::RELEASE_OR8mi: OutMI.setOpcode(X86::OR8mi); goto ReSimplify; 00605 case X86::RELEASE_OR32mi: OutMI.setOpcode(X86::OR32mi); goto ReSimplify; 00606 case X86::RELEASE_OR64mi32: OutMI.setOpcode(X86::OR64mi32); goto ReSimplify; 00607 case X86::RELEASE_XOR8mi: OutMI.setOpcode(X86::XOR8mi); goto ReSimplify; 00608 case X86::RELEASE_XOR32mi: OutMI.setOpcode(X86::XOR32mi); goto ReSimplify; 00609 case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify; 00610 case X86::RELEASE_INC8m: OutMI.setOpcode(X86::INC8m); goto ReSimplify; 00611 case X86::RELEASE_INC16m: OutMI.setOpcode(X86::INC16m); goto ReSimplify; 00612 case X86::RELEASE_INC32m: OutMI.setOpcode(X86::INC32m); goto ReSimplify; 00613 case X86::RELEASE_INC64m: OutMI.setOpcode(X86::INC64m); goto ReSimplify; 00614 case X86::RELEASE_DEC8m: OutMI.setOpcode(X86::DEC8m); goto ReSimplify; 00615 case X86::RELEASE_DEC16m: OutMI.setOpcode(X86::DEC16m); goto ReSimplify; 00616 case X86::RELEASE_DEC32m: OutMI.setOpcode(X86::DEC32m); goto ReSimplify; 00617 case X86::RELEASE_DEC64m: OutMI.setOpcode(X86::DEC64m); goto ReSimplify; 00618 00619 // We don't currently select the correct instruction form for instructions 00620 // which have a short %eax, etc. form. Handle this by custom lowering, for 00621 // now. 00622 // 00623 // Note, we are currently not handling the following instructions: 00624 // MOV64ao8, MOV64o8a 00625 // XCHG16ar, XCHG32ar, XCHG64ar 00626 case X86::MOV8mr_NOREX: 00627 case X86::MOV8mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break; 00628 case X86::MOV8rm_NOREX: 00629 case X86::MOV8rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break; 00630 case X86::MOV16mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break; 00631 case X86::MOV16rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break; 00632 case X86::MOV32mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break; 00633 case X86::MOV32rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break; 00634 00635 case X86::ADC8ri: SimplifyShortImmForm(OutMI, X86::ADC8i8); break; 00636 case X86::ADC16ri: SimplifyShortImmForm(OutMI, X86::ADC16i16); break; 00637 case X86::ADC32ri: SimplifyShortImmForm(OutMI, X86::ADC32i32); break; 00638 case X86::ADC64ri32: SimplifyShortImmForm(OutMI, X86::ADC64i32); break; 00639 case X86::ADD8ri: SimplifyShortImmForm(OutMI, X86::ADD8i8); break; 00640 case X86::ADD16ri: SimplifyShortImmForm(OutMI, X86::ADD16i16); break; 00641 case X86::ADD32ri: SimplifyShortImmForm(OutMI, X86::ADD32i32); break; 00642 case X86::ADD64ri32: SimplifyShortImmForm(OutMI, X86::ADD64i32); break; 00643 case X86::AND8ri: SimplifyShortImmForm(OutMI, X86::AND8i8); break; 00644 case X86::AND16ri: SimplifyShortImmForm(OutMI, X86::AND16i16); break; 00645 case X86::AND32ri: SimplifyShortImmForm(OutMI, X86::AND32i32); break; 00646 case X86::AND64ri32: SimplifyShortImmForm(OutMI, X86::AND64i32); break; 00647 case X86::CMP8ri: SimplifyShortImmForm(OutMI, X86::CMP8i8); break; 00648 case X86::CMP16ri: SimplifyShortImmForm(OutMI, X86::CMP16i16); break; 00649 case X86::CMP32ri: SimplifyShortImmForm(OutMI, X86::CMP32i32); break; 00650 case X86::CMP64ri32: SimplifyShortImmForm(OutMI, X86::CMP64i32); break; 00651 case X86::OR8ri: SimplifyShortImmForm(OutMI, X86::OR8i8); break; 00652 case X86::OR16ri: SimplifyShortImmForm(OutMI, X86::OR16i16); break; 00653 case X86::OR32ri: SimplifyShortImmForm(OutMI, X86::OR32i32); break; 00654 case X86::OR64ri32: SimplifyShortImmForm(OutMI, X86::OR64i32); break; 00655 case X86::SBB8ri: SimplifyShortImmForm(OutMI, X86::SBB8i8); break; 00656 case X86::SBB16ri: SimplifyShortImmForm(OutMI, X86::SBB16i16); break; 00657 case X86::SBB32ri: SimplifyShortImmForm(OutMI, X86::SBB32i32); break; 00658 case X86::SBB64ri32: SimplifyShortImmForm(OutMI, X86::SBB64i32); break; 00659 case X86::SUB8ri: SimplifyShortImmForm(OutMI, X86::SUB8i8); break; 00660 case X86::SUB16ri: SimplifyShortImmForm(OutMI, X86::SUB16i16); break; 00661 case X86::SUB32ri: SimplifyShortImmForm(OutMI, X86::SUB32i32); break; 00662 case X86::SUB64ri32: SimplifyShortImmForm(OutMI, X86::SUB64i32); break; 00663 case X86::TEST8ri: SimplifyShortImmForm(OutMI, X86::TEST8i8); break; 00664 case X86::TEST16ri: SimplifyShortImmForm(OutMI, X86::TEST16i16); break; 00665 case X86::TEST32ri: SimplifyShortImmForm(OutMI, X86::TEST32i32); break; 00666 case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break; 00667 case X86::XOR8ri: SimplifyShortImmForm(OutMI, X86::XOR8i8); break; 00668 case X86::XOR16ri: SimplifyShortImmForm(OutMI, X86::XOR16i16); break; 00669 case X86::XOR32ri: SimplifyShortImmForm(OutMI, X86::XOR32i32); break; 00670 case X86::XOR64ri32: SimplifyShortImmForm(OutMI, X86::XOR64i32); break; 00671 00672 // Try to shrink some forms of movsx. 00673 case X86::MOVSX16rr8: 00674 case X86::MOVSX32rr16: 00675 case X86::MOVSX64rr32: 00676 SimplifyMOVSX(OutMI); 00677 break; 00678 } 00679 } 00680 00681 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering, 00682 const MachineInstr &MI) { 00683 00684 bool is64Bits = MI.getOpcode() == X86::TLS_addr64 || 00685 MI.getOpcode() == X86::TLS_base_addr64; 00686 00687 bool needsPadding = MI.getOpcode() == X86::TLS_addr64; 00688 00689 MCContext &context = OutStreamer.getContext(); 00690 00691 if (needsPadding) 00692 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); 00693 00694 MCSymbolRefExpr::VariantKind SRVK; 00695 switch (MI.getOpcode()) { 00696 case X86::TLS_addr32: 00697 case X86::TLS_addr64: 00698 SRVK = MCSymbolRefExpr::VK_TLSGD; 00699 break; 00700 case X86::TLS_base_addr32: 00701 SRVK = MCSymbolRefExpr::VK_TLSLDM; 00702 break; 00703 case X86::TLS_base_addr64: 00704 SRVK = MCSymbolRefExpr::VK_TLSLD; 00705 break; 00706 default: 00707 llvm_unreachable("unexpected opcode"); 00708 } 00709 00710 MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)); 00711 const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context); 00712 00713 MCInst LEA; 00714 if (is64Bits) { 00715 LEA.setOpcode(X86::LEA64r); 00716 LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest 00717 LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base 00718 LEA.addOperand(MCOperand::CreateImm(1)); // scale 00719 LEA.addOperand(MCOperand::CreateReg(0)); // index 00720 LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp 00721 LEA.addOperand(MCOperand::CreateReg(0)); // seg 00722 } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) { 00723 LEA.setOpcode(X86::LEA32r); 00724 LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest 00725 LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base 00726 LEA.addOperand(MCOperand::CreateImm(1)); // scale 00727 LEA.addOperand(MCOperand::CreateReg(0)); // index 00728 LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp 00729 LEA.addOperand(MCOperand::CreateReg(0)); // seg 00730 } else { 00731 LEA.setOpcode(X86::LEA32r); 00732 LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest 00733 LEA.addOperand(MCOperand::CreateReg(0)); // base 00734 LEA.addOperand(MCOperand::CreateImm(1)); // scale 00735 LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index 00736 LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp 00737 LEA.addOperand(MCOperand::CreateReg(0)); // seg 00738 } 00739 EmitAndCountInstruction(LEA); 00740 00741 if (needsPadding) { 00742 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); 00743 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); 00744 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX)); 00745 } 00746 00747 StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr"; 00748 MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name); 00749 const MCSymbolRefExpr *tlsRef = 00750 MCSymbolRefExpr::Create(tlsGetAddr, 00751 MCSymbolRefExpr::VK_PLT, 00752 context); 00753 00754 EmitAndCountInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32 00755 : X86::CALLpcrel32) 00756 .addExpr(tlsRef)); 00757 } 00758 00759 /// \brief Emit the optimal amount of multi-byte nops on X86. 00760 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, const MCSubtargetInfo &STI) { 00761 // This works only for 64bit. For 32bit we have to do additional checking if 00762 // the CPU supports multi-byte nops. 00763 assert(Is64Bit && "EmitNops only supports X86-64"); 00764 while (NumBytes) { 00765 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg; 00766 Opc = IndexReg = Displacement = SegmentReg = 0; 00767 BaseReg = X86::RAX; ScaleVal = 1; 00768 switch (NumBytes) { 00769 case 0: llvm_unreachable("Zero nops?"); break; 00770 case 1: NumBytes -= 1; Opc = X86::NOOP; break; 00771 case 2: NumBytes -= 2; Opc = X86::XCHG16ar; break; 00772 case 3: NumBytes -= 3; Opc = X86::NOOPL; break; 00773 case 4: NumBytes -= 4; Opc = X86::NOOPL; Displacement = 8; break; 00774 case 5: NumBytes -= 5; Opc = X86::NOOPL; Displacement = 8; 00775 IndexReg = X86::RAX; break; 00776 case 6: NumBytes -= 6; Opc = X86::NOOPW; Displacement = 8; 00777 IndexReg = X86::RAX; break; 00778 case 7: NumBytes -= 7; Opc = X86::NOOPL; Displacement = 512; break; 00779 case 8: NumBytes -= 8; Opc = X86::NOOPL; Displacement = 512; 00780 IndexReg = X86::RAX; break; 00781 case 9: NumBytes -= 9; Opc = X86::NOOPW; Displacement = 512; 00782 IndexReg = X86::RAX; break; 00783 default: NumBytes -= 10; Opc = X86::NOOPW; Displacement = 512; 00784 IndexReg = X86::RAX; SegmentReg = X86::CS; break; 00785 } 00786 00787 unsigned NumPrefixes = std::min(NumBytes, 5U); 00788 NumBytes -= NumPrefixes; 00789 for (unsigned i = 0; i != NumPrefixes; ++i) 00790 OS.EmitBytes("\x66"); 00791 00792 switch (Opc) { 00793 default: llvm_unreachable("Unexpected opcode"); break; 00794 case X86::NOOP: 00795 OS.EmitInstruction(MCInstBuilder(Opc), STI); 00796 break; 00797 case X86::XCHG16ar: 00798 OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI); 00799 break; 00800 case X86::NOOPL: 00801 case X86::NOOPW: 00802 OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg) 00803 .addImm(ScaleVal).addReg(IndexReg) 00804 .addImm(Displacement).addReg(SegmentReg), STI); 00805 break; 00806 } 00807 } // while (NumBytes) 00808 } 00809 00810 // Lower a stackmap of the form: 00811 // <id>, <shadowBytes>, ... 00812 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) { 00813 SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo()); 00814 SM.recordStackMap(MI); 00815 unsigned NumShadowBytes = MI.getOperand(1).getImm(); 00816 SMShadowTracker.reset(NumShadowBytes); 00817 } 00818 00819 // Lower a patchpoint of the form: 00820 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ... 00821 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI) { 00822 assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64"); 00823 00824 SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo()); 00825 00826 SM.recordPatchPoint(MI); 00827 00828 PatchPointOpers opers(&MI); 00829 unsigned ScratchIdx = opers.getNextScratchIdx(); 00830 unsigned EncodedBytes = 0; 00831 int64_t CallTarget = opers.getMetaOper(PatchPointOpers::TargetPos).getImm(); 00832 if (CallTarget) { 00833 // Emit MOV to materialize the target address and the CALL to target. 00834 // This is encoded with 12-13 bytes, depending on which register is used. 00835 unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg(); 00836 if (X86II::isX86_64ExtendedReg(ScratchReg)) 00837 EncodedBytes = 13; 00838 else 00839 EncodedBytes = 12; 00840 EmitAndCountInstruction(MCInstBuilder(X86::MOV64ri).addReg(ScratchReg) 00841 .addImm(CallTarget)); 00842 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg)); 00843 } 00844 // Emit padding. 00845 unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm(); 00846 assert(NumBytes >= EncodedBytes && 00847 "Patchpoint can't request size less than the length of a call."); 00848 00849 EmitNops(OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(), 00850 getSubtargetInfo()); 00851 } 00852 00853 // Returns instruction preceding MBBI in MachineFunction. 00854 // If MBBI is the first instruction of the first basic block, returns null. 00855 static MachineBasicBlock::const_iterator 00856 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) { 00857 const MachineBasicBlock *MBB = MBBI->getParent(); 00858 while (MBBI == MBB->begin()) { 00859 if (MBB == MBB->getParent()->begin()) 00860 return nullptr; 00861 MBB = MBB->getPrevNode(); 00862 MBBI = MBB->end(); 00863 } 00864 return --MBBI; 00865 } 00866 00867 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { 00868 X86MCInstLower MCInstLowering(*MF, *this); 00869 const X86RegisterInfo *RI = static_cast<const X86RegisterInfo *>( 00870 TM.getSubtargetImpl()->getRegisterInfo()); 00871 00872 switch (MI->getOpcode()) { 00873 case TargetOpcode::DBG_VALUE: 00874 llvm_unreachable("Should be handled target independently"); 00875 00876 // Emit nothing here but a comment if we can. 00877 case X86::Int_MemBarrier: 00878 OutStreamer.emitRawComment("MEMBARRIER"); 00879 return; 00880 00881 00882 case X86::EH_RETURN: 00883 case X86::EH_RETURN64: { 00884 // Lower these as normal, but add some comments. 00885 unsigned Reg = MI->getOperand(0).getReg(); 00886 OutStreamer.AddComment(StringRef("eh_return, addr: %") + 00887 X86ATTInstPrinter::getRegisterName(Reg)); 00888 break; 00889 } 00890 case X86::TAILJMPr: 00891 case X86::TAILJMPd: 00892 case X86::TAILJMPd64: 00893 // Lower these as normal, but add some comments. 00894 OutStreamer.AddComment("TAILCALL"); 00895 break; 00896 00897 case X86::TLS_addr32: 00898 case X86::TLS_addr64: 00899 case X86::TLS_base_addr32: 00900 case X86::TLS_base_addr64: 00901 return LowerTlsAddr(MCInstLowering, *MI); 00902 00903 case X86::MOVPC32r: { 00904 // This is a pseudo op for a two instruction sequence with a label, which 00905 // looks like: 00906 // call "L1$pb" 00907 // "L1$pb": 00908 // popl %esi 00909 00910 // Emit the call. 00911 MCSymbol *PICBase = MF->getPICBaseSymbol(); 00912 // FIXME: We would like an efficient form for this, so we don't have to do a 00913 // lot of extra uniquing. 00914 EmitAndCountInstruction(MCInstBuilder(X86::CALLpcrel32) 00915 .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext))); 00916 00917 // Emit the label. 00918 OutStreamer.EmitLabel(PICBase); 00919 00920 // popl $reg 00921 EmitAndCountInstruction(MCInstBuilder(X86::POP32r) 00922 .addReg(MI->getOperand(0).getReg())); 00923 return; 00924 } 00925 00926 case X86::ADD32ri: { 00927 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri. 00928 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS) 00929 break; 00930 00931 // Okay, we have something like: 00932 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL) 00933 00934 // For this, we want to print something like: 00935 // MYGLOBAL + (. - PICBASE) 00936 // However, we can't generate a ".", so just emit a new label here and refer 00937 // to it. 00938 MCSymbol *DotSym = OutContext.CreateTempSymbol(); 00939 OutStreamer.EmitLabel(DotSym); 00940 00941 // Now that we have emitted the label, lower the complex operand expression. 00942 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2)); 00943 00944 const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext); 00945 const MCExpr *PICBase = 00946 MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext); 00947 DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext); 00948 00949 DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext), 00950 DotExpr, OutContext); 00951 00952 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri) 00953 .addReg(MI->getOperand(0).getReg()) 00954 .addReg(MI->getOperand(1).getReg()) 00955 .addExpr(DotExpr)); 00956 return; 00957 } 00958 00959 case TargetOpcode::STACKMAP: 00960 return LowerSTACKMAP(*MI); 00961 00962 case TargetOpcode::PATCHPOINT: 00963 return LowerPATCHPOINT(*MI); 00964 00965 case X86::MORESTACK_RET: 00966 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); 00967 return; 00968 00969 case X86::MORESTACK_RET_RESTORE_R10: 00970 // Return, then restore R10. 00971 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); 00972 EmitAndCountInstruction(MCInstBuilder(X86::MOV64rr) 00973 .addReg(X86::R10) 00974 .addReg(X86::RAX)); 00975 return; 00976 00977 case X86::SEH_PushReg: 00978 OutStreamer.EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm())); 00979 return; 00980 00981 case X86::SEH_SaveReg: 00982 OutStreamer.EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()), 00983 MI->getOperand(1).getImm()); 00984 return; 00985 00986 case X86::SEH_SaveXMM: 00987 OutStreamer.EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()), 00988 MI->getOperand(1).getImm()); 00989 return; 00990 00991 case X86::SEH_StackAlloc: 00992 OutStreamer.EmitWinCFIAllocStack(MI->getOperand(0).getImm()); 00993 return; 00994 00995 case X86::SEH_SetFrame: 00996 OutStreamer.EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()), 00997 MI->getOperand(1).getImm()); 00998 return; 00999 01000 case X86::SEH_PushFrame: 01001 OutStreamer.EmitWinCFIPushFrame(MI->getOperand(0).getImm()); 01002 return; 01003 01004 case X86::SEH_EndPrologue: 01005 OutStreamer.EmitWinCFIEndProlog(); 01006 return; 01007 01008 case X86::SEH_Epilogue: { 01009 MachineBasicBlock::const_iterator MBBI(MI); 01010 // Check if preceded by a call and emit nop if so. 01011 for (MBBI = PrevCrossBBInst(MBBI); MBBI; MBBI = PrevCrossBBInst(MBBI)) { 01012 // Conservatively assume that pseudo instructions don't emit code and keep 01013 // looking for a call. We may emit an unnecessary nop in some cases. 01014 if (!MBBI->isPseudo()) { 01015 if (MBBI->isCall()) 01016 EmitAndCountInstruction(MCInstBuilder(X86::NOOP)); 01017 break; 01018 } 01019 } 01020 return; 01021 } 01022 01023 case X86::PSHUFBrm: 01024 case X86::VPSHUFBrm: 01025 // Lower PSHUFB normally but add a comment if we can find a constant 01026 // shuffle mask. We won't be able to do this at the MC layer because the 01027 // mask isn't an immediate. 01028 std::string Comment; 01029 raw_string_ostream CS(Comment); 01030 SmallVector<int, 16> Mask; 01031 01032 assert(MI->getNumOperands() >= 6 && 01033 "Wrong number of operands for PSHUFBrm or VPSHUFBrm"); 01034 const MachineOperand &DstOp = MI->getOperand(0); 01035 const MachineOperand &SrcOp = MI->getOperand(1); 01036 const MachineOperand &MaskOp = MI->getOperand(5); 01037 01038 // Compute the name for a register. This is really goofy because we have 01039 // multiple instruction printers that could (in theory) use different 01040 // names. Fortunately most people use the ATT style (outside of Windows) 01041 // and they actually agree on register naming here. Ultimately, this is 01042 // a comment, and so its OK if it isn't perfect. 01043 auto GetRegisterName = [](unsigned RegNum) -> StringRef { 01044 return X86ATTInstPrinter::getRegisterName(RegNum); 01045 }; 01046 01047 StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem"; 01048 StringRef SrcName = SrcOp.isReg() ? GetRegisterName(SrcOp.getReg()) : "mem"; 01049 CS << DstName << " = "; 01050 01051 if (MaskOp.isCPI()) { 01052 ArrayRef<MachineConstantPoolEntry> Constants = 01053 MI->getParent()->getParent()->getConstantPool()->getConstants(); 01054 const MachineConstantPoolEntry &MaskConstantEntry = 01055 Constants[MaskOp.getIndex()]; 01056 Type *MaskTy = MaskConstantEntry.getType(); 01057 (void)MaskTy; 01058 if (!MaskConstantEntry.isMachineConstantPoolEntry()) 01059 if (auto *C = dyn_cast<ConstantDataSequential>( 01060 MaskConstantEntry.Val.ConstVal)) { 01061 assert(MaskTy == C->getType() && 01062 "Expected a constant of the same type!"); 01063 01064 DecodePSHUFBMask(C, Mask); 01065 assert(Mask.size() == MaskTy->getVectorNumElements() && 01066 "Shuffle mask has a different size than its type!"); 01067 } 01068 } 01069 01070 if (!Mask.empty()) { 01071 bool NeedComma = false; 01072 bool InSrc = false; 01073 for (int M : Mask) { 01074 // Wrap up any prior entry... 01075 if (M == SM_SentinelZero && InSrc) { 01076 InSrc = false; 01077 CS << "]"; 01078 } 01079 if (NeedComma) 01080 CS << ","; 01081 else 01082 NeedComma = true; 01083 01084 // Print this shuffle... 01085 if (M == SM_SentinelZero) { 01086 CS << "zero"; 01087 } else { 01088 if (!InSrc) { 01089 InSrc = true; 01090 CS << SrcName << "["; 01091 } 01092 CS << M; 01093 } 01094 } 01095 if (InSrc) 01096 CS << "]"; 01097 01098 OutStreamer.AddComment(CS.str()); 01099 } 01100 break; 01101 } 01102 01103 MCInst TmpInst; 01104 MCInstLowering.Lower(MI, TmpInst); 01105 EmitAndCountInstruction(TmpInst); 01106 }