LLVM API Documentation

X86VZeroUpper.cpp
Go to the documentation of this file.
00001 //===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the pass which inserts x86 AVX vzeroupper instructions
00011 // before calls to SSE encoded functions. This avoids transition latency
00012 // penalty when tranfering control between AVX encoded instructions and old
00013 // SSE encoding mode.
00014 //
00015 //===----------------------------------------------------------------------===//
00016 
00017 #include "X86.h"
00018 #include "X86InstrInfo.h"
00019 #include "X86Subtarget.h"
00020 #include "llvm/ADT/Statistic.h"
00021 #include "llvm/CodeGen/MachineFunctionPass.h"
00022 #include "llvm/CodeGen/MachineInstrBuilder.h"
00023 #include "llvm/CodeGen/MachineRegisterInfo.h"
00024 #include "llvm/CodeGen/Passes.h"
00025 #include "llvm/Support/Debug.h"
00026 #include "llvm/Support/raw_ostream.h"
00027 #include "llvm/Target/TargetInstrInfo.h"
00028 using namespace llvm;
00029 
00030 #define DEBUG_TYPE "x86-vzeroupper"
00031 
00032 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
00033 
00034 namespace {
00035 
00036   class VZeroUpperInserter : public MachineFunctionPass {
00037   public:
00038 
00039     VZeroUpperInserter() : MachineFunctionPass(ID) {}
00040     bool runOnMachineFunction(MachineFunction &MF) override;
00041     const char *getPassName() const override {return "X86 vzeroupper inserter";}
00042 
00043   private:
00044 
00045     void processBasicBlock(MachineBasicBlock &MBB);
00046     void insertVZeroUpper(MachineBasicBlock::iterator I,
00047                           MachineBasicBlock &MBB);
00048     void addDirtySuccessor(MachineBasicBlock &MBB);
00049 
00050     typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState;
00051     static const char* getBlockExitStateName(BlockExitState ST);
00052 
00053     // Core algorithm state:
00054     // BlockState - Each block is either:
00055     //   - PASS_THROUGH: There are neither YMM dirtying instructions nor
00056     //                   vzeroupper instructions in this block.
00057     //   - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
00058     //                  block that will ensure that YMM is clean on exit.
00059     //   - EXITS_DIRTY: An instruction in the block dirties YMM and no
00060     //                  subsequent vzeroupper in the block clears it.
00061     //
00062     // AddedToDirtySuccessors - This flag is raised when a block is added to the
00063     //                          DirtySuccessors list to ensure that it's not
00064     //                          added multiple times.
00065     //
00066     // FirstUnguardedCall - Records the location of the first unguarded call in
00067     //                      each basic block that may need to be guarded by a
00068     //                      vzeroupper. We won't know whether it actually needs
00069     //                      to be guarded until we discover a predecessor that
00070     //                      is DIRTY_OUT.
00071     struct BlockState {
00072       BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {}
00073       BlockExitState ExitState;
00074       bool AddedToDirtySuccessors;
00075       MachineBasicBlock::iterator FirstUnguardedCall;
00076     };
00077     typedef SmallVector<BlockState, 8> BlockStateMap;
00078     typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList;
00079 
00080     BlockStateMap BlockStates;
00081     DirtySuccessorsWorkList DirtySuccessors;
00082     bool EverMadeChange;
00083     const TargetInstrInfo *TII;
00084 
00085     static char ID;
00086   };
00087 
00088   char VZeroUpperInserter::ID = 0;
00089 }
00090 
00091 FunctionPass *llvm::createX86IssueVZeroUpperPass() {
00092   return new VZeroUpperInserter();
00093 }
00094 
00095 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
00096   switch (ST) {
00097     case PASS_THROUGH: return "Pass-through";
00098     case EXITS_DIRTY: return "Exits-dirty";
00099     case EXITS_CLEAN: return "Exits-clean";
00100   }
00101   llvm_unreachable("Invalid block exit state.");
00102 }
00103 
00104 static bool isYmmReg(unsigned Reg) {
00105   return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
00106 }
00107 
00108 static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
00109   for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
00110        E = MRI.livein_end(); I != E; ++I)
00111     if (isYmmReg(I->first))
00112       return true;
00113 
00114   return false;
00115 }
00116 
00117 static bool clobbersAllYmmRegs(const MachineOperand &MO) {
00118   for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
00119     if (!MO.clobbersPhysReg(reg))
00120       return false;
00121   }
00122   return true;
00123 }
00124 
00125 static bool hasYmmReg(MachineInstr *MI) {
00126   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
00127     const MachineOperand &MO = MI->getOperand(i);
00128     if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
00129       return true;
00130     if (!MO.isReg())
00131       continue;
00132     if (MO.isDebug())
00133       continue;
00134     if (isYmmReg(MO.getReg()))
00135       return true;
00136   }
00137   return false;
00138 }
00139 
00140 /// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
00141 /// instruction.
00142 static bool callClobbersAnyYmmReg(MachineInstr *MI) {
00143   assert(MI->isCall() && "Can only be called on call instructions.");
00144   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
00145     const MachineOperand &MO = MI->getOperand(i);
00146     if (!MO.isRegMask())
00147       continue;
00148     for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
00149       if (MO.clobbersPhysReg(reg))
00150         return true;
00151     }
00152   }
00153   return false;
00154 }
00155 
00156 // Insert a vzeroupper instruction before I.
00157 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
00158                                               MachineBasicBlock &MBB) {
00159   DebugLoc dl = I->getDebugLoc();
00160   BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
00161   ++NumVZU;
00162   EverMadeChange = true;
00163 }
00164 
00165 // Add MBB to the DirtySuccessors list if it hasn't already been added.
00166 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
00167   if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
00168     DirtySuccessors.push_back(&MBB);
00169     BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
00170   }
00171 }
00172 
00173 /// processBasicBlock - Loop over all of the instructions in the basic block,
00174 /// inserting vzero upper instructions before function calls.
00175 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
00176 
00177   // Start by assuming that the block PASS_THROUGH, which implies no unguarded
00178   // calls.
00179   BlockExitState CurState = PASS_THROUGH;
00180   BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
00181 
00182   for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
00183     MachineInstr *MI = I;
00184     bool isControlFlow = MI->isCall() || MI->isReturn();
00185 
00186     // Shortcut: don't need to check regular instructions in dirty state.
00187     if (!isControlFlow && CurState == EXITS_DIRTY)
00188       continue;
00189 
00190     if (hasYmmReg(MI)) {
00191       // We found a ymm-using instruction; this could be an AVX instruction,
00192       // or it could be control flow.
00193       CurState = EXITS_DIRTY;
00194       continue;
00195     }
00196 
00197     // Check for control-flow out of the current function (which might
00198     // indirectly execute SSE instructions).
00199     if (!isControlFlow)
00200       continue;
00201 
00202     // If the call won't clobber any YMM register, skip it as well. It usually
00203     // happens on helper function calls (such as '_chkstk', '_ftol2') where
00204     // standard calling convention is not used (RegMask is not used to mark
00205     // register clobbered and register usage (def/imp-def/use) is well-dfined
00206     // and explicitly specified.
00207     if (MI->isCall() && !callClobbersAnyYmmReg(MI))
00208       continue;
00209 
00210     // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
00211     // registers. This instruction has zero latency. In addition, the processor
00212     // changes back to Clean state, after which execution of Intel SSE
00213     // instructions or Intel AVX instructions has no transition penalty. Add
00214     // the VZEROUPPER instruction before any function call/return that might
00215     // execute SSE code.
00216     // FIXME: In some cases, we may want to move the VZEROUPPER into a
00217     // predecessor block.
00218     if (CurState == EXITS_DIRTY) {
00219       // After the inserted VZEROUPPER the state becomes clean again, but
00220       // other YMM may appear before other subsequent calls or even before
00221       // the end of the BB.
00222       insertVZeroUpper(I, MBB);
00223       CurState = EXITS_CLEAN;
00224     } else if (CurState == PASS_THROUGH) {
00225       // If this block is currently in pass-through state and we encounter a
00226       // call then whether we need a vzeroupper or not depends on whether this
00227       // block has successors that exit dirty. Record the location of the call,
00228       // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
00229       // It will be inserted later if necessary.
00230       BlockStates[MBB.getNumber()].FirstUnguardedCall = I;
00231       CurState = EXITS_CLEAN;
00232     }
00233   }
00234 
00235   DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
00236                << getBlockExitStateName(CurState) << '\n');
00237 
00238   if (CurState == EXITS_DIRTY)
00239     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
00240                                           SE = MBB.succ_end();
00241          SI != SE; ++SI)
00242       addDirtySuccessor(**SI);
00243 
00244   BlockStates[MBB.getNumber()].ExitState = CurState;
00245 }
00246 
00247 /// runOnMachineFunction - Loop over all of the basic blocks, inserting
00248 /// vzero upper instructions before function calls.
00249 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
00250   const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
00251   if (!ST.hasAVX() || ST.hasAVX512())
00252     return false;
00253   TII = MF.getSubtarget().getInstrInfo();
00254   MachineRegisterInfo &MRI = MF.getRegInfo();
00255   EverMadeChange = false;
00256 
00257   // Fast check: if the function doesn't use any ymm registers, we don't need
00258   // to insert any VZEROUPPER instructions.  This is constant-time, so it is
00259   // cheap in the common case of no ymm use.
00260   bool YMMUsed = false;
00261   const TargetRegisterClass *RC = &X86::VR256RegClass;
00262   for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
00263        i != e; i++) {
00264     if (!MRI.reg_nodbg_empty(*i)) {
00265       YMMUsed = true;
00266       break;
00267     }
00268   }
00269   if (!YMMUsed) {
00270     return false;
00271   }
00272 
00273   assert(BlockStates.empty() && DirtySuccessors.empty() &&
00274          "X86VZeroUpper state should be clear");
00275   BlockStates.resize(MF.getNumBlockIDs());
00276 
00277   // Process all blocks. This will compute block exit states, record the first
00278   // unguarded call in each block, and add successors of dirty blocks to the
00279   // DirtySuccessors list.
00280   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
00281     processBasicBlock(*I);
00282 
00283   // If any YMM regs are live in to this function, add the entry block to the
00284   // DirtySuccessors list
00285   if (checkFnHasLiveInYmm(MRI))
00286     addDirtySuccessor(MF.front());
00287 
00288   // Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add
00289   // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
00290   // through PASS_THROUGH blocks.
00291   while (!DirtySuccessors.empty()) {
00292     MachineBasicBlock &MBB = *DirtySuccessors.back();
00293     DirtySuccessors.pop_back();
00294     BlockState &BBState = BlockStates[MBB.getNumber()];
00295 
00296     // MBB is a successor of a dirty block, so its first call needs to be
00297     // guarded.
00298     if (BBState.FirstUnguardedCall != MBB.end())
00299       insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
00300 
00301     // If this successor was a pass-through block then it is now dirty, and its
00302     // successors need to be added to the worklist (if they haven't been
00303     // already).
00304     if (BBState.ExitState == PASS_THROUGH) {
00305       DEBUG(dbgs() << "MBB #" << MBB.getNumber()
00306                    << " was Pass-through, is now Dirty-out.\n");
00307       for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
00308                                             SE = MBB.succ_end();
00309            SI != SE; ++SI)
00310         addDirtySuccessor(**SI);
00311     }
00312   }
00313 
00314   BlockStates.clear();
00315   return EverMadeChange;
00316 }