#include "nodes/plannodes.h"#include "nodes/relation.h"

Go to the source code of this file.
Typedefs | |
| typedef PlannedStmt *(* | planner_hook_type )(Query *parse, int cursorOptions, ParamListInfo boundParams) |
Functions | |
| PlannedStmt * | planner (Query *parse, int cursorOptions, ParamListInfo boundParams) |
| PlannedStmt * | standard_planner (Query *parse, int cursorOptions, ParamListInfo boundParams) |
| Plan * | subquery_planner (PlannerGlobal *glob, Query *parse, PlannerInfo *parent_root, bool hasRecursion, double tuple_fraction, PlannerInfo **subroot) |
| void | add_tlist_costs_to_plan (PlannerInfo *root, Plan *plan, List *tlist) |
| bool | is_dummy_plan (Plan *plan) |
| Expr * | expression_planner (Expr *expr) |
| Expr * | preprocess_phv_expression (PlannerInfo *root, Expr *expr) |
| bool | plan_cluster_use_sort (Oid tableOid, Oid indexOid) |
Variables | |
| PGDLLIMPORT planner_hook_type | planner_hook |
| typedef PlannedStmt*(* planner_hook_type)(Query *parse, int cursorOptions, ParamListInfo boundParams) |
| void add_tlist_costs_to_plan | ( | PlannerInfo * | root, | |
| Plan * | plan, | |||
| List * | tlist | |||
| ) |
Definition at line 1811 of file planner.c.
References cost_qual_eval(), cpu_tuple_cost, QualCost::per_tuple, Plan::plan_rows, QualCost::startup, Plan::startup_cost, tlist_returns_set_rows(), and Plan::total_cost.
Referenced by grouping_planner(), make_agg(), make_group(), make_windowagg(), and optimize_minmax_aggregates().
{
QualCost tlist_cost;
double tlist_rows;
cost_qual_eval(&tlist_cost, tlist, root);
plan->startup_cost += tlist_cost.startup;
plan->total_cost += tlist_cost.startup +
tlist_cost.per_tuple * plan->plan_rows;
tlist_rows = tlist_returns_set_rows(tlist);
if (tlist_rows > 1)
{
/*
* We assume that execution costs of the tlist proper were all
* accounted for by cost_qual_eval. However, it still seems
* appropriate to charge something more for the executor's general
* costs of processing the added tuples. The cost is probably less
* than cpu_tuple_cost, though, so we arbitrarily use half of that.
*/
plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
cpu_tuple_cost / 2;
plan->plan_rows *= tlist_rows;
}
}
Definition at line 3414 of file planner.c.
References eval_const_expressions(), fix_opfuncids(), and NULL.
Referenced by ATExecAddColumn(), ATPrepAlterColumnType(), BeginCopyFrom(), CheckMutability(), ExecPrepareExpr(), and GetDomainConstraints().
{
Node *result;
/*
* Convert named-argument function calls, insert default arguments and
* simplify constant subexprs
*/
result = eval_const_expressions(NULL, (Node *) expr);
/* Fill in opfuncid values if missing */
fix_opfuncids(result);
return (Expr *) result;
}
Definition at line 1848 of file planner.c.
References Const::constisnull, Const::constvalue, DatumGetBool, IsA, linitial, and list_length().
Referenced by create_append_plan(), inheritance_planner(), and set_subquery_pathlist().
{
if (IsA(plan, Result))
{
List *rcqual = (List *) ((Result *) plan)->resconstantqual;
if (list_length(rcqual) == 1)
{
Const *constqual = (Const *) linitial(rcqual);
if (constqual && IsA(constqual, Const))
{
if (!constqual->constisnull &&
!DatumGetBool(constqual->constvalue))
return true;
}
}
}
return false;
}
Definition at line 3443 of file planner.c.
References build_simple_rel(), Query::commandType, cost_qual_eval(), cost_sort(), create_index_path(), create_seqscan_path(), CurrentMemoryContext, ForwardScanDirection, get_relation_data_width(), PlannerInfo::glob, RelOptInfo::indexlist, IndexOptInfo::indexoid, IndexOptInfo::indexprs, RangeTblEntry::inFromCl, RangeTblEntry::inh, RangeTblEntry::lateral, lfirst, list_make1, maintenance_work_mem, makeNode, NIL, NULL, RelOptInfo::pages, PlannerInfo::parse, IndexPath::path, QualCost::per_tuple, PlannerInfo::planner_cxt, PlannerInfo::query_level, RangeTblEntry::relid, RangeTblEntry::relkind, RELOPT_BASEREL, RelOptInfo::rows, Query::rtable, RangeTblEntry::rtekind, setup_simple_rel_arrays(), QualCost::startup, Path::total_cost, PlannerInfo::total_table_pages, RelOptInfo::tuples, RelOptInfo::width, and PlannerInfo::wt_param_id.
Referenced by copy_heap_data().
{
PlannerInfo *root;
Query *query;
PlannerGlobal *glob;
RangeTblEntry *rte;
RelOptInfo *rel;
IndexOptInfo *indexInfo;
QualCost indexExprCost;
Cost comparisonCost;
Path *seqScanPath;
Path seqScanAndSortPath;
IndexPath *indexScanPath;
ListCell *lc;
/* Set up mostly-dummy planner state */
query = makeNode(Query);
query->commandType = CMD_SELECT;
glob = makeNode(PlannerGlobal);
root = makeNode(PlannerInfo);
root->parse = query;
root->glob = glob;
root->query_level = 1;
root->planner_cxt = CurrentMemoryContext;
root->wt_param_id = -1;
/* Build a minimal RTE for the rel */
rte = makeNode(RangeTblEntry);
rte->rtekind = RTE_RELATION;
rte->relid = tableOid;
rte->relkind = RELKIND_RELATION; /* Don't be too picky. */
rte->lateral = false;
rte->inh = false;
rte->inFromCl = true;
query->rtable = list_make1(rte);
/* Set up RTE/RelOptInfo arrays */
setup_simple_rel_arrays(root);
/* Build RelOptInfo */
rel = build_simple_rel(root, 1, RELOPT_BASEREL);
/* Locate IndexOptInfo for the target index */
indexInfo = NULL;
foreach(lc, rel->indexlist)
{
indexInfo = (IndexOptInfo *) lfirst(lc);
if (indexInfo->indexoid == indexOid)
break;
}
/*
* It's possible that get_relation_info did not generate an IndexOptInfo
* for the desired index; this could happen if it's not yet reached its
* indcheckxmin usability horizon, or if it's a system index and we're
* ignoring system indexes. In such cases we should tell CLUSTER to not
* trust the index contents but use seqscan-and-sort.
*/
if (lc == NULL) /* not in the list? */
return true; /* use sort */
/*
* Rather than doing all the pushups that would be needed to use
* set_baserel_size_estimates, just do a quick hack for rows and width.
*/
rel->rows = rel->tuples;
rel->width = get_relation_data_width(tableOid, NULL);
root->total_table_pages = rel->pages;
/*
* Determine eval cost of the index expressions, if any. We need to
* charge twice that amount for each tuple comparison that happens during
* the sort, since tuplesort.c will have to re-evaluate the index
* expressions each time. (XXX that's pretty inefficient...)
*/
cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);
/* Estimate the cost of seq scan + sort */
seqScanPath = create_seqscan_path(root, rel, NULL);
cost_sort(&seqScanAndSortPath, root, NIL,
seqScanPath->total_cost, rel->tuples, rel->width,
comparisonCost, maintenance_work_mem, -1.0);
/* Estimate the cost of index scan */
indexScanPath = create_index_path(root, indexInfo,
NIL, NIL, NIL, NIL, NIL,
ForwardScanDirection, false,
NULL, 1.0);
return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}
| PlannedStmt* planner | ( | Query * | parse, | |
| int | cursorOptions, | |||
| ParamListInfo | boundParams | |||
| ) |
Definition at line 131 of file planner.c.
References planner_hook, and standard_planner().
Referenced by BeginCopy(), and pg_plan_query().
{
PlannedStmt *result;
if (planner_hook)
result = (*planner_hook) (parse, cursorOptions, boundParams);
else
result = standard_planner(parse, cursorOptions, boundParams);
return result;
}
| Expr* preprocess_phv_expression | ( | PlannerInfo * | root, | |
| Expr * | expr | |||
| ) |
Definition at line 743 of file planner.c.
References EXPRKIND_PHV, and preprocess_expression().
Referenced by extract_lateral_references().
{
return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
}
| PlannedStmt* standard_planner | ( | Query * | parse, | |
| int | cursorOptions, | |||
| ParamListInfo | boundParams | |||
| ) |
Definition at line 143 of file planner.c.
References Assert, PlannerGlobal::boundParams, Query::canSetTag, PlannedStmt::canSetTag, Query::commandType, PlannedStmt::commandType, CURSOR_OPT_FAST_PLAN, CURSOR_OPT_SCROLL, cursor_tuple_fraction, ExecSupportsBackwardScan(), PlannerGlobal::finalrowmarks, PlannerGlobal::finalrtable, forboth, Query::hasModifyingCTE, PlannedStmt::hasModifyingCTE, PlannedStmt::hasReturning, PlannedStmt::invalItems, PlannerGlobal::invalItems, IsA, PlannerGlobal::lastPHId, PlannerGlobal::lastRowMarkId, lfirst, list_length(), makeNode, materialize_finished_plan(), NIL, PlannedStmt::nParamExec, PlannerGlobal::nParamExec, NULL, PlannedStmt::planTree, Query::queryId, PlannedStmt::queryId, PlannedStmt::relationOids, PlannerGlobal::relationOids, PlannedStmt::resultRelations, PlannerGlobal::resultRelations, Query::returningList, PlannedStmt::rewindPlanIDs, PlannerGlobal::rewindPlanIDs, PlannedStmt::rowMarks, PlannedStmt::rtable, set_plan_references(), PlannedStmt::subplans, PlannerGlobal::subplans, subquery_planner(), PlannerGlobal::subroots, PlannedStmt::transientPlan, PlannerGlobal::transientPlan, PlannedStmt::utilityStmt, and Query::utilityStmt.
Referenced by planner().
{
PlannedStmt *result;
PlannerGlobal *glob;
double tuple_fraction;
PlannerInfo *root;
Plan *top_plan;
ListCell *lp,
*lr;
/* Cursor options may come from caller or from DECLARE CURSOR stmt */
if (parse->utilityStmt &&
IsA(parse->utilityStmt, DeclareCursorStmt))
cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
/*
* Set up global state for this planner invocation. This data is needed
* across all levels of sub-Query that might exist in the given command,
* so we keep it in a separate struct that's linked to by each per-Query
* PlannerInfo.
*/
glob = makeNode(PlannerGlobal);
glob->boundParams = boundParams;
glob->subplans = NIL;
glob->subroots = NIL;
glob->rewindPlanIDs = NULL;
glob->finalrtable = NIL;
glob->finalrowmarks = NIL;
glob->resultRelations = NIL;
glob->relationOids = NIL;
glob->invalItems = NIL;
glob->nParamExec = 0;
glob->lastPHId = 0;
glob->lastRowMarkId = 0;
glob->transientPlan = false;
/* Determine what fraction of the plan is likely to be scanned */
if (cursorOptions & CURSOR_OPT_FAST_PLAN)
{
/*
* We have no real idea how many tuples the user will ultimately FETCH
* from a cursor, but it is often the case that he doesn't want 'em
* all, or would prefer a fast-start plan anyway so that he can
* process some of the tuples sooner. Use a GUC parameter to decide
* what fraction to optimize for.
*/
tuple_fraction = cursor_tuple_fraction;
/*
* We document cursor_tuple_fraction as simply being a fraction, which
* means the edge cases 0 and 1 have to be treated specially here. We
* convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
*/
if (tuple_fraction >= 1.0)
tuple_fraction = 0.0;
else if (tuple_fraction <= 0.0)
tuple_fraction = 1e-10;
}
else
{
/* Default assumption is we need all the tuples */
tuple_fraction = 0.0;
}
/* primary planning entry point (may recurse for subqueries) */
top_plan = subquery_planner(glob, parse, NULL,
false, tuple_fraction, &root);
/*
* If creating a plan for a scrollable cursor, make sure it can run
* backwards on demand. Add a Material node at the top at need.
*/
if (cursorOptions & CURSOR_OPT_SCROLL)
{
if (!ExecSupportsBackwardScan(top_plan))
top_plan = materialize_finished_plan(top_plan);
}
/* final cleanup of the plan */
Assert(glob->finalrtable == NIL);
Assert(glob->finalrowmarks == NIL);
Assert(glob->resultRelations == NIL);
top_plan = set_plan_references(root, top_plan);
/* ... and the subplans (both regular subplans and initplans) */
Assert(list_length(glob->subplans) == list_length(glob->subroots));
forboth(lp, glob->subplans, lr, glob->subroots)
{
Plan *subplan = (Plan *) lfirst(lp);
PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);
lfirst(lp) = set_plan_references(subroot, subplan);
}
/* build the PlannedStmt result */
result = makeNode(PlannedStmt);
result->commandType = parse->commandType;
result->queryId = parse->queryId;
result->hasReturning = (parse->returningList != NIL);
result->hasModifyingCTE = parse->hasModifyingCTE;
result->canSetTag = parse->canSetTag;
result->transientPlan = glob->transientPlan;
result->planTree = top_plan;
result->rtable = glob->finalrtable;
result->resultRelations = glob->resultRelations;
result->utilityStmt = parse->utilityStmt;
result->subplans = glob->subplans;
result->rewindPlanIDs = glob->rewindPlanIDs;
result->rowMarks = glob->finalrowmarks;
result->relationOids = glob->relationOids;
result->invalItems = glob->invalItems;
result->nParamExec = glob->nParamExec;
return result;
}
| Plan* subquery_planner | ( | PlannerGlobal * | glob, | |
| Query * | parse, | |||
| PlannerInfo * | parent_root, | |||
| bool | hasRecursion, | |||
| double | tuple_fraction, | |||
| PlannerInfo ** | subroot | |||
| ) |
Definition at line 289 of file planner.c.
References PlannerInfo::append_rel_list, Query::canSetTag, CMD_SELECT, Query::commandType, contain_agg_clause(), contain_subplans(), contain_volatile_functions(), copyObject(), PlannerInfo::cte_plan_ids, Query::cteList, CurrentMemoryContext, WindowClause::endOffset, PlannerInfo::eq_classes, expand_inherited_tables(), EXPRKIND_LIMIT, EXPRKIND_QUAL, EXPRKIND_RTFUNC_LATERAL, EXPRKIND_VALUES_LATERAL, flatten_join_alias_vars(), flatten_simple_union_all(), RangeTblEntry::funcexpr, PlannerInfo::glob, Query::groupClause, grouping_planner(), PlannerInfo::hasHavingQual, PlannerInfo::hasInheritedTarget, PlannerInfo::hasJoinRTEs, PlannerInfo::hasLateralRTEs, PlannerInfo::hasPseudoConstantQuals, PlannerInfo::hasRecursion, Query::hasSubLinks, Query::havingQual, inheritance_planner(), PlannerInfo::init_plans, inline_set_returning_functions(), IS_OUTER_JOIN, Query::jointree, RangeTblEntry::jointype, lappend(), RangeTblEntry::lateral, lfirst, Query::limitCount, Query::limitOffset, list_length(), list_make1, list_make1_int, make_modifytable(), makeNode, PlannerInfo::non_recursive_plan, PlannerGlobal::nParamExec, PlannerInfo::parent_root, PlannerInfo::parse, PlannerInfo::plan_params, PlannerInfo::planner_cxt, preprocess_expression(), preprocess_qual_conditions(), preprocess_rowmarks(), pull_up_sublinks(), pull_up_subqueries(), FromExpr::quals, PlannerInfo::query_level, reduce_outer_joins(), Query::resultRelation, Query::returningList, Query::rowMarks, PlannerInfo::rowMarks, rt_fetch, Query::rtable, RTE_FUNCTION, RTE_JOIN, RTE_SUBQUERY, RTE_VALUES, RangeTblEntry::rtekind, Query::setOperations, SS_assign_special_param(), SS_finalize_plan(), SS_process_ctes(), WindowClause::startOffset, PlannerGlobal::subplans, RangeTblEntry::subquery, Query::targetList, RangeTblEntry::values_lists, Query::windowClause, and PlannerInfo::wt_param_id.
Referenced by make_subplan(), recurse_set_operations(), set_subquery_pathlist(), SS_process_ctes(), and standard_planner().
{
int num_old_subplans = list_length(glob->subplans);
PlannerInfo *root;
Plan *plan;
List *newHaving;
bool hasOuterJoins;
ListCell *l;
/* Create a PlannerInfo data structure for this subquery */
root = makeNode(PlannerInfo);
root->parse = parse;
root->glob = glob;
root->query_level = parent_root ? parent_root->query_level + 1 : 1;
root->parent_root = parent_root;
root->plan_params = NIL;
root->planner_cxt = CurrentMemoryContext;
root->init_plans = NIL;
root->cte_plan_ids = NIL;
root->eq_classes = NIL;
root->append_rel_list = NIL;
root->rowMarks = NIL;
root->hasInheritedTarget = false;
root->hasRecursion = hasRecursion;
if (hasRecursion)
root->wt_param_id = SS_assign_special_param(root);
else
root->wt_param_id = -1;
root->non_recursive_plan = NULL;
/*
* If there is a WITH list, process each WITH query and build an initplan
* SubPlan structure for it.
*/
if (parse->cteList)
SS_process_ctes(root);
/*
* Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
* to transform them into joins. Note that this step does not descend
* into subqueries; if we pull up any subqueries below, their SubLinks are
* processed just before pulling them up.
*/
if (parse->hasSubLinks)
pull_up_sublinks(root);
/*
* Scan the rangetable for set-returning functions, and inline them if
* possible (producing subqueries that might get pulled up next).
* Recursion issues here are handled in the same way as for SubLinks.
*/
inline_set_returning_functions(root);
/*
* Check to see if any subqueries in the jointree can be merged into this
* query.
*/
parse->jointree = (FromExpr *)
pull_up_subqueries(root, (Node *) parse->jointree);
/*
* If this is a simple UNION ALL query, flatten it into an appendrel. We
* do this now because it requires applying pull_up_subqueries to the leaf
* queries of the UNION ALL, which weren't touched above because they
* weren't referenced by the jointree (they will be after we do this).
*/
if (parse->setOperations)
flatten_simple_union_all(root);
/*
* Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
* avoid the expense of doing flatten_join_alias_vars(). Also check for
* outer joins --- if none, we can skip reduce_outer_joins(). And check
* for LATERAL RTEs, too. This must be done after we have done
* pull_up_subqueries(), of course.
*/
root->hasJoinRTEs = false;
root->hasLateralRTEs = false;
hasOuterJoins = false;
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_JOIN)
{
root->hasJoinRTEs = true;
if (IS_OUTER_JOIN(rte->jointype))
hasOuterJoins = true;
}
if (rte->lateral)
root->hasLateralRTEs = true;
}
/*
* Preprocess RowMark information. We need to do this after subquery
* pullup (so that all non-inherited RTEs are present) and before
* inheritance expansion (so that the info is available for
* expand_inherited_tables to examine and modify).
*/
preprocess_rowmarks(root);
/*
* Expand any rangetable entries that are inheritance sets into "append
* relations". This can add entries to the rangetable, but they must be
* plain base relations not joins, so it's OK (and marginally more
* efficient) to do it after checking for join RTEs. We must do it after
* pulling up subqueries, else we'd fail to handle inherited tables in
* subqueries.
*/
expand_inherited_tables(root);
/*
* Set hasHavingQual to remember if HAVING clause is present. Needed
* because preprocess_expression will reduce a constant-true condition to
* an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
*/
root->hasHavingQual = (parse->havingQual != NULL);
/* Clear this flag; might get set in distribute_qual_to_rels */
root->hasPseudoConstantQuals = false;
/*
* Do expression preprocessing on targetlist and quals, as well as other
* random expressions in the querytree. Note that we do not need to
* handle sort/group expressions explicitly, because they are actually
* part of the targetlist.
*/
parse->targetList = (List *)
preprocess_expression(root, (Node *) parse->targetList,
EXPRKIND_TARGET);
parse->returningList = (List *)
preprocess_expression(root, (Node *) parse->returningList,
EXPRKIND_TARGET);
preprocess_qual_conditions(root, (Node *) parse->jointree);
parse->havingQual = preprocess_expression(root, parse->havingQual,
EXPRKIND_QUAL);
foreach(l, parse->windowClause)
{
WindowClause *wc = (WindowClause *) lfirst(l);
/* partitionClause/orderClause are sort/group expressions */
wc->startOffset = preprocess_expression(root, wc->startOffset,
EXPRKIND_LIMIT);
wc->endOffset = preprocess_expression(root, wc->endOffset,
EXPRKIND_LIMIT);
}
parse->limitOffset = preprocess_expression(root, parse->limitOffset,
EXPRKIND_LIMIT);
parse->limitCount = preprocess_expression(root, parse->limitCount,
EXPRKIND_LIMIT);
root->append_rel_list = (List *)
preprocess_expression(root, (Node *) root->append_rel_list,
EXPRKIND_APPINFO);
/* Also need to preprocess expressions within RTEs */
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
int kind;
if (rte->rtekind == RTE_SUBQUERY)
{
/*
* We don't want to do all preprocessing yet on the subquery's
* expressions, since that will happen when we plan it. But if it
* contains any join aliases of our level, those have to get
* expanded now, because planning of the subquery won't do it.
* That's only possible if the subquery is LATERAL.
*/
if (rte->lateral && root->hasJoinRTEs)
rte->subquery = (Query *)
flatten_join_alias_vars(root, (Node *) rte->subquery);
}
else if (rte->rtekind == RTE_FUNCTION)
{
/* Preprocess the function expression fully */
kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
rte->funcexpr = preprocess_expression(root, rte->funcexpr, kind);
}
else if (rte->rtekind == RTE_VALUES)
{
/* Preprocess the values lists fully */
kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
rte->values_lists = (List *)
preprocess_expression(root, (Node *) rte->values_lists, kind);
}
}
/*
* In some cases we may want to transfer a HAVING clause into WHERE. We
* cannot do so if the HAVING clause contains aggregates (obviously) or
* volatile functions (since a HAVING clause is supposed to be executed
* only once per group). Also, it may be that the clause is so expensive
* to execute that we're better off doing it only once per group, despite
* the loss of selectivity. This is hard to estimate short of doing the
* entire planning process twice, so we use a heuristic: clauses
* containing subplans are left in HAVING. Otherwise, we move or copy the
* HAVING clause into WHERE, in hopes of eliminating tuples before
* aggregation instead of after.
*
* If the query has explicit grouping then we can simply move such a
* clause into WHERE; any group that fails the clause will not be in the
* output because none of its tuples will reach the grouping or
* aggregation stage. Otherwise we must have a degenerate (variable-free)
* HAVING clause, which we put in WHERE so that query_planner() can use it
* in a gating Result node, but also keep in HAVING to ensure that we
* don't emit a bogus aggregated row. (This could be done better, but it
* seems not worth optimizing.)
*
* Note that both havingQual and parse->jointree->quals are in
* implicitly-ANDed-list form at this point, even though they are declared
* as Node *.
*/
newHaving = NIL;
foreach(l, (List *) parse->havingQual)
{
Node *havingclause = (Node *) lfirst(l);
if (contain_agg_clause(havingclause) ||
contain_volatile_functions(havingclause) ||
contain_subplans(havingclause))
{
/* keep it in HAVING */
newHaving = lappend(newHaving, havingclause);
}
else if (parse->groupClause)
{
/* move it to WHERE */
parse->jointree->quals = (Node *)
lappend((List *) parse->jointree->quals, havingclause);
}
else
{
/* put a copy in WHERE, keep it in HAVING */
parse->jointree->quals = (Node *)
lappend((List *) parse->jointree->quals,
copyObject(havingclause));
newHaving = lappend(newHaving, havingclause);
}
}
parse->havingQual = (Node *) newHaving;
/*
* If we have any outer joins, try to reduce them to plain inner joins.
* This step is most easily done after we've done expression
* preprocessing.
*/
if (hasOuterJoins)
reduce_outer_joins(root);
/*
* Do the main planning. If we have an inherited target relation, that
* needs special processing, else go straight to grouping_planner.
*/
if (parse->resultRelation &&
rt_fetch(parse->resultRelation, parse->rtable)->inh)
plan = inheritance_planner(root);
else
{
plan = grouping_planner(root, tuple_fraction);
/* If it's not SELECT, we need a ModifyTable node */
if (parse->commandType != CMD_SELECT)
{
List *returningLists;
List *rowMarks;
/*
* Set up the RETURNING list-of-lists, if needed.
*/
if (parse->returningList)
returningLists = list_make1(parse->returningList);
else
returningLists = NIL;
/*
* If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will
* have dealt with fetching non-locked marked rows, else we need
* to have ModifyTable do that.
*/
if (parse->rowMarks)
rowMarks = NIL;
else
rowMarks = root->rowMarks;
plan = (Plan *) make_modifytable(root,
parse->commandType,
parse->canSetTag,
list_make1_int(parse->resultRelation),
list_make1(plan),
returningLists,
rowMarks,
SS_assign_special_param(root));
}
}
/*
* If any subplans were generated, or if there are any parameters to worry
* about, build initPlan list and extParam/allParam sets for plan nodes,
* and attach the initPlans to the top plan node.
*/
if (list_length(glob->subplans) != num_old_subplans ||
root->glob->nParamExec > 0)
SS_finalize_plan(root, plan, true);
/* Return internal info if caller wants it */
if (subroot)
*subroot = root;
return plan;
}
| PGDLLIMPORT planner_hook_type planner_hook |
1.7.1