Header And Logo

PostgreSQL
| The world's most advanced open source database.

Data Structures | Defines | Functions | Variables

planner.c File Reference

#include "postgres.h"
#include <limits.h>
#include "access/htup_details.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "parser/analyze.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/rel.h"
Include dependency graph for planner.c:

Go to the source code of this file.

Data Structures

struct  standard_qp_extra

Defines

#define EXPRKIND_QUAL   0
#define EXPRKIND_TARGET   1
#define EXPRKIND_RTFUNC   2
#define EXPRKIND_RTFUNC_LATERAL   3
#define EXPRKIND_VALUES   4
#define EXPRKIND_VALUES_LATERAL   5
#define EXPRKIND_LIMIT   6
#define EXPRKIND_APPINFO   7
#define EXPRKIND_PHV   8

Functions

static Nodepreprocess_expression (PlannerInfo *root, Node *expr, int kind)
static void preprocess_qual_conditions (PlannerInfo *root, Node *jtnode)
static Planinheritance_planner (PlannerInfo *root)
static Plangrouping_planner (PlannerInfo *root, double tuple_fraction)
static void preprocess_rowmarks (PlannerInfo *root)
static double preprocess_limit (PlannerInfo *root, double tuple_fraction, int64 *offset_est, int64 *count_est)
static bool limit_needed (Query *parse)
static void preprocess_groupclause (PlannerInfo *root)
static void standard_qp_callback (PlannerInfo *root, void *extra)
static bool choose_hashed_grouping (PlannerInfo *root, double tuple_fraction, double limit_tuples, double path_rows, int path_width, Path *cheapest_path, Path *sorted_path, double dNumGroups, AggClauseCosts *agg_costs)
static bool choose_hashed_distinct (PlannerInfo *root, double tuple_fraction, double limit_tuples, double path_rows, int path_width, Cost cheapest_startup_cost, Cost cheapest_total_cost, Cost sorted_startup_cost, Cost sorted_total_cost, List *sorted_pathkeys, double dNumDistinctRows)
static Listmake_subplanTargetList (PlannerInfo *root, List *tlist, AttrNumber **groupColIdx, bool *need_tlist_eval)
static int get_grouping_column_index (Query *parse, TargetEntry *tle)
static void locate_grouping_columns (PlannerInfo *root, List *tlist, List *sub_tlist, AttrNumber *groupColIdx)
static Listpostprocess_setop_tlist (List *new_tlist, List *orig_tlist)
static Listselect_active_windows (PlannerInfo *root, WindowFuncLists *wflists)
static Listmake_windowInputTargetList (PlannerInfo *root, List *tlist, List *activeWindows)
static Listmake_pathkeys_for_window (PlannerInfo *root, WindowClause *wc, List *tlist)
static void get_column_info_for_window (PlannerInfo *root, WindowClause *wc, List *tlist, int numSortCols, AttrNumber *sortColIdx, int *partNumCols, AttrNumber **partColIdx, Oid **partOperators, int *ordNumCols, AttrNumber **ordColIdx, Oid **ordOperators)
PlannedStmtplanner (Query *parse, int cursorOptions, ParamListInfo boundParams)
PlannedStmtstandard_planner (Query *parse, int cursorOptions, ParamListInfo boundParams)
Plansubquery_planner (PlannerGlobal *glob, Query *parse, PlannerInfo *parent_root, bool hasRecursion, double tuple_fraction, PlannerInfo **subroot)
Exprpreprocess_phv_expression (PlannerInfo *root, Expr *expr)
void add_tlist_costs_to_plan (PlannerInfo *root, Plan *plan, List *tlist)
bool is_dummy_plan (Plan *plan)
static Bitmapsetget_base_rel_indexes (Node *jtnode)
Exprexpression_planner (Expr *expr)
bool plan_cluster_use_sort (Oid tableOid, Oid indexOid)

Variables

double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION
planner_hook_type planner_hook = NULL

Define Documentation

#define EXPRKIND_APPINFO   7

Definition at line 59 of file planner.c.

#define EXPRKIND_LIMIT   6

Definition at line 58 of file planner.c.

Referenced by subquery_planner().

#define EXPRKIND_PHV   8

Definition at line 60 of file planner.c.

Referenced by preprocess_phv_expression().

#define EXPRKIND_QUAL   0

Definition at line 52 of file planner.c.

Referenced by preprocess_expression(), preprocess_qual_conditions(), and subquery_planner().

#define EXPRKIND_RTFUNC   2

Definition at line 54 of file planner.c.

Referenced by preprocess_expression().

#define EXPRKIND_RTFUNC_LATERAL   3

Definition at line 55 of file planner.c.

Referenced by subquery_planner().

#define EXPRKIND_TARGET   1

Definition at line 53 of file planner.c.

#define EXPRKIND_VALUES   4

Definition at line 56 of file planner.c.

Referenced by preprocess_expression().

#define EXPRKIND_VALUES_LATERAL   5

Definition at line 57 of file planner.c.

Referenced by subquery_planner().


Function Documentation

void add_tlist_costs_to_plan ( PlannerInfo root,
Plan plan,
List tlist 
)

Definition at line 1811 of file planner.c.

References cost_qual_eval(), cpu_tuple_cost, QualCost::per_tuple, Plan::plan_rows, QualCost::startup, Plan::startup_cost, tlist_returns_set_rows(), and Plan::total_cost.

Referenced by grouping_planner(), make_agg(), make_group(), make_windowagg(), and optimize_minmax_aggregates().

{
    QualCost    tlist_cost;
    double      tlist_rows;

    cost_qual_eval(&tlist_cost, tlist, root);
    plan->startup_cost += tlist_cost.startup;
    plan->total_cost += tlist_cost.startup +
        tlist_cost.per_tuple * plan->plan_rows;

    tlist_rows = tlist_returns_set_rows(tlist);
    if (tlist_rows > 1)
    {
        /*
         * We assume that execution costs of the tlist proper were all
         * accounted for by cost_qual_eval.  However, it still seems
         * appropriate to charge something more for the executor's general
         * costs of processing the added tuples.  The cost is probably less
         * than cpu_tuple_cost, though, so we arbitrarily use half of that.
         */
        plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
            cpu_tuple_cost / 2;

        plan->plan_rows *= tlist_rows;
    }
}

static bool choose_hashed_distinct ( PlannerInfo root,
double  tuple_fraction,
double  limit_tuples,
double  path_rows,
int  path_width,
Cost  cheapest_startup_cost,
Cost  cheapest_total_cost,
Cost  sorted_startup_cost,
Cost  sorted_total_cost,
List sorted_pathkeys,
double  dNumDistinctRows 
) [static]

Definition at line 2636 of file planner.c.

References AGG_HASHED, compare_fractional_path_costs(), cost_agg(), cost_group(), cost_sort(), PlannerInfo::distinct_pathkeys, Query::distinctClause, enable_hashagg, ereport, errcode(), errdetail(), errmsg(), ERROR, grouping_is_hashable(), grouping_is_sortable(), Query::hasDistinctOn, list_length(), MAXALIGN, NULL, PlannerInfo::parse, parse(), pathkeys_contained_in(), PlannerInfo::sort_pathkeys, Query::sortClause, Path::startup_cost, Path::total_cost, and work_mem.

Referenced by grouping_planner().

{
    Query      *parse = root->parse;
    int         numDistinctCols = list_length(parse->distinctClause);
    bool        can_sort;
    bool        can_hash;
    Size        hashentrysize;
    List       *current_pathkeys;
    List       *needed_pathkeys;
    Path        hashed_p;
    Path        sorted_p;

    /*
     * If we have a sortable DISTINCT ON clause, we always use sorting. This
     * enforces the expected behavior of DISTINCT ON.
     */
    can_sort = grouping_is_sortable(parse->distinctClause);
    if (can_sort && parse->hasDistinctOn)
        return false;

    can_hash = grouping_is_hashable(parse->distinctClause);

    /* Quick out if only one choice is workable */
    if (!(can_hash && can_sort))
    {
        if (can_hash)
            return true;
        else if (can_sort)
            return false;
        else
            ereport(ERROR,
                    (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                     errmsg("could not implement DISTINCT"),
                     errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
    }

    /* Prefer sorting when enable_hashagg is off */
    if (!enable_hashagg)
        return false;

    /*
     * Don't do it if it doesn't look like the hashtable will fit into
     * work_mem.
     */
    hashentrysize = MAXALIGN(path_width) + MAXALIGN(sizeof(MinimalTupleData));

    if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
        return false;

    /*
     * See if the estimated cost is no more than doing it the other way. While
     * avoiding the need for sorted input is usually a win, the fact that the
     * output won't be sorted may be a loss; so we need to do an actual cost
     * comparison.
     *
     * We need to consider cheapest_path + hashagg [+ final sort] versus
     * sorted_path [+ sort] + group [+ final sort] where brackets indicate a
     * step that may not be needed.
     *
     * These path variables are dummies that just hold cost fields; we don't
     * make actual Paths for these steps.
     */
    cost_agg(&hashed_p, root, AGG_HASHED, NULL,
             numDistinctCols, dNumDistinctRows,
             cheapest_startup_cost, cheapest_total_cost,
             path_rows);

    /*
     * Result of hashed agg is always unsorted, so if ORDER BY is present we
     * need to charge for the final sort.
     */
    if (parse->sortClause)
        cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
                  dNumDistinctRows, path_width,
                  0.0, work_mem, limit_tuples);

    /*
     * Now for the GROUP case.  See comments in grouping_planner about the
     * sorting choices here --- this code should match that code.
     */
    sorted_p.startup_cost = sorted_startup_cost;
    sorted_p.total_cost = sorted_total_cost;
    current_pathkeys = sorted_pathkeys;
    if (parse->hasDistinctOn &&
        list_length(root->distinct_pathkeys) <
        list_length(root->sort_pathkeys))
        needed_pathkeys = root->sort_pathkeys;
    else
        needed_pathkeys = root->distinct_pathkeys;
    if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
    {
        if (list_length(root->distinct_pathkeys) >=
            list_length(root->sort_pathkeys))
            current_pathkeys = root->distinct_pathkeys;
        else
            current_pathkeys = root->sort_pathkeys;
        cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
                  path_rows, path_width,
                  0.0, work_mem, -1.0);
    }
    cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
               sorted_p.startup_cost, sorted_p.total_cost,
               path_rows);
    if (parse->sortClause &&
        !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
        cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
                  dNumDistinctRows, path_width,
                  0.0, work_mem, limit_tuples);

    /*
     * Now make the decision using the top-level tuple fraction.  First we
     * have to convert an absolute count (LIMIT) into fractional form.
     */
    if (tuple_fraction >= 1.0)
        tuple_fraction /= dNumDistinctRows;

    if (compare_fractional_path_costs(&hashed_p, &sorted_p,
                                      tuple_fraction) < 0)
    {
        /* Hashed is cheaper, so use it */
        return true;
    }
    return false;
}

static bool choose_hashed_grouping ( PlannerInfo root,
double  tuple_fraction,
double  limit_tuples,
double  path_rows,
int  path_width,
Path cheapest_path,
Path sorted_path,
double  dNumGroups,
AggClauseCosts agg_costs 
) [static]

Definition at line 2466 of file planner.c.

References AGG_HASHED, AGG_SORTED, compare_fractional_path_costs(), cost_agg(), cost_group(), cost_sort(), PlannerInfo::distinct_pathkeys, enable_hashagg, ereport, errcode(), errdetail(), errmsg(), ERROR, PlannerInfo::group_pathkeys, Query::groupClause, grouping_is_hashable(), grouping_is_sortable(), Query::hasAggs, hash_agg_entry_size(), list_length(), MAXALIGN, AggClauseCosts::numAggs, AggClauseCosts::numOrderedAggs, PlannerInfo::parse, parse(), Path::pathkeys, pathkeys_contained_in(), PlannerInfo::sort_pathkeys, Path::startup_cost, Path::total_cost, AggClauseCosts::transitionSpace, and work_mem.

Referenced by grouping_planner().

{
    Query      *parse = root->parse;
    int         numGroupCols = list_length(parse->groupClause);
    bool        can_hash;
    bool        can_sort;
    Size        hashentrysize;
    List       *target_pathkeys;
    List       *current_pathkeys;
    Path        hashed_p;
    Path        sorted_p;

    /*
     * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
     * aggregates.  (Doing so would imply storing *all* the input values in
     * the hash table, and/or running many sorts in parallel, either of which
     * seems like a certain loser.)
     */
    can_hash = (agg_costs->numOrderedAggs == 0 &&
                grouping_is_hashable(parse->groupClause));
    can_sort = grouping_is_sortable(parse->groupClause);

    /* Quick out if only one choice is workable */
    if (!(can_hash && can_sort))
    {
        if (can_hash)
            return true;
        else if (can_sort)
            return false;
        else
            ereport(ERROR,
                    (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                     errmsg("could not implement GROUP BY"),
                     errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
    }

    /* Prefer sorting when enable_hashagg is off */
    if (!enable_hashagg)
        return false;

    /*
     * Don't do it if it doesn't look like the hashtable will fit into
     * work_mem.
     */

    /* Estimate per-hash-entry space at tuple width... */
    hashentrysize = MAXALIGN(path_width) + MAXALIGN(sizeof(MinimalTupleData));
    /* plus space for pass-by-ref transition values... */
    hashentrysize += agg_costs->transitionSpace;
    /* plus the per-hash-entry overhead */
    hashentrysize += hash_agg_entry_size(agg_costs->numAggs);

    if (hashentrysize * dNumGroups > work_mem * 1024L)
        return false;

    /*
     * When we have both GROUP BY and DISTINCT, use the more-rigorous of
     * DISTINCT and ORDER BY as the assumed required output sort order. This
     * is an oversimplification because the DISTINCT might get implemented via
     * hashing, but it's not clear that the case is common enough (or that our
     * estimates are good enough) to justify trying to solve it exactly.
     */
    if (list_length(root->distinct_pathkeys) >
        list_length(root->sort_pathkeys))
        target_pathkeys = root->distinct_pathkeys;
    else
        target_pathkeys = root->sort_pathkeys;

    /*
     * See if the estimated cost is no more than doing it the other way. While
     * avoiding the need for sorted input is usually a win, the fact that the
     * output won't be sorted may be a loss; so we need to do an actual cost
     * comparison.
     *
     * We need to consider cheapest_path + hashagg [+ final sort] versus
     * either cheapest_path [+ sort] + group or agg [+ final sort] or
     * presorted_path + group or agg [+ final sort] where brackets indicate a
     * step that may not be needed. We assume query_planner() will have
     * returned a presorted path only if it's a winner compared to
     * cheapest_path for this purpose.
     *
     * These path variables are dummies that just hold cost fields; we don't
     * make actual Paths for these steps.
     */
    cost_agg(&hashed_p, root, AGG_HASHED, agg_costs,
             numGroupCols, dNumGroups,
             cheapest_path->startup_cost, cheapest_path->total_cost,
             path_rows);
    /* Result of hashed agg is always unsorted */
    if (target_pathkeys)
        cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
                  dNumGroups, path_width,
                  0.0, work_mem, limit_tuples);

    if (sorted_path)
    {
        sorted_p.startup_cost = sorted_path->startup_cost;
        sorted_p.total_cost = sorted_path->total_cost;
        current_pathkeys = sorted_path->pathkeys;
    }
    else
    {
        sorted_p.startup_cost = cheapest_path->startup_cost;
        sorted_p.total_cost = cheapest_path->total_cost;
        current_pathkeys = cheapest_path->pathkeys;
    }
    if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
    {
        cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
                  path_rows, path_width,
                  0.0, work_mem, -1.0);
        current_pathkeys = root->group_pathkeys;
    }

    if (parse->hasAggs)
        cost_agg(&sorted_p, root, AGG_SORTED, agg_costs,
                 numGroupCols, dNumGroups,
                 sorted_p.startup_cost, sorted_p.total_cost,
                 path_rows);
    else
        cost_group(&sorted_p, root, numGroupCols, dNumGroups,
                   sorted_p.startup_cost, sorted_p.total_cost,
                   path_rows);
    /* The Agg or Group node will preserve ordering */
    if (target_pathkeys &&
        !pathkeys_contained_in(target_pathkeys, current_pathkeys))
        cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
                  dNumGroups, path_width,
                  0.0, work_mem, limit_tuples);

    /*
     * Now make the decision using the top-level tuple fraction.  First we
     * have to convert an absolute count (LIMIT) into fractional form.
     */
    if (tuple_fraction >= 1.0)
        tuple_fraction /= dNumGroups;

    if (compare_fractional_path_costs(&hashed_p, &sorted_p,
                                      tuple_fraction) < 0)
    {
        /* Hashed is cheaper, so use it */
        return true;
    }
    return false;
}

Expr* expression_planner ( Expr expr  ) 

Definition at line 3414 of file planner.c.

References eval_const_expressions(), fix_opfuncids(), and NULL.

Referenced by ATExecAddColumn(), ATPrepAlterColumnType(), BeginCopyFrom(), CheckMutability(), ExecPrepareExpr(), and GetDomainConstraints().

{
    Node       *result;

    /*
     * Convert named-argument function calls, insert default arguments and
     * simplify constant subexprs
     */
    result = eval_const_expressions(NULL, (Node *) expr);

    /* Fill in opfuncid values if missing */
    fix_opfuncids(result);

    return (Expr *) result;
}

static Bitmapset* get_base_rel_indexes ( Node jtnode  )  [static]

Definition at line 1877 of file planner.c.

References bms_join(), bms_make_singleton(), elog, ERROR, FromExpr::fromlist, IsA, JoinExpr::larg, lfirst, nodeTag, NULL, and JoinExpr::rarg.

Referenced by preprocess_rowmarks().

{
    Bitmapset  *result;

    if (jtnode == NULL)
        return NULL;
    if (IsA(jtnode, RangeTblRef))
    {
        int         varno = ((RangeTblRef *) jtnode)->rtindex;

        result = bms_make_singleton(varno);
    }
    else if (IsA(jtnode, FromExpr))
    {
        FromExpr   *f = (FromExpr *) jtnode;
        ListCell   *l;

        result = NULL;
        foreach(l, f->fromlist)
            result = bms_join(result,
                              get_base_rel_indexes(lfirst(l)));
    }
    else if (IsA(jtnode, JoinExpr))
    {
        JoinExpr   *j = (JoinExpr *) jtnode;

        result = bms_join(get_base_rel_indexes(j->larg),
                          get_base_rel_indexes(j->rarg));
    }
    else
    {
        elog(ERROR, "unrecognized node type: %d",
             (int) nodeTag(jtnode));
        result = NULL;          /* keep compiler quiet */
    }
    return result;
}

static void get_column_info_for_window ( PlannerInfo root,
WindowClause wc,
List tlist,
int  numSortCols,
AttrNumber sortColIdx,
int *  partNumCols,
AttrNumber **  partColIdx,
Oid **  partOperators,
int *  ordNumCols,
AttrNumber **  ordColIdx,
Oid **  ordOperators 
) [static]

Definition at line 3309 of file planner.c.

References elog, SortGroupClause::eqop, ERROR, extract_grouping_ops(), lappend(), lfirst, list_length(), make_pathkeys_for_sortclauses(), WindowClause::orderClause, palloc(), and WindowClause::partitionClause.

Referenced by grouping_planner().

{
    int         numPart = list_length(wc->partitionClause);
    int         numOrder = list_length(wc->orderClause);

    if (numSortCols == numPart + numOrder)
    {
        /* easy case */
        *partNumCols = numPart;
        *partColIdx = sortColIdx;
        *partOperators = extract_grouping_ops(wc->partitionClause);
        *ordNumCols = numOrder;
        *ordColIdx = sortColIdx + numPart;
        *ordOperators = extract_grouping_ops(wc->orderClause);
    }
    else
    {
        List       *sortclauses;
        List       *pathkeys;
        int         scidx;
        ListCell   *lc;

        /* first, allocate what's certainly enough space for the arrays */
        *partNumCols = 0;
        *partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
        *partOperators = (Oid *) palloc(numPart * sizeof(Oid));
        *ordNumCols = 0;
        *ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
        *ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
        sortclauses = NIL;
        pathkeys = NIL;
        scidx = 0;
        foreach(lc, wc->partitionClause)
        {
            SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
            List       *new_pathkeys;

            sortclauses = lappend(sortclauses, sgc);
            new_pathkeys = make_pathkeys_for_sortclauses(root,
                                                         sortclauses,
                                                         tlist);
            if (list_length(new_pathkeys) > list_length(pathkeys))
            {
                /* this sort clause is actually significant */
                (*partColIdx)[*partNumCols] = sortColIdx[scidx++];
                (*partOperators)[*partNumCols] = sgc->eqop;
                (*partNumCols)++;
                pathkeys = new_pathkeys;
            }
        }
        foreach(lc, wc->orderClause)
        {
            SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
            List       *new_pathkeys;

            sortclauses = lappend(sortclauses, sgc);
            new_pathkeys = make_pathkeys_for_sortclauses(root,
                                                         sortclauses,
                                                         tlist);
            if (list_length(new_pathkeys) > list_length(pathkeys))
            {
                /* this sort clause is actually significant */
                (*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
                (*ordOperators)[*ordNumCols] = sgc->eqop;
                (*ordNumCols)++;
                pathkeys = new_pathkeys;
            }
        }
        /* complain if we didn't eat exactly the right number of sort cols */
        if (scidx != numSortCols)
            elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
    }
}

static int get_grouping_column_index ( Query parse,
TargetEntry tle 
) [static]

Definition at line 2936 of file planner.c.

References Query::groupClause, lfirst, TargetEntry::ressortgroupref, and SortGroupClause::tleSortGroupRef.

Referenced by make_subplanTargetList().

{
    int         colno = 0;
    Index       ressortgroupref = tle->ressortgroupref;
    ListCell   *gl;

    /* No need to search groupClause if TLE hasn't got a sortgroupref */
    if (ressortgroupref == 0)
        return -1;

    foreach(gl, parse->groupClause)
    {
        SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);

        if (grpcl->tleSortGroupRef == ressortgroupref)
            return colno;
        colno++;
    }

    return -1;
}

static Plan * grouping_planner ( PlannerInfo root,
double  tuple_fraction 
) [static]

Definition at line 1007 of file planner.c.

References standard_qp_extra::activeWindows, add_tlist_costs_to_plan(), add_to_flat_tlist(), AGG_HASHED, Assert, choose_hashed_distinct(), choose_hashed_grouping(), CMD_SELECT, Query::commandType, copyObject(), count_agg_clauses(), create_plan(), PlannerInfo::distinct_pathkeys, Query::distinctClause, WindowClause::endOffset, ereport, errcode(), errmsg(), ERROR, extract_grouping_cols(), extract_grouping_ops(), find_window_functions(), WindowClause::frameOptions, get_column_info_for_window(), PlannerInfo::group_pathkeys, Query::groupClause, Query::hasAggs, Query::hasDistinctOn, PlannerInfo::hasHavingQual, PlannerInfo::hasRecursion, Query::hasWindowFuncs, Query::havingQual, is_projection_capable_plan(), lfirst, Query::limitCount, Query::limitOffset, list_length(), lnext, locate_grouping_columns(), make_agg(), make_group(), make_pathkeys_for_sortclauses(), make_pathkeys_for_window(), make_result(), make_sort_from_groupcols(), make_sort_from_pathkeys(), make_subplanTargetList(), make_unique(), make_windowagg(), make_windowInputTargetList(), MemSet, Min, NIL, NULL, Sort::numCols, WindowFuncLists::numWindowFuncs, optimize_minmax_aggregates(), Path::parent, PlannerInfo::parse, parse(), Path::pathkeys, pathkeys_contained_in(), Plan::plan_rows, plan_set_operations(), Plan::plan_width, postprocess_setop_tlist(), preprocess_groupclause(), preprocess_limit(), preprocess_minmax_aggregates(), preprocess_targetlist(), query_planner(), Query::rowMarks, RelOptInfo::rows, select_active_windows(), Query::setOperations, PlannerInfo::sort_pathkeys, Query::sortClause, Sort::sortColIdx, standard_qp_callback(), WindowClause::startOffset, Plan::startup_cost, Path::startup_cost, Plan::targetlist, Query::targetList, standard_qp_extra::tlist, tlist_same_exprs(), Plan::total_cost, Path::total_cost, RelOptInfo::width, Query::windowClause, WindowFuncLists::windowFuncs, and WindowClause::winref.

Referenced by inheritance_planner(), and subquery_planner().

{
    Query      *parse = root->parse;
    List       *tlist = parse->targetList;
    int64       offset_est = 0;
    int64       count_est = 0;
    double      limit_tuples = -1.0;
    Plan       *result_plan;
    List       *current_pathkeys;
    double      dNumGroups = 0;
    bool        use_hashed_distinct = false;
    bool        tested_hashed_distinct = false;

    /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
    if (parse->limitCount || parse->limitOffset)
    {
        tuple_fraction = preprocess_limit(root, tuple_fraction,
                                          &offset_est, &count_est);

        /*
         * If we have a known LIMIT, and don't have an unknown OFFSET, we can
         * estimate the effects of using a bounded sort.
         */
        if (count_est > 0 && offset_est >= 0)
            limit_tuples = (double) count_est + (double) offset_est;
    }

    if (parse->setOperations)
    {
        List       *set_sortclauses;

        /*
         * If there's a top-level ORDER BY, assume we have to fetch all the
         * tuples.  This might be too simplistic given all the hackery below
         * to possibly avoid the sort; but the odds of accurate estimates here
         * are pretty low anyway.
         */
        if (parse->sortClause)
            tuple_fraction = 0.0;

        /*
         * Construct the plan for set operations.  The result will not need
         * any work except perhaps a top-level sort and/or LIMIT.  Note that
         * any special work for recursive unions is the responsibility of
         * plan_set_operations.
         */
        result_plan = plan_set_operations(root, tuple_fraction,
                                          &set_sortclauses);

        /*
         * Calculate pathkeys representing the sort order (if any) of the set
         * operation's result.  We have to do this before overwriting the sort
         * key information...
         */
        current_pathkeys = make_pathkeys_for_sortclauses(root,
                                                         set_sortclauses,
                                                     result_plan->targetlist);

        /*
         * We should not need to call preprocess_targetlist, since we must be
         * in a SELECT query node.  Instead, use the targetlist returned by
         * plan_set_operations (since this tells whether it returned any
         * resjunk columns!), and transfer any sort key information from the
         * original tlist.
         */
        Assert(parse->commandType == CMD_SELECT);

        tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
                                        tlist);

        /*
         * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have checked
         * already, but let's make sure).
         */
        if (parse->rowMarks)
            ereport(ERROR,
                    (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                     errmsg("row-level locks are not allowed with UNION/INTERSECT/EXCEPT")));

        /*
         * Calculate pathkeys that represent result ordering requirements
         */
        Assert(parse->distinctClause == NIL);
        root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
                                                            parse->sortClause,
                                                            tlist);
    }
    else
    {
        /* No set operations, do regular planning */
        List       *sub_tlist;
        double      sub_limit_tuples;
        AttrNumber *groupColIdx = NULL;
        bool        need_tlist_eval = true;
        standard_qp_extra qp_extra;
        Path       *cheapest_path;
        Path       *sorted_path;
        Path       *best_path;
        long        numGroups = 0;
        AggClauseCosts agg_costs;
        int         numGroupCols;
        double      path_rows;
        int         path_width;
        bool        use_hashed_grouping = false;
        WindowFuncLists *wflists = NULL;
        List       *activeWindows = NIL;

        MemSet(&agg_costs, 0, sizeof(AggClauseCosts));

        /* A recursive query should always have setOperations */
        Assert(!root->hasRecursion);

        /* Preprocess GROUP BY clause, if any */
        if (parse->groupClause)
            preprocess_groupclause(root);
        numGroupCols = list_length(parse->groupClause);

        /* Preprocess targetlist */
        tlist = preprocess_targetlist(root, tlist);

        /*
         * Locate any window functions in the tlist.  (We don't need to look
         * anywhere else, since expressions used in ORDER BY will be in there
         * too.)  Note that they could all have been eliminated by constant
         * folding, in which case we don't need to do any more work.
         */
        if (parse->hasWindowFuncs)
        {
            wflists = find_window_functions((Node *) tlist,
                                            list_length(parse->windowClause));
            if (wflists->numWindowFuncs > 0)
                activeWindows = select_active_windows(root, wflists);
            else
                parse->hasWindowFuncs = false;
        }

        /*
         * Generate appropriate target list for subplan; may be different from
         * tlist if grouping or aggregation is needed.
         */
        sub_tlist = make_subplanTargetList(root, tlist,
                                           &groupColIdx, &need_tlist_eval);

        /*
         * Do aggregate preprocessing, if the query has any aggs.
         *
         * Note: think not that we can turn off hasAggs if we find no aggs. It
         * is possible for constant-expression simplification to remove all
         * explicit references to aggs, but we still have to follow the
         * aggregate semantics (eg, producing only one output row).
         */
        if (parse->hasAggs)
        {
            /*
             * Collect statistics about aggregates for estimating costs. Note:
             * we do not attempt to detect duplicate aggregates here; a
             * somewhat-overestimated cost is okay for our present purposes.
             */
            count_agg_clauses(root, (Node *) tlist, &agg_costs);
            count_agg_clauses(root, parse->havingQual, &agg_costs);

            /*
             * Preprocess MIN/MAX aggregates, if any.  Note: be careful about
             * adding logic between here and the optimize_minmax_aggregates
             * call.  Anything that is needed in MIN/MAX-optimizable cases
             * will have to be duplicated in planagg.c.
             */
            preprocess_minmax_aggregates(root, tlist);
        }

        /*
         * Figure out whether there's a hard limit on the number of rows that
         * query_planner's result subplan needs to return.  Even if we know a
         * hard limit overall, it doesn't apply if the query has any
         * grouping/aggregation operations.
         */
        if (parse->groupClause ||
            parse->distinctClause ||
            parse->hasAggs ||
            parse->hasWindowFuncs ||
            root->hasHavingQual)
            sub_limit_tuples = -1.0;
        else
            sub_limit_tuples = limit_tuples;

        /* Set up data needed by standard_qp_callback */
        qp_extra.tlist = tlist;
        qp_extra.activeWindows = activeWindows;

        /*
         * Generate the best unsorted and presorted paths for this Query (but
         * note there may not be any presorted path).  We also generate (in
         * standard_qp_callback) pathkey representations of the query's sort
         * clause, distinct clause, etc.  query_planner will also estimate the
         * number of groups in the query.
         */
        query_planner(root, sub_tlist, tuple_fraction, sub_limit_tuples,
                      standard_qp_callback, &qp_extra,
                      &cheapest_path, &sorted_path, &dNumGroups);

        /*
         * Extract rowcount and width estimates for possible use in grouping
         * decisions.  Beware here of the possibility that
         * cheapest_path->parent is NULL (ie, there is no FROM clause).
         */
        if (cheapest_path->parent)
        {
            path_rows = cheapest_path->parent->rows;
            path_width = cheapest_path->parent->width;
        }
        else
        {
            path_rows = 1;      /* assume non-set result */
            path_width = 100;   /* arbitrary */
        }

        if (parse->groupClause)
        {
            /*
             * If grouping, decide whether to use sorted or hashed grouping.
             */
            use_hashed_grouping =
                choose_hashed_grouping(root,
                                       tuple_fraction, limit_tuples,
                                       path_rows, path_width,
                                       cheapest_path, sorted_path,
                                       dNumGroups, &agg_costs);
            /* Also convert # groups to long int --- but 'ware overflow! */
            numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
        }
        else if (parse->distinctClause && sorted_path &&
                 !root->hasHavingQual && !parse->hasAggs && !activeWindows)
        {
            /*
             * We'll reach the DISTINCT stage without any intermediate
             * processing, so figure out whether we will want to hash or not
             * so we can choose whether to use cheapest or sorted path.
             */
            use_hashed_distinct =
                choose_hashed_distinct(root,
                                       tuple_fraction, limit_tuples,
                                       path_rows, path_width,
                                       cheapest_path->startup_cost,
                                       cheapest_path->total_cost,
                                       sorted_path->startup_cost,
                                       sorted_path->total_cost,
                                       sorted_path->pathkeys,
                                       dNumGroups);
            tested_hashed_distinct = true;
        }

        /*
         * Select the best path.  If we are doing hashed grouping, we will
         * always read all the input tuples, so use the cheapest-total path.
         * Otherwise, trust query_planner's decision about which to use.
         */
        if (use_hashed_grouping || use_hashed_distinct || !sorted_path)
            best_path = cheapest_path;
        else
            best_path = sorted_path;

        /*
         * Check to see if it's possible to optimize MIN/MAX aggregates. If
         * so, we will forget all the work we did so far to choose a "regular"
         * path ... but we had to do it anyway to be able to tell which way is
         * cheaper.
         */
        result_plan = optimize_minmax_aggregates(root,
                                                 tlist,
                                                 &agg_costs,
                                                 best_path);
        if (result_plan != NULL)
        {
            /*
             * optimize_minmax_aggregates generated the full plan, with the
             * right tlist, and it has no sort order.
             */
            current_pathkeys = NIL;
        }
        else
        {
            /*
             * Normal case --- create a plan according to query_planner's
             * results.
             */
            bool        need_sort_for_grouping = false;

            result_plan = create_plan(root, best_path);
            current_pathkeys = best_path->pathkeys;

            /* Detect if we'll need an explicit sort for grouping */
            if (parse->groupClause && !use_hashed_grouping &&
              !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
            {
                need_sort_for_grouping = true;

                /*
                 * Always override create_plan's tlist, so that we don't sort
                 * useless data from a "physical" tlist.
                 */
                need_tlist_eval = true;
            }

            /*
             * create_plan returns a plan with just a "flat" tlist of required
             * Vars.  Usually we need to insert the sub_tlist as the tlist of
             * the top plan node.  However, we can skip that if we determined
             * that whatever create_plan chose to return will be good enough.
             */
            if (need_tlist_eval)
            {
                /*
                 * If the top-level plan node is one that cannot do expression
                 * evaluation and its existing target list isn't already what
                 * we need, we must insert a Result node to project the
                 * desired tlist.
                 */
                if (!is_projection_capable_plan(result_plan) &&
                    !tlist_same_exprs(sub_tlist, result_plan->targetlist))
                {
                    result_plan = (Plan *) make_result(root,
                                                       sub_tlist,
                                                       NULL,
                                                       result_plan);
                }
                else
                {
                    /*
                     * Otherwise, just replace the subplan's flat tlist with
                     * the desired tlist.
                     */
                    result_plan->targetlist = sub_tlist;
                }

                /*
                 * Also, account for the cost of evaluation of the sub_tlist.
                 * See comments for add_tlist_costs_to_plan() for more info.
                 */
                add_tlist_costs_to_plan(root, result_plan, sub_tlist);
            }
            else
            {
                /*
                 * Since we're using create_plan's tlist and not the one
                 * make_subplanTargetList calculated, we have to refigure any
                 * grouping-column indexes make_subplanTargetList computed.
                 */
                locate_grouping_columns(root, tlist, result_plan->targetlist,
                                        groupColIdx);
            }

            /*
             * Insert AGG or GROUP node if needed, plus an explicit sort step
             * if necessary.
             *
             * HAVING clause, if any, becomes qual of the Agg or Group node.
             */
            if (use_hashed_grouping)
            {
                /* Hashed aggregate plan --- no sort needed */
                result_plan = (Plan *) make_agg(root,
                                                tlist,
                                                (List *) parse->havingQual,
                                                AGG_HASHED,
                                                &agg_costs,
                                                numGroupCols,
                                                groupColIdx,
                                    extract_grouping_ops(parse->groupClause),
                                                numGroups,
                                                result_plan);
                /* Hashed aggregation produces randomly-ordered results */
                current_pathkeys = NIL;
            }
            else if (parse->hasAggs)
            {
                /* Plain aggregate plan --- sort if needed */
                AggStrategy aggstrategy;

                if (parse->groupClause)
                {
                    if (need_sort_for_grouping)
                    {
                        result_plan = (Plan *)
                            make_sort_from_groupcols(root,
                                                     parse->groupClause,
                                                     groupColIdx,
                                                     result_plan);
                        current_pathkeys = root->group_pathkeys;
                    }
                    aggstrategy = AGG_SORTED;

                    /*
                     * The AGG node will not change the sort ordering of its
                     * groups, so current_pathkeys describes the result too.
                     */
                }
                else
                {
                    aggstrategy = AGG_PLAIN;
                    /* Result will be only one row anyway; no sort order */
                    current_pathkeys = NIL;
                }

                result_plan = (Plan *) make_agg(root,
                                                tlist,
                                                (List *) parse->havingQual,
                                                aggstrategy,
                                                &agg_costs,
                                                numGroupCols,
                                                groupColIdx,
                                    extract_grouping_ops(parse->groupClause),
                                                numGroups,
                                                result_plan);
            }
            else if (parse->groupClause)
            {
                /*
                 * GROUP BY without aggregation, so insert a group node (plus
                 * the appropriate sort node, if necessary).
                 *
                 * Add an explicit sort if we couldn't make the path come out
                 * the way the GROUP node needs it.
                 */
                if (need_sort_for_grouping)
                {
                    result_plan = (Plan *)
                        make_sort_from_groupcols(root,
                                                 parse->groupClause,
                                                 groupColIdx,
                                                 result_plan);
                    current_pathkeys = root->group_pathkeys;
                }

                result_plan = (Plan *) make_group(root,
                                                  tlist,
                                                  (List *) parse->havingQual,
                                                  numGroupCols,
                                                  groupColIdx,
                                    extract_grouping_ops(parse->groupClause),
                                                  dNumGroups,
                                                  result_plan);
                /* The Group node won't change sort ordering */
            }
            else if (root->hasHavingQual)
            {
                /*
                 * No aggregates, and no GROUP BY, but we have a HAVING qual.
                 * This is a degenerate case in which we are supposed to emit
                 * either 0 or 1 row depending on whether HAVING succeeds.
                 * Furthermore, there cannot be any variables in either HAVING
                 * or the targetlist, so we actually do not need the FROM
                 * table at all!  We can just throw away the plan-so-far and
                 * generate a Result node.  This is a sufficiently unusual
                 * corner case that it's not worth contorting the structure of
                 * this routine to avoid having to generate the plan in the
                 * first place.
                 */
                result_plan = (Plan *) make_result(root,
                                                   tlist,
                                                   parse->havingQual,
                                                   NULL);
            }
        }                       /* end of non-minmax-aggregate case */

        /*
         * Since each window function could require a different sort order, we
         * stack up a WindowAgg node for each window, with sort steps between
         * them as needed.
         */
        if (activeWindows)
        {
            List       *window_tlist;
            ListCell   *l;

            /*
             * If the top-level plan node is one that cannot do expression
             * evaluation, we must insert a Result node to project the desired
             * tlist.  (In some cases this might not really be required, but
             * it's not worth trying to avoid it.  In particular, think not to
             * skip adding the Result if the initial window_tlist matches the
             * top-level plan node's output, because we might change the tlist
             * inside the following loop.)  Note that on second and subsequent
             * passes through the following loop, the top-level node will be a
             * WindowAgg which we know can project; so we only need to check
             * once.
             */
            if (!is_projection_capable_plan(result_plan))
            {
                result_plan = (Plan *) make_result(root,
                                                   NIL,
                                                   NULL,
                                                   result_plan);
            }

            /*
             * The "base" targetlist for all steps of the windowing process is
             * a flat tlist of all Vars and Aggs needed in the result.  (In
             * some cases we wouldn't need to propagate all of these all the
             * way to the top, since they might only be needed as inputs to
             * WindowFuncs.  It's probably not worth trying to optimize that
             * though.)  We also add window partitioning and sorting
             * expressions to the base tlist, to ensure they're computed only
             * once at the bottom of the stack (that's critical for volatile
             * functions).  As we climb up the stack, we'll add outputs for
             * the WindowFuncs computed at each level.
             */
            window_tlist = make_windowInputTargetList(root,
                                                      tlist,
                                                      activeWindows);

            /*
             * The copyObject steps here are needed to ensure that each plan
             * node has a separately modifiable tlist.  (XXX wouldn't a
             * shallow list copy do for that?)
             */
            result_plan->targetlist = (List *) copyObject(window_tlist);

            foreach(l, activeWindows)
            {
                WindowClause *wc = (WindowClause *) lfirst(l);
                List       *window_pathkeys;
                int         partNumCols;
                AttrNumber *partColIdx;
                Oid        *partOperators;
                int         ordNumCols;
                AttrNumber *ordColIdx;
                Oid        *ordOperators;

                window_pathkeys = make_pathkeys_for_window(root,
                                                           wc,
                                                           tlist);

                /*
                 * This is a bit tricky: we build a sort node even if we don't
                 * really have to sort.  Even when no explicit sort is needed,
                 * we need to have suitable resjunk items added to the input
                 * plan's tlist for any partitioning or ordering columns that
                 * aren't plain Vars.  (In theory, make_windowInputTargetList
                 * should have provided all such columns, but let's not assume
                 * that here.)  Furthermore, this way we can use existing
                 * infrastructure to identify which input columns are the
                 * interesting ones.
                 */
                if (window_pathkeys)
                {
                    Sort       *sort_plan;

                    sort_plan = make_sort_from_pathkeys(root,
                                                        result_plan,
                                                        window_pathkeys,
                                                        -1.0);
                    if (!pathkeys_contained_in(window_pathkeys,
                                               current_pathkeys))
                    {
                        /* we do indeed need to sort */
                        result_plan = (Plan *) sort_plan;
                        current_pathkeys = window_pathkeys;
                    }
                    /* In either case, extract the per-column information */
                    get_column_info_for_window(root, wc, tlist,
                                               sort_plan->numCols,
                                               sort_plan->sortColIdx,
                                               &partNumCols,
                                               &partColIdx,
                                               &partOperators,
                                               &ordNumCols,
                                               &ordColIdx,
                                               &ordOperators);
                }
                else
                {
                    /* empty window specification, nothing to sort */
                    partNumCols = 0;
                    partColIdx = NULL;
                    partOperators = NULL;
                    ordNumCols = 0;
                    ordColIdx = NULL;
                    ordOperators = NULL;
                }

                if (lnext(l))
                {
                    /* Add the current WindowFuncs to the running tlist */
                    window_tlist = add_to_flat_tlist(window_tlist,
                                           wflists->windowFuncs[wc->winref]);
                }
                else
                {
                    /* Install the original tlist in the topmost WindowAgg */
                    window_tlist = tlist;
                }

                /* ... and make the WindowAgg plan node */
                result_plan = (Plan *)
                    make_windowagg(root,
                                   (List *) copyObject(window_tlist),
                                   wflists->windowFuncs[wc->winref],
                                   wc->winref,
                                   partNumCols,
                                   partColIdx,
                                   partOperators,
                                   ordNumCols,
                                   ordColIdx,
                                   ordOperators,
                                   wc->frameOptions,
                                   wc->startOffset,
                                   wc->endOffset,
                                   result_plan);
            }
        }
    }                           /* end of if (setOperations) */

    /*
     * If there is a DISTINCT clause, add the necessary node(s).
     */
    if (parse->distinctClause)
    {
        double      dNumDistinctRows;
        long        numDistinctRows;

        /*
         * If there was grouping or aggregation, use the current number of
         * rows as the estimated number of DISTINCT rows (ie, assume the
         * result was already mostly unique).  If not, use the number of
         * distinct-groups calculated by query_planner.
         */
        if (parse->groupClause || root->hasHavingQual || parse->hasAggs)
            dNumDistinctRows = result_plan->plan_rows;
        else
            dNumDistinctRows = dNumGroups;

        /* Also convert to long int --- but 'ware overflow! */
        numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);

        /* Choose implementation method if we didn't already */
        if (!tested_hashed_distinct)
        {
            /*
             * At this point, either hashed or sorted grouping will have to
             * work from result_plan, so we pass that as both "cheapest" and
             * "sorted".
             */
            use_hashed_distinct =
                choose_hashed_distinct(root,
                                       tuple_fraction, limit_tuples,
                                       result_plan->plan_rows,
                                       result_plan->plan_width,
                                       result_plan->startup_cost,
                                       result_plan->total_cost,
                                       result_plan->startup_cost,
                                       result_plan->total_cost,
                                       current_pathkeys,
                                       dNumDistinctRows);
        }

        if (use_hashed_distinct)
        {
            /* Hashed aggregate plan --- no sort needed */
            result_plan = (Plan *) make_agg(root,
                                            result_plan->targetlist,
                                            NIL,
                                            AGG_HASHED,
                                            NULL,
                                          list_length(parse->distinctClause),
                                 extract_grouping_cols(parse->distinctClause,
                                                    result_plan->targetlist),
                                 extract_grouping_ops(parse->distinctClause),
                                            numDistinctRows,
                                            result_plan);
            /* Hashed aggregation produces randomly-ordered results */
            current_pathkeys = NIL;
        }
        else
        {
            /*
             * Use a Unique node to implement DISTINCT.  Add an explicit sort
             * if we couldn't make the path come out the way the Unique node
             * needs it.  If we do have to sort, always sort by the more
             * rigorous of DISTINCT and ORDER BY, to avoid a second sort
             * below.  However, for regular DISTINCT, don't sort now if we
             * don't have to --- sorting afterwards will likely be cheaper,
             * and also has the possibility of optimizing via LIMIT.  But for
             * DISTINCT ON, we *must* force the final sort now, else it won't
             * have the desired behavior.
             */
            List       *needed_pathkeys;

            if (parse->hasDistinctOn &&
                list_length(root->distinct_pathkeys) <
                list_length(root->sort_pathkeys))
                needed_pathkeys = root->sort_pathkeys;
            else
                needed_pathkeys = root->distinct_pathkeys;

            if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
            {
                if (list_length(root->distinct_pathkeys) >=
                    list_length(root->sort_pathkeys))
                    current_pathkeys = root->distinct_pathkeys;
                else
                {
                    current_pathkeys = root->sort_pathkeys;
                    /* Assert checks that parser didn't mess up... */
                    Assert(pathkeys_contained_in(root->distinct_pathkeys,
                                                 current_pathkeys));
                }

                result_plan = (Plan *) make_sort_from_pathkeys(root,
                                                               result_plan,
                                                            current_pathkeys,
                                                               -1.0);
            }

            result_plan = (Plan *) make_unique(result_plan,
                                               parse->distinctClause);
            result_plan->plan_rows = dNumDistinctRows;
            /* The Unique node won't change sort ordering */
        }
    }

    /*
     * If ORDER BY was given and we were not able to make the plan come out in
     * the right order, add an explicit sort step.
     */
    if (parse->sortClause)
    {
        if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
        {
            result_plan = (Plan *) make_sort_from_pathkeys(root,
                                                           result_plan,
                                                         root->sort_pathkeys,
                                                           limit_tuples);
            current_pathkeys = root->sort_pathkeys;
        }
    }

    /*
     * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node. (Note: we
     * intentionally test parse->rowMarks not root->rowMarks here. If there
     * are only non-locking rowmarks, they should be handled by the
     * ModifyTable node instead.)
     */
    if (parse->rowMarks)
    {
        result_plan = (Plan *) make_lockrows(result_plan,
                                             root->rowMarks,
                                             SS_assign_special_param(root));

        /*
         * The result can no longer be assumed sorted, since locking might
         * cause the sort key columns to be replaced with new values.
         */
        current_pathkeys = NIL;
    }

    /*
     * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
     */
    if (limit_needed(parse))
    {
        result_plan = (Plan *) make_limit(result_plan,
                                          parse->limitOffset,
                                          parse->limitCount,
                                          offset_est,
                                          count_est);
    }

    /*
     * Return the actual output ordering in query_pathkeys for possible use by
     * an outer query level.
     */
    root->query_pathkeys = current_pathkeys;

    return result_plan;
}

static Plan * inheritance_planner ( PlannerInfo root  )  [static]

Definition at line 764 of file planner.c.

References adjust_appendrel_attrs(), PlannerInfo::append_rel_list, Assert, Query::canSetTag, ChangeVarNodes(), AppendRelInfo::child_relid, Query::commandType, copyObject(), grouping_planner(), PlannerInfo::hasInheritedTarget, PlannerInfo::init_plans, is_dummy_plan(), PlannerInfo::join_info_list, lappend(), lappend_int(), PlannerInfo::lateral_info_list, lfirst, list_concat(), list_copy_tail(), list_length(), list_make1, make_modifytable(), make_result(), makeBoolConst(), makeNode, NIL, NULL, AppendRelInfo::parent_relid, PlannerInfo::parse, parse(), PlannerInfo::placeholder_list, preprocess_targetlist(), PlannerInfo::query_pathkeys, Query::resultRelation, Query::returningList, Query::rowMarks, PlannerInfo::rowMarks, Query::rtable, RTE_SUBQUERY, RangeTblEntry::rtekind, PlannerInfo::simple_rel_array, PlannerInfo::simple_rel_array_size, SS_assign_special_param(), and Query::targetList.

Referenced by subquery_planner().

{
    Query      *parse = root->parse;
    int         parentRTindex = parse->resultRelation;
    List       *final_rtable = NIL;
    int         save_rel_array_size = 0;
    RelOptInfo **save_rel_array = NULL;
    List       *subplans = NIL;
    List       *resultRelations = NIL;
    List       *returningLists = NIL;
    List       *rowMarks;
    ListCell   *lc;

    /*
     * We generate a modified instance of the original Query for each target
     * relation, plan that, and put all the plans into a list that will be
     * controlled by a single ModifyTable node.  All the instances share the
     * same rangetable, but each instance must have its own set of subquery
     * RTEs within the finished rangetable because (1) they are likely to get
     * scribbled on during planning, and (2) it's not inconceivable that
     * subqueries could get planned differently in different cases.  We need
     * not create duplicate copies of other RTE kinds, in particular not the
     * target relations, because they don't have either of those issues.  Not
     * having to duplicate the target relations is important because doing so
     * (1) would result in a rangetable of length O(N^2) for N targets, with
     * at least O(N^3) work expended here; and (2) would greatly complicate
     * management of the rowMarks list.
     */
    foreach(lc, root->append_rel_list)
    {
        AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
        PlannerInfo subroot;
        Plan       *subplan;
        Index       rti;

        /* append_rel_list contains all append rels; ignore others */
        if (appinfo->parent_relid != parentRTindex)
            continue;

        /*
         * We need a working copy of the PlannerInfo so that we can control
         * propagation of information back to the main copy.
         */
        memcpy(&subroot, root, sizeof(PlannerInfo));

        /*
         * Generate modified query with this rel as target.  We first apply
         * adjust_appendrel_attrs, which copies the Query and changes
         * references to the parent RTE to refer to the current child RTE,
         * then fool around with subquery RTEs.
         */
        subroot.parse = (Query *)
            adjust_appendrel_attrs(root,
                                   (Node *) parse,
                                   appinfo);

        /*
         * The rowMarks list might contain references to subquery RTEs, so
         * make a copy that we can apply ChangeVarNodes to.  (Fortunately, the
         * executor doesn't need to see the modified copies --- we can just
         * pass it the original rowMarks list.)
         */
        subroot.rowMarks = (List *) copyObject(root->rowMarks);

        /*
         * Add placeholders to the child Query's rangetable list to fill the
         * RT indexes already reserved for subqueries in previous children.
         * These won't be referenced, so there's no need to make them very
         * valid-looking.
         */
        while (list_length(subroot.parse->rtable) < list_length(final_rtable))
            subroot.parse->rtable = lappend(subroot.parse->rtable,
                                            makeNode(RangeTblEntry));

        /*
         * If this isn't the first child Query, generate duplicates of all
         * subquery RTEs, and adjust Var numbering to reference the
         * duplicates. To simplify the loop logic, we scan the original rtable
         * not the copy just made by adjust_appendrel_attrs; that should be OK
         * since subquery RTEs couldn't contain any references to the target
         * rel.
         */
        if (final_rtable != NIL)
        {
            ListCell   *lr;

            rti = 1;
            foreach(lr, parse->rtable)
            {
                RangeTblEntry *rte = (RangeTblEntry *) lfirst(lr);

                if (rte->rtekind == RTE_SUBQUERY)
                {
                    Index       newrti;

                    /*
                     * The RTE can't contain any references to its own RT
                     * index, so we can save a few cycles by applying
                     * ChangeVarNodes before we append the RTE to the
                     * rangetable.
                     */
                    newrti = list_length(subroot.parse->rtable) + 1;
                    ChangeVarNodes((Node *) subroot.parse, rti, newrti, 0);
                    ChangeVarNodes((Node *) subroot.rowMarks, rti, newrti, 0);
                    rte = copyObject(rte);
                    subroot.parse->rtable = lappend(subroot.parse->rtable,
                                                    rte);
                }
                rti++;
            }
        }

        /* We needn't modify the child's append_rel_list */
        /* There shouldn't be any OJ or LATERAL info to translate, as yet */
        Assert(subroot.join_info_list == NIL);
        Assert(subroot.lateral_info_list == NIL);
        /* and we haven't created PlaceHolderInfos, either */
        Assert(subroot.placeholder_list == NIL);
        /* hack to mark target relation as an inheritance partition */
        subroot.hasInheritedTarget = true;

        /* Generate plan */
        subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );

        /*
         * If this child rel was excluded by constraint exclusion, exclude it
         * from the result plan.
         */
        if (is_dummy_plan(subplan))
            continue;

        subplans = lappend(subplans, subplan);

        /*
         * If this is the first non-excluded child, its post-planning rtable
         * becomes the initial contents of final_rtable; otherwise, append
         * just its modified subquery RTEs to final_rtable.
         */
        if (final_rtable == NIL)
            final_rtable = subroot.parse->rtable;
        else
            final_rtable = list_concat(final_rtable,
                                       list_copy_tail(subroot.parse->rtable,
                                                 list_length(final_rtable)));

        /*
         * We need to collect all the RelOptInfos from all child plans into
         * the main PlannerInfo, since setrefs.c will need them.  We use the
         * last child's simple_rel_array (previous ones are too short), so we
         * have to propagate forward the RelOptInfos that were already built
         * in previous children.
         */
        Assert(subroot.simple_rel_array_size >= save_rel_array_size);
        for (rti = 1; rti < save_rel_array_size; rti++)
        {
            RelOptInfo *brel = save_rel_array[rti];

            if (brel)
                subroot.simple_rel_array[rti] = brel;
        }
        save_rel_array_size = subroot.simple_rel_array_size;
        save_rel_array = subroot.simple_rel_array;

        /* Make sure any initplans from this rel get into the outer list */
        root->init_plans = subroot.init_plans;

        /* Build list of target-relation RT indexes */
        resultRelations = lappend_int(resultRelations, appinfo->child_relid);

        /* Build list of per-relation RETURNING targetlists */
        if (parse->returningList)
            returningLists = lappend(returningLists,
                                     subroot.parse->returningList);
    }

    /* Mark result as unordered (probably unnecessary) */
    root->query_pathkeys = NIL;

    /*
     * If we managed to exclude every child rel, return a dummy plan; it
     * doesn't even need a ModifyTable node.
     */
    if (subplans == NIL)
    {
        /* although dummy, it must have a valid tlist for executor */
        List       *tlist;

        tlist = preprocess_targetlist(root, parse->targetList);
        return (Plan *) make_result(root,
                                    tlist,
                                    (Node *) list_make1(makeBoolConst(false,
                                                                      false)),
                                    NULL);
    }

    /*
     * Put back the final adjusted rtable into the master copy of the Query.
     */
    parse->rtable = final_rtable;
    root->simple_rel_array_size = save_rel_array_size;
    root->simple_rel_array = save_rel_array;

    /*
     * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will have
     * dealt with fetching non-locked marked rows, else we need to have
     * ModifyTable do that.
     */
    if (parse->rowMarks)
        rowMarks = NIL;
    else
        rowMarks = root->rowMarks;

    /* And last, tack on a ModifyTable node to do the UPDATE/DELETE work */
    return (Plan *) make_modifytable(root,
                                     parse->commandType,
                                     parse->canSetTag,
                                     resultRelations,
                                     subplans,
                                     returningLists,
                                     rowMarks,
                                     SS_assign_special_param(root));
}

bool is_dummy_plan ( Plan plan  ) 

Definition at line 1848 of file planner.c.

References Const::constisnull, Const::constvalue, DatumGetBool, IsA, linitial, and list_length().

Referenced by create_append_plan(), inheritance_planner(), and set_subquery_pathlist().

{
    if (IsA(plan, Result))
    {
        List       *rcqual = (List *) ((Result *) plan)->resconstantqual;

        if (list_length(rcqual) == 1)
        {
            Const      *constqual = (Const *) linitial(rcqual);

            if (constqual && IsA(constqual, Const))
            {
                if (!constqual->constisnull &&
                    !DatumGetBool(constqual->constvalue))
                    return true;
            }
        }
    }
    return false;
}

static bool limit_needed ( Query parse  )  [static]

Definition at line 2251 of file planner.c.

References DatumGetInt64, IsA, Query::limitCount, and Query::limitOffset.

{
    Node       *node;

    node = parse->limitCount;
    if (node)
    {
        if (IsA(node, Const))
        {
            /* NULL indicates LIMIT ALL, ie, no limit */
            if (!((Const *) node)->constisnull)
                return true;    /* LIMIT with a constant value */
        }
        else
            return true;        /* non-constant LIMIT */
    }

    node = parse->limitOffset;
    if (node)
    {
        if (IsA(node, Const))
        {
            /* Treat NULL as no offset; the executor would too */
            if (!((Const *) node)->constisnull)
            {
                int64   offset = DatumGetInt64(((Const *) node)->constvalue);

                /* Executor would treat less-than-zero same as zero */
                if (offset > 0)
                    return true;    /* OFFSET with a positive value */
            }
        }
        else
            return true;        /* non-constant OFFSET */
    }

    return false;               /* don't need a Limit plan node */
}

static void locate_grouping_columns ( PlannerInfo root,
List tlist,
List sub_tlist,
AttrNumber groupColIdx 
) [static]

Definition at line 2967 of file planner.c.

References Assert, elog, ERROR, get_sortgroupclause_expr(), Query::groupClause, lfirst, NULL, PlannerInfo::parse, TargetEntry::resno, and tlist_member().

Referenced by grouping_planner().

{
    int         keyno = 0;
    ListCell   *gl;

    /*
     * No work unless grouping.
     */
    if (!root->parse->groupClause)
    {
        Assert(groupColIdx == NULL);
        return;
    }
    Assert(groupColIdx != NULL);

    foreach(gl, root->parse->groupClause)
    {
        SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
        Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
        TargetEntry *te = tlist_member(groupexpr, sub_tlist);

        if (!te)
            elog(ERROR, "failed to locate grouping columns");
        groupColIdx[keyno++] = te->resno;
    }
}

static List * make_pathkeys_for_window ( PlannerInfo root,
WindowClause wc,
List tlist 
) [static]

Definition at line 3255 of file planner.c.

References ereport, errcode(), errdetail(), errmsg(), ERROR, grouping_is_sortable(), list_concat(), list_copy(), list_free(), make_pathkeys_for_sortclauses(), WindowClause::orderClause, and WindowClause::partitionClause.

Referenced by grouping_planner(), and standard_qp_callback().

{
    List       *window_pathkeys;
    List       *window_sortclauses;

    /* Throw error if can't sort */
    if (!grouping_is_sortable(wc->partitionClause))
        ereport(ERROR,
                (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                 errmsg("could not implement window PARTITION BY"),
                 errdetail("Window partitioning columns must be of sortable datatypes.")));
    if (!grouping_is_sortable(wc->orderClause))
        ereport(ERROR,
                (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                 errmsg("could not implement window ORDER BY"),
        errdetail("Window ordering columns must be of sortable datatypes.")));

    /* Okay, make the combined pathkeys */
    window_sortclauses = list_concat(list_copy(wc->partitionClause),
                                     list_copy(wc->orderClause));
    window_pathkeys = make_pathkeys_for_sortclauses(root,
                                                    window_sortclauses,
                                                    tlist);
    list_free(window_sortclauses);
    return window_pathkeys;
}

static List * make_subplanTargetList ( PlannerInfo root,
List tlist,
AttrNumber **  groupColIdx,
bool need_tlist_eval 
) [static]

Definition at line 2807 of file planner.c.

References add_to_flat_tlist(), Assert, TargetEntry::expr, get_grouping_column_index(), Query::groupClause, Query::hasAggs, PlannerInfo::hasHavingQual, Query::hasWindowFuncs, Query::havingQual, IsA, lappend(), lfirst, list_copy(), list_free(), list_length(), makeTargetEntry(), NULL, palloc0(), PlannerInfo::parse, parse(), pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, and TargetEntry::resno.

Referenced by grouping_planner().

{
    Query      *parse = root->parse;
    List       *sub_tlist;
    List       *non_group_cols;
    List       *non_group_vars;
    int         numCols;

    *groupColIdx = NULL;

    /*
     * If we're not grouping or aggregating, there's nothing to do here;
     * query_planner should receive the unmodified target list.
     */
    if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual &&
        !parse->hasWindowFuncs)
    {
        *need_tlist_eval = true;
        return tlist;
    }

    /*
     * Otherwise, we must build a tlist containing all grouping columns, plus
     * any other Vars mentioned in the targetlist and HAVING qual.
     */
    sub_tlist = NIL;
    non_group_cols = NIL;
    *need_tlist_eval = false;   /* only eval if not flat tlist */

    numCols = list_length(parse->groupClause);
    if (numCols > 0)
    {
        /*
         * If grouping, create sub_tlist entries for all GROUP BY columns, and
         * make an array showing where the group columns are in the sub_tlist.
         *
         * Note: with this implementation, the array entries will always be
         * 1..N, but we don't want callers to assume that.
         */
        AttrNumber *grpColIdx;
        ListCell   *tl;

        grpColIdx = (AttrNumber *) palloc0(sizeof(AttrNumber) * numCols);
        *groupColIdx = grpColIdx;

        foreach(tl, tlist)
        {
            TargetEntry *tle = (TargetEntry *) lfirst(tl);
            int         colno;

            colno = get_grouping_column_index(parse, tle);
            if (colno >= 0)
            {
                /*
                 * It's a grouping column, so add it to the result tlist and
                 * remember its resno in grpColIdx[].
                 */
                TargetEntry *newtle;

                newtle = makeTargetEntry(tle->expr,
                                         list_length(sub_tlist) + 1,
                                         NULL,
                                         false);
                sub_tlist = lappend(sub_tlist, newtle);

                Assert(grpColIdx[colno] == 0);  /* no dups expected */
                grpColIdx[colno] = newtle->resno;

                if (!(newtle->expr && IsA(newtle->expr, Var)))
                    *need_tlist_eval = true;    /* tlist contains non Vars */
            }
            else
            {
                /*
                 * Non-grouping column, so just remember the expression for
                 * later call to pull_var_clause.  There's no need for
                 * pull_var_clause to examine the TargetEntry node itself.
                 */
                non_group_cols = lappend(non_group_cols, tle->expr);
            }
        }
    }
    else
    {
        /*
         * With no grouping columns, just pass whole tlist to pull_var_clause.
         * Need (shallow) copy to avoid damaging input tlist below.
         */
        non_group_cols = list_copy(tlist);
    }

    /*
     * If there's a HAVING clause, we'll need the Vars it uses, too.
     */
    if (parse->havingQual)
        non_group_cols = lappend(non_group_cols, parse->havingQual);

    /*
     * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
     * add them to the result tlist if not already present.  (A Var used
     * directly as a GROUP BY item will be present already.)  Note this
     * includes Vars used in resjunk items, so we are covering the needs of
     * ORDER BY and window specifications.  Vars used within Aggrefs will be
     * pulled out here, too.
     */
    non_group_vars = pull_var_clause((Node *) non_group_cols,
                                     PVC_RECURSE_AGGREGATES,
                                     PVC_INCLUDE_PLACEHOLDERS);
    sub_tlist = add_to_flat_tlist(sub_tlist, non_group_vars);

    /* clean up cruft */
    list_free(non_group_vars);
    list_free(non_group_cols);

    return sub_tlist;
}

static List * make_windowInputTargetList ( PlannerInfo root,
List tlist,
List activeWindows 
) [static]

Definition at line 3138 of file planner.c.

References add_to_flat_tlist(), Assert, bms_add_member(), bms_is_member(), TargetEntry::expr, Query::groupClause, Query::hasWindowFuncs, lappend(), lfirst, list_free(), list_length(), makeTargetEntry(), NULL, WindowClause::orderClause, PlannerInfo::parse, parse(), WindowClause::partitionClause, pull_var_clause(), PVC_INCLUDE_AGGREGATES, PVC_INCLUDE_PLACEHOLDERS, TargetEntry::ressortgroupref, and SortGroupClause::tleSortGroupRef.

Referenced by grouping_planner().

{
    Query      *parse = root->parse;
    Bitmapset  *sgrefs;
    List       *new_tlist;
    List       *flattenable_cols;
    List       *flattenable_vars;
    ListCell   *lc;

    Assert(parse->hasWindowFuncs);

    /*
     * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
     * into a bitmapset for convenient reference below.
     */
    sgrefs = NULL;
    foreach(lc, activeWindows)
    {
        WindowClause *wc = (WindowClause *) lfirst(lc);
        ListCell   *lc2;

        foreach(lc2, wc->partitionClause)
        {
            SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

            sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
        }
        foreach(lc2, wc->orderClause)
        {
            SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

            sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
        }
    }

    /* Add in sortgroupref numbers of GROUP BY clauses, too */
    foreach(lc, parse->groupClause)
    {
        SortGroupClause *grpcl = (SortGroupClause *) lfirst(lc);

        sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
    }

    /*
     * Construct a tlist containing all the non-flattenable tlist items, and
     * save aside the others for a moment.
     */
    new_tlist = NIL;
    flattenable_cols = NIL;

    foreach(lc, tlist)
    {
        TargetEntry *tle = (TargetEntry *) lfirst(lc);

        /*
         * Don't want to deconstruct window clauses or GROUP BY items.  (Note
         * that such items can't contain window functions, so it's okay to
         * compute them below the WindowAgg nodes.)
         */
        if (tle->ressortgroupref != 0 &&
            bms_is_member(tle->ressortgroupref, sgrefs))
        {
            /* Don't want to deconstruct this value, so add to new_tlist */
            TargetEntry *newtle;

            newtle = makeTargetEntry(tle->expr,
                                     list_length(new_tlist) + 1,
                                     NULL,
                                     false);
            /* Preserve its sortgroupref marking, in case it's volatile */
            newtle->ressortgroupref = tle->ressortgroupref;
            new_tlist = lappend(new_tlist, newtle);
        }
        else
        {
            /*
             * Column is to be flattened, so just remember the expression for
             * later call to pull_var_clause.  There's no need for
             * pull_var_clause to examine the TargetEntry node itself.
             */
            flattenable_cols = lappend(flattenable_cols, tle->expr);
        }
    }

    /*
     * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
     * add them to the result tlist if not already present.  (Some might be
     * there already because they're used directly as window/group clauses.)
     *
     * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that the
     * Aggrefs are placed in the Agg node's tlist and not left to be computed
     * at higher levels.
     */
    flattenable_vars = pull_var_clause((Node *) flattenable_cols,
                                       PVC_INCLUDE_AGGREGATES,
                                       PVC_INCLUDE_PLACEHOLDERS);
    new_tlist = add_to_flat_tlist(new_tlist, flattenable_vars);

    /* clean up cruft */
    list_free(flattenable_vars);
    list_free(flattenable_cols);

    return new_tlist;
}

bool plan_cluster_use_sort ( Oid  tableOid,
Oid  indexOid 
)

Definition at line 3443 of file planner.c.

References build_simple_rel(), Query::commandType, cost_qual_eval(), cost_sort(), create_index_path(), create_seqscan_path(), CurrentMemoryContext, ForwardScanDirection, get_relation_data_width(), PlannerInfo::glob, RelOptInfo::indexlist, IndexOptInfo::indexoid, IndexOptInfo::indexprs, RangeTblEntry::inFromCl, RangeTblEntry::inh, RangeTblEntry::lateral, lfirst, list_make1, maintenance_work_mem, makeNode, NIL, NULL, RelOptInfo::pages, PlannerInfo::parse, IndexPath::path, QualCost::per_tuple, PlannerInfo::planner_cxt, PlannerInfo::query_level, RangeTblEntry::relid, RangeTblEntry::relkind, RELOPT_BASEREL, RelOptInfo::rows, Query::rtable, RangeTblEntry::rtekind, setup_simple_rel_arrays(), QualCost::startup, Path::total_cost, PlannerInfo::total_table_pages, RelOptInfo::tuples, RelOptInfo::width, and PlannerInfo::wt_param_id.

Referenced by copy_heap_data().

{
    PlannerInfo *root;
    Query      *query;
    PlannerGlobal *glob;
    RangeTblEntry *rte;
    RelOptInfo *rel;
    IndexOptInfo *indexInfo;
    QualCost    indexExprCost;
    Cost        comparisonCost;
    Path       *seqScanPath;
    Path        seqScanAndSortPath;
    IndexPath  *indexScanPath;
    ListCell   *lc;

    /* Set up mostly-dummy planner state */
    query = makeNode(Query);
    query->commandType = CMD_SELECT;

    glob = makeNode(PlannerGlobal);

    root = makeNode(PlannerInfo);
    root->parse = query;
    root->glob = glob;
    root->query_level = 1;
    root->planner_cxt = CurrentMemoryContext;
    root->wt_param_id = -1;

    /* Build a minimal RTE for the rel */
    rte = makeNode(RangeTblEntry);
    rte->rtekind = RTE_RELATION;
    rte->relid = tableOid;
    rte->relkind = RELKIND_RELATION;  /* Don't be too picky. */
    rte->lateral = false;
    rte->inh = false;
    rte->inFromCl = true;
    query->rtable = list_make1(rte);

    /* Set up RTE/RelOptInfo arrays */
    setup_simple_rel_arrays(root);

    /* Build RelOptInfo */
    rel = build_simple_rel(root, 1, RELOPT_BASEREL);

    /* Locate IndexOptInfo for the target index */
    indexInfo = NULL;
    foreach(lc, rel->indexlist)
    {
        indexInfo = (IndexOptInfo *) lfirst(lc);
        if (indexInfo->indexoid == indexOid)
            break;
    }

    /*
     * It's possible that get_relation_info did not generate an IndexOptInfo
     * for the desired index; this could happen if it's not yet reached its
     * indcheckxmin usability horizon, or if it's a system index and we're
     * ignoring system indexes.  In such cases we should tell CLUSTER to not
     * trust the index contents but use seqscan-and-sort.
     */
    if (lc == NULL)             /* not in the list? */
        return true;            /* use sort */

    /*
     * Rather than doing all the pushups that would be needed to use
     * set_baserel_size_estimates, just do a quick hack for rows and width.
     */
    rel->rows = rel->tuples;
    rel->width = get_relation_data_width(tableOid, NULL);

    root->total_table_pages = rel->pages;

    /*
     * Determine eval cost of the index expressions, if any.  We need to
     * charge twice that amount for each tuple comparison that happens during
     * the sort, since tuplesort.c will have to re-evaluate the index
     * expressions each time.  (XXX that's pretty inefficient...)
     */
    cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
    comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);

    /* Estimate the cost of seq scan + sort */
    seqScanPath = create_seqscan_path(root, rel, NULL);
    cost_sort(&seqScanAndSortPath, root, NIL,
              seqScanPath->total_cost, rel->tuples, rel->width,
              comparisonCost, maintenance_work_mem, -1.0);

    /* Estimate the cost of index scan */
    indexScanPath = create_index_path(root, indexInfo,
                                      NIL, NIL, NIL, NIL, NIL,
                                      ForwardScanDirection, false,
                                      NULL, 1.0);

    return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}

PlannedStmt* planner ( Query parse,
int  cursorOptions,
ParamListInfo  boundParams 
)

Definition at line 131 of file planner.c.

References planner_hook, and standard_planner().

Referenced by BeginCopy(), and pg_plan_query().

{
    PlannedStmt *result;

    if (planner_hook)
        result = (*planner_hook) (parse, cursorOptions, boundParams);
    else
        result = standard_planner(parse, cursorOptions, boundParams);
    return result;
}

static List * postprocess_setop_tlist ( List new_tlist,
List orig_tlist 
) [static]

Definition at line 3008 of file planner.c.

References Assert, elog, ERROR, lfirst, list_head(), lnext, NULL, TargetEntry::resjunk, TargetEntry::resno, and TargetEntry::ressortgroupref.

Referenced by grouping_planner().

{
    ListCell   *l;
    ListCell   *orig_tlist_item = list_head(orig_tlist);

    foreach(l, new_tlist)
    {
        TargetEntry *new_tle = (TargetEntry *) lfirst(l);
        TargetEntry *orig_tle;

        /* ignore resjunk columns in setop result */
        if (new_tle->resjunk)
            continue;

        Assert(orig_tlist_item != NULL);
        orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
        orig_tlist_item = lnext(orig_tlist_item);
        if (orig_tle->resjunk)  /* should not happen */
            elog(ERROR, "resjunk output columns are not implemented");
        Assert(new_tle->resno == orig_tle->resno);
        new_tle->ressortgroupref = orig_tle->ressortgroupref;
    }
    if (orig_tlist_item != NULL)
        elog(ERROR, "resjunk output columns are not implemented");
    return new_tlist;
}

static Node * preprocess_expression ( PlannerInfo root,
Node expr,
int  kind 
) [static]

Definition at line 617 of file planner.c.

References canonicalize_qual(), eval_const_expressions(), EXPRKIND_QUAL, EXPRKIND_RTFUNC, EXPRKIND_VALUES, flatten_join_alias_vars(), PlannerInfo::hasJoinRTEs, Query::hasSubLinks, make_ands_implicit(), NULL, PlannerInfo::parse, pprint(), PlannerInfo::query_level, SS_process_sublinks(), and SS_replace_correlation_vars().

Referenced by preprocess_phv_expression(), preprocess_qual_conditions(), and subquery_planner().

{
    /*
     * Fall out quickly if expression is empty.  This occurs often enough to
     * be worth checking.  Note that null->null is the correct conversion for
     * implicit-AND result format, too.
     */
    if (expr == NULL)
        return NULL;

    /*
     * If the query has any join RTEs, replace join alias variables with
     * base-relation variables.  We must do this before sublink processing,
     * else sublinks expanded out from join aliases would not get processed.
     * We can skip it in non-lateral RTE functions and VALUES lists, however,
     * since they can't contain any Vars of the current query level.
     */
    if (root->hasJoinRTEs &&
        !(kind == EXPRKIND_RTFUNC || kind == EXPRKIND_VALUES))
        expr = flatten_join_alias_vars(root, expr);

    /*
     * Simplify constant expressions.
     *
     * Note: an essential effect of this is to convert named-argument function
     * calls to positional notation and insert the current actual values of
     * any default arguments for functions.  To ensure that happens, we *must*
     * process all expressions here.  Previous PG versions sometimes skipped
     * const-simplification if it didn't seem worth the trouble, but we can't
     * do that anymore.
     *
     * Note: this also flattens nested AND and OR expressions into N-argument
     * form.  All processing of a qual expression after this point must be
     * careful to maintain AND/OR flatness --- that is, do not generate a tree
     * with AND directly under AND, nor OR directly under OR.
     */
    expr = eval_const_expressions(root, expr);

    /*
     * If it's a qual or havingQual, canonicalize it.
     */
    if (kind == EXPRKIND_QUAL)
    {
        expr = (Node *) canonicalize_qual((Expr *) expr);

#ifdef OPTIMIZER_DEBUG
        printf("After canonicalize_qual()\n");
        pprint(expr);
#endif
    }

    /* Expand SubLinks to SubPlans */
    if (root->parse->hasSubLinks)
        expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));

    /*
     * XXX do not insert anything here unless you have grokked the comments in
     * SS_replace_correlation_vars ...
     */

    /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
    if (root->query_level > 1)
        expr = SS_replace_correlation_vars(root, expr);

    /*
     * If it's a qual or havingQual, convert it to implicit-AND format. (We
     * don't want to do this before eval_const_expressions, since the latter
     * would be unable to simplify a top-level AND correctly. Also,
     * SS_process_sublinks expects explicit-AND format.)
     */
    if (kind == EXPRKIND_QUAL)
        expr = (Node *) make_ands_implicit((Expr *) expr);

    return expr;
}

static void preprocess_groupclause ( PlannerInfo root  )  [static]

Definition at line 2308 of file planner.c.

References Assert, equal(), Query::groupClause, lappend(), lfirst, list_length(), list_member_ptr(), NIL, NULL, OidIsValid, PlannerInfo::parse, parse(), Query::sortClause, and SortGroupClause::sortop.

Referenced by grouping_planner().

{
    Query      *parse = root->parse;
    List       *new_groupclause;
    bool        partial_match;
    ListCell   *sl;
    ListCell   *gl;

    /* If no ORDER BY, nothing useful to do here */
    if (parse->sortClause == NIL)
        return;

    /*
     * Scan the ORDER BY clause and construct a list of matching GROUP BY
     * items, but only as far as we can make a matching prefix.
     *
     * This code assumes that the sortClause contains no duplicate items.
     */
    new_groupclause = NIL;
    foreach(sl, parse->sortClause)
    {
        SortGroupClause *sc = (SortGroupClause *) lfirst(sl);

        foreach(gl, parse->groupClause)
        {
            SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

            if (equal(gc, sc))
            {
                new_groupclause = lappend(new_groupclause, gc);
                break;
            }
        }
        if (gl == NULL)
            break;              /* no match, so stop scanning */
    }

    /* Did we match all of the ORDER BY list, or just some of it? */
    partial_match = (sl != NULL);

    /* If no match at all, no point in reordering GROUP BY */
    if (new_groupclause == NIL)
        return;

    /*
     * Add any remaining GROUP BY items to the new list, but only if we were
     * able to make a complete match.  In other words, we only rearrange the
     * GROUP BY list if the result is that one list is a prefix of the other
     * --- otherwise there's no possibility of a common sort.  Also, give up
     * if there are any non-sortable GROUP BY items, since then there's no
     * hope anyway.
     */
    foreach(gl, parse->groupClause)
    {
        SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

        if (list_member_ptr(new_groupclause, gc))
            continue;           /* it matched an ORDER BY item */
        if (partial_match)
            return;             /* give up, no common sort possible */
        if (!OidIsValid(gc->sortop))
            return;             /* give up, GROUP BY can't be sorted */
        new_groupclause = lappend(new_groupclause, gc);
    }

    /* Success --- install the rearranged GROUP BY list */
    Assert(list_length(parse->groupClause) == list_length(new_groupclause));
    parse->groupClause = new_groupclause;
}

static double preprocess_limit ( PlannerInfo root,
double  tuple_fraction,
int64 *  offset_est,
int64 *  count_est 
) [static]

Definition at line 2066 of file planner.c.

References Assert, DatumGetInt64, estimate_expression_value(), IsA, Query::limitCount, Query::limitOffset, Min, PlannerInfo::parse, and parse().

Referenced by grouping_planner().

{
    Query      *parse = root->parse;
    Node       *est;
    double      limit_fraction;

    /* Should not be called unless LIMIT or OFFSET */
    Assert(parse->limitCount || parse->limitOffset);

    /*
     * Try to obtain the clause values.  We use estimate_expression_value
     * primarily because it can sometimes do something useful with Params.
     */
    if (parse->limitCount)
    {
        est = estimate_expression_value(root, parse->limitCount);
        if (est && IsA(est, Const))
        {
            if (((Const *) est)->constisnull)
            {
                /* NULL indicates LIMIT ALL, ie, no limit */
                *count_est = 0; /* treat as not present */
            }
            else
            {
                *count_est = DatumGetInt64(((Const *) est)->constvalue);
                if (*count_est <= 0)
                    *count_est = 1;     /* force to at least 1 */
            }
        }
        else
            *count_est = -1;    /* can't estimate */
    }
    else
        *count_est = 0;         /* not present */

    if (parse->limitOffset)
    {
        est = estimate_expression_value(root, parse->limitOffset);
        if (est && IsA(est, Const))
        {
            if (((Const *) est)->constisnull)
            {
                /* Treat NULL as no offset; the executor will too */
                *offset_est = 0;    /* treat as not present */
            }
            else
            {
                *offset_est = DatumGetInt64(((Const *) est)->constvalue);
                if (*offset_est < 0)
                    *offset_est = 0;    /* less than 0 is same as 0 */
            }
        }
        else
            *offset_est = -1;   /* can't estimate */
    }
    else
        *offset_est = 0;        /* not present */

    if (*count_est != 0)
    {
        /*
         * A LIMIT clause limits the absolute number of tuples returned.
         * However, if it's not a constant LIMIT then we have to guess; for
         * lack of a better idea, assume 10% of the plan's result is wanted.
         */
        if (*count_est < 0 || *offset_est < 0)
        {
            /* LIMIT or OFFSET is an expression ... punt ... */
            limit_fraction = 0.10;
        }
        else
        {
            /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
            limit_fraction = (double) *count_est + (double) *offset_est;
        }

        /*
         * If we have absolute limits from both caller and LIMIT, use the
         * smaller value; likewise if they are both fractional.  If one is
         * fractional and the other absolute, we can't easily determine which
         * is smaller, but we use the heuristic that the absolute will usually
         * be smaller.
         */
        if (tuple_fraction >= 1.0)
        {
            if (limit_fraction >= 1.0)
            {
                /* both absolute */
                tuple_fraction = Min(tuple_fraction, limit_fraction);
            }
            else
            {
                /* caller absolute, limit fractional; use caller's value */
            }
        }
        else if (tuple_fraction > 0.0)
        {
            if (limit_fraction >= 1.0)
            {
                /* caller fractional, limit absolute; use limit */
                tuple_fraction = limit_fraction;
            }
            else
            {
                /* both fractional */
                tuple_fraction = Min(tuple_fraction, limit_fraction);
            }
        }
        else
        {
            /* no info from caller, just use limit */
            tuple_fraction = limit_fraction;
        }
    }
    else if (*offset_est != 0 && tuple_fraction > 0.0)
    {
        /*
         * We have an OFFSET but no LIMIT.  This acts entirely differently
         * from the LIMIT case: here, we need to increase rather than decrease
         * the caller's tuple_fraction, because the OFFSET acts to cause more
         * tuples to be fetched instead of fewer.  This only matters if we got
         * a tuple_fraction > 0, however.
         *
         * As above, use 10% if OFFSET is present but unestimatable.
         */
        if (*offset_est < 0)
            limit_fraction = 0.10;
        else
            limit_fraction = (double) *offset_est;

        /*
         * If we have absolute counts from both caller and OFFSET, add them
         * together; likewise if they are both fractional.  If one is
         * fractional and the other absolute, we want to take the larger, and
         * we heuristically assume that's the fractional one.
         */
        if (tuple_fraction >= 1.0)
        {
            if (limit_fraction >= 1.0)
            {
                /* both absolute, so add them together */
                tuple_fraction += limit_fraction;
            }
            else
            {
                /* caller absolute, limit fractional; use limit */
                tuple_fraction = limit_fraction;
            }
        }
        else
        {
            if (limit_fraction >= 1.0)
            {
                /* caller fractional, limit absolute; use caller's value */
            }
            else
            {
                /* both fractional, so add them together */
                tuple_fraction += limit_fraction;
                if (tuple_fraction >= 1.0)
                    tuple_fraction = 0.0;       /* assume fetch all */
            }
        }
    }

    return tuple_fraction;
}

Expr* preprocess_phv_expression ( PlannerInfo root,
Expr expr 
)

Definition at line 743 of file planner.c.

References EXPRKIND_PHV, and preprocess_expression().

Referenced by extract_lateral_references().

{
    return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
}

static void preprocess_qual_conditions ( PlannerInfo root,
Node jtnode 
) [static]

Definition at line 699 of file planner.c.

References elog, ERROR, EXPRKIND_QUAL, FromExpr::fromlist, IsA, JoinExpr::larg, lfirst, nodeTag, NULL, preprocess_expression(), JoinExpr::quals, FromExpr::quals, and JoinExpr::rarg.

Referenced by subquery_planner().

{
    if (jtnode == NULL)
        return;
    if (IsA(jtnode, RangeTblRef))
    {
        /* nothing to do here */
    }
    else if (IsA(jtnode, FromExpr))
    {
        FromExpr   *f = (FromExpr *) jtnode;
        ListCell   *l;

        foreach(l, f->fromlist)
            preprocess_qual_conditions(root, lfirst(l));

        f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
    }
    else if (IsA(jtnode, JoinExpr))
    {
        JoinExpr   *j = (JoinExpr *) jtnode;

        preprocess_qual_conditions(root, j->larg);
        preprocess_qual_conditions(root, j->rarg);

        j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
    }
    else
        elog(ERROR, "unrecognized node type: %d",
             (int) nodeTag(jtnode));
}

static void preprocess_rowmarks ( PlannerInfo root  )  [static]

Definition at line 1919 of file planner.c.

References Assert, bms_del_member(), bms_is_member(), CheckSelectLocking(), CMD_DELETE, CMD_UPDATE, Query::commandType, get_base_rel_indexes(), PlannerInfo::glob, i, PlanRowMark::isParent, Query::jointree, lappend(), PlannerGlobal::lastRowMarkId, LCS_FORKEYSHARE, LCS_FORNOKEYUPDATE, LCS_FORSHARE, LCS_FORUPDATE, lfirst, makeNode, PlanRowMark::markType, RowMarkClause::noWait, PlanRowMark::noWait, PlannerInfo::parse, parse(), PlanRowMark::prti, RangeTblEntry::relkind, RELKIND_FOREIGN_TABLE, Query::resultRelation, PlanRowMark::rowmarkId, PlannerInfo::rowMarks, Query::rowMarks, rt_fetch, Query::rtable, RTE_RELATION, RangeTblEntry::rtekind, PlanRowMark::rti, RowMarkClause::rti, and RowMarkClause::strength.

Referenced by subquery_planner().

{
    Query      *parse = root->parse;
    Bitmapset  *rels;
    List       *prowmarks;
    ListCell   *l;
    int         i;

    if (parse->rowMarks)
    {
        /*
         * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside grouping,
         * since grouping renders a reference to individual tuple CTIDs
         * invalid.  This is also checked at parse time, but that's
         * insufficient because of rule substitution, query pullup, etc.
         */
        CheckSelectLocking(parse);
    }
    else
    {
        /*
         * We only need rowmarks for UPDATE, DELETE, or FOR [KEY] UPDATE/SHARE.
         */
        if (parse->commandType != CMD_UPDATE &&
            parse->commandType != CMD_DELETE)
            return;
    }

    /*
     * We need to have rowmarks for all base relations except the target. We
     * make a bitmapset of all base rels and then remove the items we don't
     * need or have FOR [KEY] UPDATE/SHARE marks for.
     */
    rels = get_base_rel_indexes((Node *) parse->jointree);
    if (parse->resultRelation)
        rels = bms_del_member(rels, parse->resultRelation);

    /*
     * Convert RowMarkClauses to PlanRowMark representation.
     */
    prowmarks = NIL;
    foreach(l, parse->rowMarks)
    {
        RowMarkClause *rc = (RowMarkClause *) lfirst(l);
        RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
        PlanRowMark *newrc;

        /*
         * Currently, it is syntactically impossible to have FOR UPDATE et al
         * applied to an update/delete target rel.  If that ever becomes
         * possible, we should drop the target from the PlanRowMark list.
         */
        Assert(rc->rti != parse->resultRelation);

        /*
         * Ignore RowMarkClauses for subqueries; they aren't real tables and
         * can't support true locking.  Subqueries that got flattened into the
         * main query should be ignored completely.  Any that didn't will get
         * ROW_MARK_COPY items in the next loop.
         */
        if (rte->rtekind != RTE_RELATION)
            continue;

        /*
         * Similarly, ignore RowMarkClauses for foreign tables; foreign tables
         * will instead get ROW_MARK_COPY items in the next loop.  (FDWs might
         * choose to do something special while fetching their rows, but that
         * is of no concern here.)
         */
        if (rte->relkind == RELKIND_FOREIGN_TABLE)
            continue;

        rels = bms_del_member(rels, rc->rti);

        newrc = makeNode(PlanRowMark);
        newrc->rti = newrc->prti = rc->rti;
        newrc->rowmarkId = ++(root->glob->lastRowMarkId);
        switch (rc->strength)
        {
            case LCS_FORUPDATE:
                newrc->markType = ROW_MARK_EXCLUSIVE;
                break;
            case LCS_FORNOKEYUPDATE:
                newrc->markType = ROW_MARK_NOKEYEXCLUSIVE;
                break;
            case LCS_FORSHARE:
                newrc->markType = ROW_MARK_SHARE;
                break;
            case LCS_FORKEYSHARE:
                newrc->markType = ROW_MARK_KEYSHARE;
                break;
        }
        newrc->noWait = rc->noWait;
        newrc->isParent = false;

        prowmarks = lappend(prowmarks, newrc);
    }

    /*
     * Now, add rowmarks for any non-target, non-locked base relations.
     */
    i = 0;
    foreach(l, parse->rtable)
    {
        RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
        PlanRowMark *newrc;

        i++;
        if (!bms_is_member(i, rels))
            continue;

        newrc = makeNode(PlanRowMark);
        newrc->rti = newrc->prti = i;
        newrc->rowmarkId = ++(root->glob->lastRowMarkId);
        /* real tables support REFERENCE, anything else needs COPY */
        if (rte->rtekind == RTE_RELATION &&
            rte->relkind != RELKIND_FOREIGN_TABLE)
            newrc->markType = ROW_MARK_REFERENCE;
        else
            newrc->markType = ROW_MARK_COPY;
        newrc->noWait = false;  /* doesn't matter */
        newrc->isParent = false;

        prowmarks = lappend(prowmarks, newrc);
    }

    root->rowMarks = prowmarks;
}

static List * select_active_windows ( PlannerInfo root,
WindowFuncLists wflists 
) [static]

Definition at line 3041 of file planner.c.

References Assert, equal(), lappend(), lfirst, linitial, list_delete_cell(), list_delete_first(), list_head(), lnext, WindowFuncLists::maxWinRef, RangeQueryClause::next, NIL, WindowClause::orderClause, PlannerInfo::parse, WindowClause::partitionClause, Query::windowClause, WindowFuncLists::windowFuncs, and WindowClause::winref.

Referenced by grouping_planner().

{
    List       *result;
    List       *actives;
    ListCell   *lc;

    /* First, make a list of the active windows */
    actives = NIL;
    foreach(lc, root->parse->windowClause)
    {
        WindowClause *wc = (WindowClause *) lfirst(lc);

        /* It's only active if wflists shows some related WindowFuncs */
        Assert(wc->winref <= wflists->maxWinRef);
        if (wflists->windowFuncs[wc->winref] != NIL)
            actives = lappend(actives, wc);
    }

    /*
     * Now, ensure that windows with identical partitioning/ordering clauses
     * are adjacent in the list.  This is required by the SQL standard, which
     * says that only one sort is to be used for such windows, even if they
     * are otherwise distinct (eg, different names or framing clauses).
     *
     * There is room to be much smarter here, for example detecting whether
     * one window's sort keys are a prefix of another's (so that sorting for
     * the latter would do for the former), or putting windows first that
     * match a sort order available for the underlying query.  For the moment
     * we are content with meeting the spec.
     */
    result = NIL;
    while (actives != NIL)
    {
        WindowClause *wc = (WindowClause *) linitial(actives);
        ListCell   *prev;
        ListCell   *next;

        /* Move wc from actives to result */
        actives = list_delete_first(actives);
        result = lappend(result, wc);

        /* Now move any matching windows from actives to result */
        prev = NULL;
        for (lc = list_head(actives); lc; lc = next)
        {
            WindowClause *wc2 = (WindowClause *) lfirst(lc);

            next = lnext(lc);
            /* framing options are NOT to be compared here! */
            if (equal(wc->partitionClause, wc2->partitionClause) &&
                equal(wc->orderClause, wc2->orderClause))
            {
                actives = list_delete_cell(actives, lc, prev);
                result = lappend(result, wc2);
            }
            else
                prev = lc;
        }
    }

    return result;
}

PlannedStmt* standard_planner ( Query parse,
int  cursorOptions,
ParamListInfo  boundParams 
)

Definition at line 143 of file planner.c.

References Assert, PlannerGlobal::boundParams, Query::canSetTag, PlannedStmt::canSetTag, Query::commandType, PlannedStmt::commandType, CURSOR_OPT_FAST_PLAN, CURSOR_OPT_SCROLL, cursor_tuple_fraction, ExecSupportsBackwardScan(), PlannerGlobal::finalrowmarks, PlannerGlobal::finalrtable, forboth, Query::hasModifyingCTE, PlannedStmt::hasModifyingCTE, PlannedStmt::hasReturning, PlannedStmt::invalItems, PlannerGlobal::invalItems, IsA, PlannerGlobal::lastPHId, PlannerGlobal::lastRowMarkId, lfirst, list_length(), makeNode, materialize_finished_plan(), NIL, PlannedStmt::nParamExec, PlannerGlobal::nParamExec, NULL, PlannedStmt::planTree, Query::queryId, PlannedStmt::queryId, PlannedStmt::relationOids, PlannerGlobal::relationOids, PlannedStmt::resultRelations, PlannerGlobal::resultRelations, Query::returningList, PlannedStmt::rewindPlanIDs, PlannerGlobal::rewindPlanIDs, PlannedStmt::rowMarks, PlannedStmt::rtable, set_plan_references(), PlannedStmt::subplans, PlannerGlobal::subplans, subquery_planner(), PlannerGlobal::subroots, PlannedStmt::transientPlan, PlannerGlobal::transientPlan, PlannedStmt::utilityStmt, and Query::utilityStmt.

Referenced by planner().

{
    PlannedStmt *result;
    PlannerGlobal *glob;
    double      tuple_fraction;
    PlannerInfo *root;
    Plan       *top_plan;
    ListCell   *lp,
               *lr;

    /* Cursor options may come from caller or from DECLARE CURSOR stmt */
    if (parse->utilityStmt &&
        IsA(parse->utilityStmt, DeclareCursorStmt))
        cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;

    /*
     * Set up global state for this planner invocation.  This data is needed
     * across all levels of sub-Query that might exist in the given command,
     * so we keep it in a separate struct that's linked to by each per-Query
     * PlannerInfo.
     */
    glob = makeNode(PlannerGlobal);

    glob->boundParams = boundParams;
    glob->subplans = NIL;
    glob->subroots = NIL;
    glob->rewindPlanIDs = NULL;
    glob->finalrtable = NIL;
    glob->finalrowmarks = NIL;
    glob->resultRelations = NIL;
    glob->relationOids = NIL;
    glob->invalItems = NIL;
    glob->nParamExec = 0;
    glob->lastPHId = 0;
    glob->lastRowMarkId = 0;
    glob->transientPlan = false;

    /* Determine what fraction of the plan is likely to be scanned */
    if (cursorOptions & CURSOR_OPT_FAST_PLAN)
    {
        /*
         * We have no real idea how many tuples the user will ultimately FETCH
         * from a cursor, but it is often the case that he doesn't want 'em
         * all, or would prefer a fast-start plan anyway so that he can
         * process some of the tuples sooner.  Use a GUC parameter to decide
         * what fraction to optimize for.
         */
        tuple_fraction = cursor_tuple_fraction;

        /*
         * We document cursor_tuple_fraction as simply being a fraction, which
         * means the edge cases 0 and 1 have to be treated specially here.  We
         * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
         */
        if (tuple_fraction >= 1.0)
            tuple_fraction = 0.0;
        else if (tuple_fraction <= 0.0)
            tuple_fraction = 1e-10;
    }
    else
    {
        /* Default assumption is we need all the tuples */
        tuple_fraction = 0.0;
    }

    /* primary planning entry point (may recurse for subqueries) */
    top_plan = subquery_planner(glob, parse, NULL,
                                false, tuple_fraction, &root);

    /*
     * If creating a plan for a scrollable cursor, make sure it can run
     * backwards on demand.  Add a Material node at the top at need.
     */
    if (cursorOptions & CURSOR_OPT_SCROLL)
    {
        if (!ExecSupportsBackwardScan(top_plan))
            top_plan = materialize_finished_plan(top_plan);
    }

    /* final cleanup of the plan */
    Assert(glob->finalrtable == NIL);
    Assert(glob->finalrowmarks == NIL);
    Assert(glob->resultRelations == NIL);
    top_plan = set_plan_references(root, top_plan);
    /* ... and the subplans (both regular subplans and initplans) */
    Assert(list_length(glob->subplans) == list_length(glob->subroots));
    forboth(lp, glob->subplans, lr, glob->subroots)
    {
        Plan       *subplan = (Plan *) lfirst(lp);
        PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);

        lfirst(lp) = set_plan_references(subroot, subplan);
    }

    /* build the PlannedStmt result */
    result = makeNode(PlannedStmt);

    result->commandType = parse->commandType;
    result->queryId = parse->queryId;
    result->hasReturning = (parse->returningList != NIL);
    result->hasModifyingCTE = parse->hasModifyingCTE;
    result->canSetTag = parse->canSetTag;
    result->transientPlan = glob->transientPlan;
    result->planTree = top_plan;
    result->rtable = glob->finalrtable;
    result->resultRelations = glob->resultRelations;
    result->utilityStmt = parse->utilityStmt;
    result->subplans = glob->subplans;
    result->rewindPlanIDs = glob->rewindPlanIDs;
    result->rowMarks = glob->finalrowmarks;
    result->relationOids = glob->relationOids;
    result->invalItems = glob->invalItems;
    result->nParamExec = glob->nParamExec;

    return result;
}

static void standard_qp_callback ( PlannerInfo root,
void *  extra 
) [static]

Definition at line 2382 of file planner.c.

References standard_qp_extra::activeWindows, PlannerInfo::distinct_pathkeys, Query::distinctClause, PlannerInfo::group_pathkeys, Query::groupClause, grouping_is_sortable(), linitial, list_length(), make_pathkeys_for_sortclauses(), make_pathkeys_for_window(), NIL, PlannerInfo::parse, parse(), PlannerInfo::query_pathkeys, PlannerInfo::sort_pathkeys, Query::sortClause, standard_qp_extra::tlist, and PlannerInfo::window_pathkeys.

Referenced by grouping_planner().

{
    Query      *parse = root->parse;
    standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
    List       *tlist = qp_extra->tlist;
    List       *activeWindows = qp_extra->activeWindows;

    /*
     * Calculate pathkeys that represent grouping/ordering requirements.  The
     * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not
     * be, in which case we just leave their pathkeys empty.
     */
    if (parse->groupClause &&
        grouping_is_sortable(parse->groupClause))
        root->group_pathkeys =
            make_pathkeys_for_sortclauses(root,
                                          parse->groupClause,
                                          tlist);
    else
        root->group_pathkeys = NIL;

    /* We consider only the first (bottom) window in pathkeys logic */
    if (activeWindows != NIL)
    {
        WindowClause *wc = (WindowClause *) linitial(activeWindows);

        root->window_pathkeys = make_pathkeys_for_window(root,
                                                         wc,
                                                         tlist);
    }
    else
        root->window_pathkeys = NIL;

    if (parse->distinctClause &&
        grouping_is_sortable(parse->distinctClause))
        root->distinct_pathkeys =
            make_pathkeys_for_sortclauses(root,
                                          parse->distinctClause,
                                          tlist);
    else
        root->distinct_pathkeys = NIL;

    root->sort_pathkeys =
        make_pathkeys_for_sortclauses(root,
                                      parse->sortClause,
                                      tlist);

    /*
     * Figure out whether we want a sorted result from query_planner.
     *
     * If we have a sortable GROUP BY clause, then we want a result sorted
     * properly for grouping.  Otherwise, if we have window functions to
     * evaluate, we try to sort for the first window.  Otherwise, if there's a
     * sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
     * we try to produce output that's sufficiently well sorted for the
     * DISTINCT.  Otherwise, if there is an ORDER BY clause, we want to sort
     * by the ORDER BY clause.
     *
     * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
     * of GROUP BY, it would be tempting to request sort by ORDER BY --- but
     * that might just leave us failing to exploit an available sort order at
     * all.  Needs more thought.  The choice for DISTINCT versus ORDER BY is
     * much easier, since we know that the parser ensured that one is a
     * superset of the other.
     */
    if (root->group_pathkeys)
        root->query_pathkeys = root->group_pathkeys;
    else if (root->window_pathkeys)
        root->query_pathkeys = root->window_pathkeys;
    else if (list_length(root->distinct_pathkeys) >
             list_length(root->sort_pathkeys))
        root->query_pathkeys = root->distinct_pathkeys;
    else if (root->sort_pathkeys)
        root->query_pathkeys = root->sort_pathkeys;
    else
        root->query_pathkeys = NIL;
}

Plan* subquery_planner ( PlannerGlobal glob,
Query parse,
PlannerInfo parent_root,
bool  hasRecursion,
double  tuple_fraction,
PlannerInfo **  subroot 
)

Definition at line 289 of file planner.c.

References PlannerInfo::append_rel_list, Query::canSetTag, CMD_SELECT, Query::commandType, contain_agg_clause(), contain_subplans(), contain_volatile_functions(), copyObject(), PlannerInfo::cte_plan_ids, Query::cteList, CurrentMemoryContext, WindowClause::endOffset, PlannerInfo::eq_classes, expand_inherited_tables(), EXPRKIND_LIMIT, EXPRKIND_QUAL, EXPRKIND_RTFUNC_LATERAL, EXPRKIND_VALUES_LATERAL, flatten_join_alias_vars(), flatten_simple_union_all(), RangeTblEntry::funcexpr, PlannerInfo::glob, Query::groupClause, grouping_planner(), PlannerInfo::hasHavingQual, PlannerInfo::hasInheritedTarget, PlannerInfo::hasJoinRTEs, PlannerInfo::hasLateralRTEs, PlannerInfo::hasPseudoConstantQuals, PlannerInfo::hasRecursion, Query::hasSubLinks, Query::havingQual, inheritance_planner(), PlannerInfo::init_plans, inline_set_returning_functions(), IS_OUTER_JOIN, Query::jointree, RangeTblEntry::jointype, lappend(), RangeTblEntry::lateral, lfirst, Query::limitCount, Query::limitOffset, list_length(), list_make1, list_make1_int, make_modifytable(), makeNode, PlannerInfo::non_recursive_plan, PlannerGlobal::nParamExec, PlannerInfo::parent_root, PlannerInfo::parse, PlannerInfo::plan_params, PlannerInfo::planner_cxt, preprocess_expression(), preprocess_qual_conditions(), preprocess_rowmarks(), pull_up_sublinks(), pull_up_subqueries(), FromExpr::quals, PlannerInfo::query_level, reduce_outer_joins(), Query::resultRelation, Query::returningList, Query::rowMarks, PlannerInfo::rowMarks, rt_fetch, Query::rtable, RTE_FUNCTION, RTE_JOIN, RTE_SUBQUERY, RTE_VALUES, RangeTblEntry::rtekind, Query::setOperations, SS_assign_special_param(), SS_finalize_plan(), SS_process_ctes(), WindowClause::startOffset, PlannerGlobal::subplans, RangeTblEntry::subquery, Query::targetList, RangeTblEntry::values_lists, Query::windowClause, and PlannerInfo::wt_param_id.

Referenced by make_subplan(), recurse_set_operations(), set_subquery_pathlist(), SS_process_ctes(), and standard_planner().

{
    int         num_old_subplans = list_length(glob->subplans);
    PlannerInfo *root;
    Plan       *plan;
    List       *newHaving;
    bool        hasOuterJoins;
    ListCell   *l;

    /* Create a PlannerInfo data structure for this subquery */
    root = makeNode(PlannerInfo);
    root->parse = parse;
    root->glob = glob;
    root->query_level = parent_root ? parent_root->query_level + 1 : 1;
    root->parent_root = parent_root;
    root->plan_params = NIL;
    root->planner_cxt = CurrentMemoryContext;
    root->init_plans = NIL;
    root->cte_plan_ids = NIL;
    root->eq_classes = NIL;
    root->append_rel_list = NIL;
    root->rowMarks = NIL;
    root->hasInheritedTarget = false;

    root->hasRecursion = hasRecursion;
    if (hasRecursion)
        root->wt_param_id = SS_assign_special_param(root);
    else
        root->wt_param_id = -1;
    root->non_recursive_plan = NULL;

    /*
     * If there is a WITH list, process each WITH query and build an initplan
     * SubPlan structure for it.
     */
    if (parse->cteList)
        SS_process_ctes(root);

    /*
     * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
     * to transform them into joins.  Note that this step does not descend
     * into subqueries; if we pull up any subqueries below, their SubLinks are
     * processed just before pulling them up.
     */
    if (parse->hasSubLinks)
        pull_up_sublinks(root);

    /*
     * Scan the rangetable for set-returning functions, and inline them if
     * possible (producing subqueries that might get pulled up next).
     * Recursion issues here are handled in the same way as for SubLinks.
     */
    inline_set_returning_functions(root);

    /*
     * Check to see if any subqueries in the jointree can be merged into this
     * query.
     */
    parse->jointree = (FromExpr *)
        pull_up_subqueries(root, (Node *) parse->jointree);

    /*
     * If this is a simple UNION ALL query, flatten it into an appendrel. We
     * do this now because it requires applying pull_up_subqueries to the leaf
     * queries of the UNION ALL, which weren't touched above because they
     * weren't referenced by the jointree (they will be after we do this).
     */
    if (parse->setOperations)
        flatten_simple_union_all(root);

    /*
     * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
     * avoid the expense of doing flatten_join_alias_vars().  Also check for
     * outer joins --- if none, we can skip reduce_outer_joins().  And check
     * for LATERAL RTEs, too.  This must be done after we have done
     * pull_up_subqueries(), of course.
     */
    root->hasJoinRTEs = false;
    root->hasLateralRTEs = false;
    hasOuterJoins = false;
    foreach(l, parse->rtable)
    {
        RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);

        if (rte->rtekind == RTE_JOIN)
        {
            root->hasJoinRTEs = true;
            if (IS_OUTER_JOIN(rte->jointype))
                hasOuterJoins = true;
        }
        if (rte->lateral)
            root->hasLateralRTEs = true;
    }

    /*
     * Preprocess RowMark information.  We need to do this after subquery
     * pullup (so that all non-inherited RTEs are present) and before
     * inheritance expansion (so that the info is available for
     * expand_inherited_tables to examine and modify).
     */
    preprocess_rowmarks(root);

    /*
     * Expand any rangetable entries that are inheritance sets into "append
     * relations".  This can add entries to the rangetable, but they must be
     * plain base relations not joins, so it's OK (and marginally more
     * efficient) to do it after checking for join RTEs.  We must do it after
     * pulling up subqueries, else we'd fail to handle inherited tables in
     * subqueries.
     */
    expand_inherited_tables(root);

    /*
     * Set hasHavingQual to remember if HAVING clause is present.  Needed
     * because preprocess_expression will reduce a constant-true condition to
     * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
     */
    root->hasHavingQual = (parse->havingQual != NULL);

    /* Clear this flag; might get set in distribute_qual_to_rels */
    root->hasPseudoConstantQuals = false;

    /*
     * Do expression preprocessing on targetlist and quals, as well as other
     * random expressions in the querytree.  Note that we do not need to
     * handle sort/group expressions explicitly, because they are actually
     * part of the targetlist.
     */
    parse->targetList = (List *)
        preprocess_expression(root, (Node *) parse->targetList,
                              EXPRKIND_TARGET);

    parse->returningList = (List *)
        preprocess_expression(root, (Node *) parse->returningList,
                              EXPRKIND_TARGET);

    preprocess_qual_conditions(root, (Node *) parse->jointree);

    parse->havingQual = preprocess_expression(root, parse->havingQual,
                                              EXPRKIND_QUAL);

    foreach(l, parse->windowClause)
    {
        WindowClause *wc = (WindowClause *) lfirst(l);

        /* partitionClause/orderClause are sort/group expressions */
        wc->startOffset = preprocess_expression(root, wc->startOffset,
                                                EXPRKIND_LIMIT);
        wc->endOffset = preprocess_expression(root, wc->endOffset,
                                              EXPRKIND_LIMIT);
    }

    parse->limitOffset = preprocess_expression(root, parse->limitOffset,
                                               EXPRKIND_LIMIT);
    parse->limitCount = preprocess_expression(root, parse->limitCount,
                                              EXPRKIND_LIMIT);

    root->append_rel_list = (List *)
        preprocess_expression(root, (Node *) root->append_rel_list,
                              EXPRKIND_APPINFO);

    /* Also need to preprocess expressions within RTEs */
    foreach(l, parse->rtable)
    {
        RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
        int         kind;

        if (rte->rtekind == RTE_SUBQUERY)
        {
            /*
             * We don't want to do all preprocessing yet on the subquery's
             * expressions, since that will happen when we plan it.  But if it
             * contains any join aliases of our level, those have to get
             * expanded now, because planning of the subquery won't do it.
             * That's only possible if the subquery is LATERAL.
             */
            if (rte->lateral && root->hasJoinRTEs)
                rte->subquery = (Query *)
                    flatten_join_alias_vars(root, (Node *) rte->subquery);
        }
        else if (rte->rtekind == RTE_FUNCTION)
        {
            /* Preprocess the function expression fully */
            kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
            rte->funcexpr = preprocess_expression(root, rte->funcexpr, kind);
        }
        else if (rte->rtekind == RTE_VALUES)
        {
            /* Preprocess the values lists fully */
            kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
            rte->values_lists = (List *)
                preprocess_expression(root, (Node *) rte->values_lists, kind);
        }
    }

    /*
     * In some cases we may want to transfer a HAVING clause into WHERE. We
     * cannot do so if the HAVING clause contains aggregates (obviously) or
     * volatile functions (since a HAVING clause is supposed to be executed
     * only once per group).  Also, it may be that the clause is so expensive
     * to execute that we're better off doing it only once per group, despite
     * the loss of selectivity.  This is hard to estimate short of doing the
     * entire planning process twice, so we use a heuristic: clauses
     * containing subplans are left in HAVING.  Otherwise, we move or copy the
     * HAVING clause into WHERE, in hopes of eliminating tuples before
     * aggregation instead of after.
     *
     * If the query has explicit grouping then we can simply move such a
     * clause into WHERE; any group that fails the clause will not be in the
     * output because none of its tuples will reach the grouping or
     * aggregation stage.  Otherwise we must have a degenerate (variable-free)
     * HAVING clause, which we put in WHERE so that query_planner() can use it
     * in a gating Result node, but also keep in HAVING to ensure that we
     * don't emit a bogus aggregated row. (This could be done better, but it
     * seems not worth optimizing.)
     *
     * Note that both havingQual and parse->jointree->quals are in
     * implicitly-ANDed-list form at this point, even though they are declared
     * as Node *.
     */
    newHaving = NIL;
    foreach(l, (List *) parse->havingQual)
    {
        Node       *havingclause = (Node *) lfirst(l);

        if (contain_agg_clause(havingclause) ||
            contain_volatile_functions(havingclause) ||
            contain_subplans(havingclause))
        {
            /* keep it in HAVING */
            newHaving = lappend(newHaving, havingclause);
        }
        else if (parse->groupClause)
        {
            /* move it to WHERE */
            parse->jointree->quals = (Node *)
                lappend((List *) parse->jointree->quals, havingclause);
        }
        else
        {
            /* put a copy in WHERE, keep it in HAVING */
            parse->jointree->quals = (Node *)
                lappend((List *) parse->jointree->quals,
                        copyObject(havingclause));
            newHaving = lappend(newHaving, havingclause);
        }
    }
    parse->havingQual = (Node *) newHaving;

    /*
     * If we have any outer joins, try to reduce them to plain inner joins.
     * This step is most easily done after we've done expression
     * preprocessing.
     */
    if (hasOuterJoins)
        reduce_outer_joins(root);

    /*
     * Do the main planning.  If we have an inherited target relation, that
     * needs special processing, else go straight to grouping_planner.
     */
    if (parse->resultRelation &&
        rt_fetch(parse->resultRelation, parse->rtable)->inh)
        plan = inheritance_planner(root);
    else
    {
        plan = grouping_planner(root, tuple_fraction);
        /* If it's not SELECT, we need a ModifyTable node */
        if (parse->commandType != CMD_SELECT)
        {
            List       *returningLists;
            List       *rowMarks;

            /*
             * Set up the RETURNING list-of-lists, if needed.
             */
            if (parse->returningList)
                returningLists = list_make1(parse->returningList);
            else
                returningLists = NIL;

            /*
             * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will
             * have dealt with fetching non-locked marked rows, else we need
             * to have ModifyTable do that.
             */
            if (parse->rowMarks)
                rowMarks = NIL;
            else
                rowMarks = root->rowMarks;

            plan = (Plan *) make_modifytable(root,
                                             parse->commandType,
                                             parse->canSetTag,
                                       list_make1_int(parse->resultRelation),
                                             list_make1(plan),
                                             returningLists,
                                             rowMarks,
                                             SS_assign_special_param(root));
        }
    }

    /*
     * If any subplans were generated, or if there are any parameters to worry
     * about, build initPlan list and extParam/allParam sets for plan nodes,
     * and attach the initPlans to the top plan node.
     */
    if (list_length(glob->subplans) != num_old_subplans ||
        root->glob->nParamExec > 0)
        SS_finalize_plan(root, plan, true);

    /* Return internal info if caller wants it */
    if (subroot)
        *subroot = root;

    return plan;
}


Variable Documentation

double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION

Definition at line 45 of file planner.c.

Referenced by standard_planner().

Definition at line 48 of file planner.c.

Referenced by planner().