#include "postgres.h"#include <limits.h>#include <math.h>#include "access/skey.h"#include "catalog/pg_class.h"#include "foreign/fdwapi.h"#include "miscadmin.h"#include "nodes/makefuncs.h"#include "nodes/nodeFuncs.h"#include "optimizer/clauses.h"#include "optimizer/cost.h"#include "optimizer/paths.h"#include "optimizer/placeholder.h"#include "optimizer/plancat.h"#include "optimizer/planmain.h"#include "optimizer/planner.h"#include "optimizer/predtest.h"#include "optimizer/restrictinfo.h"#include "optimizer/subselect.h"#include "optimizer/tlist.h"#include "optimizer/var.h"#include "parser/parse_clause.h"#include "parser/parsetree.h"#include "utils/lsyscache.h"
Go to the source code of this file.
Functions | |
| static Plan * | create_plan_recurse (PlannerInfo *root, Path *best_path) |
| static Plan * | create_scan_plan (PlannerInfo *root, Path *best_path) |
| static List * | build_relation_tlist (RelOptInfo *rel) |
| static bool | use_physical_tlist (PlannerInfo *root, RelOptInfo *rel) |
| static void | disuse_physical_tlist (Plan *plan, Path *path) |
| static Plan * | create_gating_plan (PlannerInfo *root, Plan *plan, List *quals) |
| static Plan * | create_join_plan (PlannerInfo *root, JoinPath *best_path) |
| static Plan * | create_append_plan (PlannerInfo *root, AppendPath *best_path) |
| static Plan * | create_merge_append_plan (PlannerInfo *root, MergeAppendPath *best_path) |
| static Result * | create_result_plan (PlannerInfo *root, ResultPath *best_path) |
| static Material * | create_material_plan (PlannerInfo *root, MaterialPath *best_path) |
| static Plan * | create_unique_plan (PlannerInfo *root, UniquePath *best_path) |
| static SeqScan * | create_seqscan_plan (PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) |
| static Scan * | create_indexscan_plan (PlannerInfo *root, IndexPath *best_path, List *tlist, List *scan_clauses, bool indexonly) |
| static BitmapHeapScan * | create_bitmap_scan_plan (PlannerInfo *root, BitmapHeapPath *best_path, List *tlist, List *scan_clauses) |
| static Plan * | create_bitmap_subplan (PlannerInfo *root, Path *bitmapqual, List **qual, List **indexqual, List **indexECs) |
| static TidScan * | create_tidscan_plan (PlannerInfo *root, TidPath *best_path, List *tlist, List *scan_clauses) |
| static SubqueryScan * | create_subqueryscan_plan (PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) |
| static FunctionScan * | create_functionscan_plan (PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) |
| static ValuesScan * | create_valuesscan_plan (PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) |
| static CteScan * | create_ctescan_plan (PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) |
| static WorkTableScan * | create_worktablescan_plan (PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) |
| static ForeignScan * | create_foreignscan_plan (PlannerInfo *root, ForeignPath *best_path, List *tlist, List *scan_clauses) |
| static NestLoop * | create_nestloop_plan (PlannerInfo *root, NestPath *best_path, Plan *outer_plan, Plan *inner_plan) |
| static MergeJoin * | create_mergejoin_plan (PlannerInfo *root, MergePath *best_path, Plan *outer_plan, Plan *inner_plan) |
| static HashJoin * | create_hashjoin_plan (PlannerInfo *root, HashPath *best_path, Plan *outer_plan, Plan *inner_plan) |
| static Node * | replace_nestloop_params (PlannerInfo *root, Node *expr) |
| static Node * | replace_nestloop_params_mutator (Node *node, PlannerInfo *root) |
| static void | process_subquery_nestloop_params (PlannerInfo *root, List *subplan_params) |
| static List * | fix_indexqual_references (PlannerInfo *root, IndexPath *index_path) |
| static List * | fix_indexorderby_references (PlannerInfo *root, IndexPath *index_path) |
| static Node * | fix_indexqual_operand (Node *node, IndexOptInfo *index, int indexcol) |
| static List * | get_switched_clauses (List *clauses, Relids outerrelids) |
| static List * | order_qual_clauses (PlannerInfo *root, List *clauses) |
| static void | copy_path_costsize (Plan *dest, Path *src) |
| static void | copy_plan_costsize (Plan *dest, Plan *src) |
| static SeqScan * | make_seqscan (List *qptlist, List *qpqual, Index scanrelid) |
| static IndexScan * | make_indexscan (List *qptlist, List *qpqual, Index scanrelid, Oid indexid, List *indexqual, List *indexqualorig, List *indexorderby, List *indexorderbyorig, ScanDirection indexscandir) |
| static IndexOnlyScan * | make_indexonlyscan (List *qptlist, List *qpqual, Index scanrelid, Oid indexid, List *indexqual, List *indexorderby, List *indextlist, ScanDirection indexscandir) |
| static BitmapIndexScan * | make_bitmap_indexscan (Index scanrelid, Oid indexid, List *indexqual, List *indexqualorig) |
| static BitmapHeapScan * | make_bitmap_heapscan (List *qptlist, List *qpqual, Plan *lefttree, List *bitmapqualorig, Index scanrelid) |
| static TidScan * | make_tidscan (List *qptlist, List *qpqual, Index scanrelid, List *tidquals) |
| static FunctionScan * | make_functionscan (List *qptlist, List *qpqual, Index scanrelid, Node *funcexpr, List *funccolnames, List *funccoltypes, List *funccoltypmods, List *funccolcollations) |
| static ValuesScan * | make_valuesscan (List *qptlist, List *qpqual, Index scanrelid, List *values_lists) |
| static CteScan * | make_ctescan (List *qptlist, List *qpqual, Index scanrelid, int ctePlanId, int cteParam) |
| static WorkTableScan * | make_worktablescan (List *qptlist, List *qpqual, Index scanrelid, int wtParam) |
| static BitmapAnd * | make_bitmap_and (List *bitmapplans) |
| static BitmapOr * | make_bitmap_or (List *bitmapplans) |
| static NestLoop * | make_nestloop (List *tlist, List *joinclauses, List *otherclauses, List *nestParams, Plan *lefttree, Plan *righttree, JoinType jointype) |
| static HashJoin * | make_hashjoin (List *tlist, List *joinclauses, List *otherclauses, List *hashclauses, Plan *lefttree, Plan *righttree, JoinType jointype) |
| static Hash * | make_hash (Plan *lefttree, Oid skewTable, AttrNumber skewColumn, bool skewInherit, Oid skewColType, int32 skewColTypmod) |
| static MergeJoin * | make_mergejoin (List *tlist, List *joinclauses, List *otherclauses, List *mergeclauses, Oid *mergefamilies, Oid *mergecollations, int *mergestrategies, bool *mergenullsfirst, Plan *lefttree, Plan *righttree, JoinType jointype) |
| static Sort * | make_sort (PlannerInfo *root, Plan *lefttree, int numCols, AttrNumber *sortColIdx, Oid *sortOperators, Oid *collations, bool *nullsFirst, double limit_tuples) |
| static Plan * | prepare_sort_from_pathkeys (PlannerInfo *root, Plan *lefttree, List *pathkeys, Relids relids, const AttrNumber *reqColIdx, bool adjust_tlist_in_place, int *p_numsortkeys, AttrNumber **p_sortColIdx, Oid **p_sortOperators, Oid **p_collations, bool **p_nullsFirst) |
| static EquivalenceMember * | find_ec_member_for_tle (EquivalenceClass *ec, TargetEntry *tle, Relids relids) |
| static Material * | make_material (Plan *lefttree) |
| Plan * | create_plan (PlannerInfo *root, Path *best_path) |
| SubqueryScan * | make_subqueryscan (List *qptlist, List *qpqual, Index scanrelid, Plan *subplan) |
| ForeignScan * | make_foreignscan (List *qptlist, List *qpqual, Index scanrelid, List *fdw_exprs, List *fdw_private) |
| Append * | make_append (List *appendplans, List *tlist) |
| RecursiveUnion * | make_recursive_union (List *tlist, Plan *lefttree, Plan *righttree, int wtParam, List *distinctList, long numGroups) |
| Sort * | make_sort_from_pathkeys (PlannerInfo *root, Plan *lefttree, List *pathkeys, double limit_tuples) |
| Sort * | make_sort_from_sortclauses (PlannerInfo *root, List *sortcls, Plan *lefttree) |
| Sort * | make_sort_from_groupcols (PlannerInfo *root, List *groupcls, AttrNumber *grpColIdx, Plan *lefttree) |
| Plan * | materialize_finished_plan (Plan *subplan) |
| Agg * | make_agg (PlannerInfo *root, List *tlist, List *qual, AggStrategy aggstrategy, const AggClauseCosts *aggcosts, int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, long numGroups, Plan *lefttree) |
| WindowAgg * | make_windowagg (PlannerInfo *root, List *tlist, List *windowFuncs, Index winref, int partNumCols, AttrNumber *partColIdx, Oid *partOperators, int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, int frameOptions, Node *startOffset, Node *endOffset, Plan *lefttree) |
| Group * | make_group (PlannerInfo *root, List *tlist, List *qual, int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, double numGroups, Plan *lefttree) |
| Unique * | make_unique (Plan *lefttree, List *distinctList) |
| SetOp * | make_setop (SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree, List *distinctList, AttrNumber flagColIdx, int firstFlag, long numGroups, double outputRows) |
| LockRows * | make_lockrows (Plan *lefttree, List *rowMarks, int epqParam) |
| Limit * | make_limit (Plan *lefttree, Node *limitOffset, Node *limitCount, int64 offset_est, int64 count_est) |
| Result * | make_result (PlannerInfo *root, List *tlist, Node *resconstantqual, Plan *subplan) |
| ModifyTable * | make_modifytable (PlannerInfo *root, CmdType operation, bool canSetTag, List *resultRelations, List *subplans, List *returningLists, List *rowMarks, int epqParam) |
| bool | is_projection_capable_plan (Plan *plan) |
| static List * build_relation_tlist | ( | RelOptInfo * | rel | ) | [static] |
Definition at line 445 of file createplan.c.
References copyObject(), lappend(), lfirst, makeTargetEntry(), NULL, and RelOptInfo::reltargetlist.
Referenced by create_append_plan(), create_hashjoin_plan(), create_merge_append_plan(), create_mergejoin_plan(), create_nestloop_plan(), create_scan_plan(), create_unique_plan(), and disuse_physical_tlist().
{
List *tlist = NIL;
int resno = 1;
ListCell *v;
foreach(v, rel->reltargetlist)
{
/* Do we really need to copy here? Not sure */
Node *node = (Node *) copyObject(lfirst(v));
tlist = lappend(tlist, makeTargetEntry((Expr *) node,
resno,
NULL,
false));
resno++;
}
return tlist;
}
Definition at line 3166 of file createplan.c.
References Path::parent, Plan::plan_rows, Plan::plan_width, Path::rows, Path::startup_cost, Plan::startup_cost, Path::total_cost, Plan::total_cost, and RelOptInfo::width.
Referenced by create_bitmap_scan_plan(), create_ctescan_plan(), create_foreignscan_plan(), create_functionscan_plan(), create_hashjoin_plan(), create_indexscan_plan(), create_material_plan(), create_merge_append_plan(), create_mergejoin_plan(), create_nestloop_plan(), create_seqscan_plan(), create_subqueryscan_plan(), create_tidscan_plan(), create_valuesscan_plan(), and create_worktablescan_plan().
{
if (src)
{
dest->startup_cost = src->startup_cost;
dest->total_cost = src->total_cost;
dest->plan_rows = src->rows;
dest->plan_width = src->parent->width;
}
else
{
dest->startup_cost = 0;
dest->total_cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
Definition at line 3189 of file createplan.c.
References Plan::plan_rows, Plan::plan_width, Plan::startup_cost, and Plan::total_cost.
Referenced by create_mergejoin_plan(), make_agg(), make_group(), make_hash(), make_limit(), make_lockrows(), make_result(), make_setop(), make_sort(), make_subqueryscan(), make_unique(), and make_windowagg().
{
if (src)
{
dest->startup_cost = src->startup_cost;
dest->total_cost = src->total_cost;
dest->plan_rows = src->plan_rows;
dest->plan_width = src->plan_width;
}
else
{
dest->startup_cost = 0;
dest->total_cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
| static Plan * create_append_plan | ( | PlannerInfo * | root, | |
| AppendPath * | best_path | |||
| ) | [static] |
Definition at line 678 of file createplan.c.
References Assert, build_relation_tlist(), create_plan_recurse(), is_dummy_plan(), lappend(), lfirst, list_make1, make_append(), make_result(), make_subqueryscan(), makeBoolConst(), NIL, NULL, Path::parent, AppendPath::path, RelOptInfo::relid, RTE_SUBQUERY, RelOptInfo::rtekind, subpath(), AppendPath::subpaths, and RelOptInfo::subplan.
Referenced by create_plan_recurse().
{
Append *plan;
RelOptInfo *rel = best_path->path.parent;
List *tlist = build_relation_tlist(rel);
List *subplans = NIL;
ListCell *subpaths;
/*
* The subpaths list could be empty, if every child was proven empty by
* constraint exclusion. In that case generate a dummy plan that returns
* no rows.
*
* Note that an AppendPath with no members is also generated in certain
* cases where there was no appending construct at all, but we know the
* relation is empty (see set_dummy_rel_pathlist).
*/
if (best_path->subpaths == NIL)
{
/*
* If this is a dummy path for a subquery, we have to wrap the
* subquery's original plan in a SubqueryScan so that setrefs.c will
* do the right things. (In particular, it must pull up the
* subquery's rangetable so that the executor will apply permissions
* checks to those rels at runtime.)
*/
if (rel->rtekind == RTE_SUBQUERY)
{
Assert(is_dummy_plan(rel->subplan));
return (Plan *) make_subqueryscan(tlist,
NIL,
rel->relid,
rel->subplan);
}
else
{
/* Generate a Result plan with constant-FALSE gating qual */
return (Plan *) make_result(root,
tlist,
(Node *) list_make1(makeBoolConst(false,
false)),
NULL);
}
}
/* Build the plan for each child */
foreach(subpaths, best_path->subpaths)
{
Path *subpath = (Path *) lfirst(subpaths);
subplans = lappend(subplans, create_plan_recurse(root, subpath));
}
/*
* XXX ideally, if there's just one child, we'd not bother to generate an
* Append node but just return the single child. At the moment this does
* not work because the varno of the child scan plan won't match the
* parent-rel Vars it'll be asked to emit.
*/
plan = make_append(subplans, tlist);
return (Plan *) plan;
}
| static BitmapHeapScan * create_bitmap_scan_plan | ( | PlannerInfo * | root, | |
| BitmapHeapPath * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1307 of file createplan.c.
References Assert, BitmapHeapPath::bitmapqual, RestrictInfo::clause, contain_mutable_functions(), copy_path_costsize(), create_bitmap_subplan(), extract_actual_clauses(), IsA, lappend(), lfirst, list_difference_ptr(), list_make1, list_member(), list_member_ptr(), make_bitmap_heapscan(), order_qual_clauses(), Path::param_info, Path::parent, RestrictInfo::parent_ec, BitmapHeapPath::path, Scan::plan, predicate_implied_by(), RestrictInfo::pseudoconstant, RelOptInfo::relid, replace_nestloop_params(), RTE_RELATION, RelOptInfo::rtekind, and BitmapHeapScan::scan.
Referenced by create_scan_plan().
{
Index baserelid = best_path->path.parent->relid;
Plan *bitmapqualplan;
List *bitmapqualorig;
List *indexquals;
List *indexECs;
List *qpqual;
ListCell *l;
BitmapHeapScan *scan_plan;
/* it should be a base rel... */
Assert(baserelid > 0);
Assert(best_path->path.parent->rtekind == RTE_RELATION);
/* Process the bitmapqual tree into a Plan tree and qual lists */
bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
&bitmapqualorig, &indexquals,
&indexECs);
/*
* The qpqual list must contain all restrictions not automatically handled
* by the index, other than pseudoconstant clauses which will be handled
* by a separate gating plan node. All the predicates in the indexquals
* will be checked (either by the index itself, or by
* nodeBitmapHeapscan.c), but if there are any "special" operators
* involved then they must be added to qpqual. The upshot is that qpqual
* must contain scan_clauses minus whatever appears in indexquals.
*
* This loop is similar to the comparable code in create_indexscan_plan(),
* but with some differences because it has to compare the scan clauses to
* stripped (no RestrictInfos) indexquals. See comments there for more
* info.
*
* In normal cases simple equal() checks will be enough to spot duplicate
* clauses, so we try that first. We next see if the scan clause is
* redundant with any top-level indexqual by virtue of being generated
* from the same EC. After that, try predicate_implied_by().
*
* Unlike create_indexscan_plan(), we need take no special thought here
* for partial index predicates; this is because the predicate conditions
* are already listed in bitmapqualorig and indexquals. Bitmap scans have
* to do it that way because predicate conditions need to be rechecked if
* the scan becomes lossy, so they have to be included in bitmapqualorig.
*/
qpqual = NIL;
foreach(l, scan_clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Node *clause = (Node *) rinfo->clause;
Assert(IsA(rinfo, RestrictInfo));
if (rinfo->pseudoconstant)
continue; /* we may drop pseudoconstants here */
if (list_member(indexquals, clause))
continue; /* simple duplicate */
if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
continue; /* derived from same EquivalenceClass */
if (!contain_mutable_functions(clause))
{
List *clausel = list_make1(clause);
if (predicate_implied_by(clausel, indexquals))
continue; /* provably implied by indexquals */
}
qpqual = lappend(qpqual, rinfo);
}
/* Sort clauses into best execution order */
qpqual = order_qual_clauses(root, qpqual);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
qpqual = extract_actual_clauses(qpqual, false);
/*
* When dealing with special operators, we will at this point have
* duplicate clauses in qpqual and bitmapqualorig. We may as well drop
* 'em from bitmapqualorig, since there's no point in making the tests
* twice.
*/
bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
/*
* We have to replace any outer-relation variables with nestloop params in
* the qpqual and bitmapqualorig expressions. (This was already done for
* expressions attached to plan nodes in the bitmapqualplan tree.)
*/
if (best_path->path.param_info)
{
qpqual = (List *)
replace_nestloop_params(root, (Node *) qpqual);
bitmapqualorig = (List *)
replace_nestloop_params(root, (Node *) bitmapqualorig);
}
/* Finally ready to build the plan node */
scan_plan = make_bitmap_heapscan(tlist,
qpqual,
bitmapqualplan,
bitmapqualorig,
baserelid);
copy_path_costsize(&scan_plan->scan.plan, &best_path->path);
return scan_plan;
}
| static Plan * create_bitmap_subplan | ( | PlannerInfo * | root, | |
| Path * | bitmapqual, | |||
| List ** | qual, | |||
| List ** | indexqual, | |||
| List ** | indexECs | |||
| ) | [static] |
Definition at line 1441 of file createplan.c.
References Assert, BitmapOrPath::bitmapquals, BitmapAndPath::bitmapquals, BitmapOrPath::bitmapselectivity, BitmapAndPath::bitmapselectivity, clamp_row_est(), create_indexscan_plan(), elog, ERROR, get_actual_clauses(), IndexPath::indexclauses, IndexScan::indexid, IndexPath::indexinfo, IndexScan::indexqual, IndexScan::indexqualorig, IndexPath::indexquals, IndexPath::indexselectivity, IndexPath::indextotalcost, IndexOptInfo::indpred, IsA, lappend(), lfirst, linitial, list_concat(), list_concat_unique(), list_length(), list_make1, make_ands_explicit(), make_bitmap_and(), make_bitmap_indexscan(), make_bitmap_or(), make_orclause(), NIL, nodeTag, Path::parent, RestrictInfo::parent_ec, IndexPath::path, BitmapOrPath::path, BitmapAndPath::path, Plan::plan_rows, Plan::plan_width, predicate_implied_by(), IndexScan::scan, Scan::scanrelid, Path::startup_cost, Plan::startup_cost, Path::total_cost, Plan::total_cost, and RelOptInfo::tuples.
Referenced by create_bitmap_scan_plan().
{
Plan *plan;
if (IsA(bitmapqual, BitmapAndPath))
{
BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
List *subplans = NIL;
List *subquals = NIL;
List *subindexquals = NIL;
List *subindexECs = NIL;
ListCell *l;
/*
* There may well be redundant quals among the subplans, since a
* top-level WHERE qual might have gotten used to form several
* different index quals. We don't try exceedingly hard to eliminate
* redundancies, but we do eliminate obvious duplicates by using
* list_concat_unique.
*/
foreach(l, apath->bitmapquals)
{
Plan *subplan;
List *subqual;
List *subindexqual;
List *subindexEC;
subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
&subqual, &subindexqual,
&subindexEC);
subplans = lappend(subplans, subplan);
subquals = list_concat_unique(subquals, subqual);
subindexquals = list_concat_unique(subindexquals, subindexqual);
/* Duplicates in indexECs aren't worth getting rid of */
subindexECs = list_concat(subindexECs, subindexEC);
}
plan = (Plan *) make_bitmap_and(subplans);
plan->startup_cost = apath->path.startup_cost;
plan->total_cost = apath->path.total_cost;
plan->plan_rows =
clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
plan->plan_width = 0; /* meaningless */
*qual = subquals;
*indexqual = subindexquals;
*indexECs = subindexECs;
}
else if (IsA(bitmapqual, BitmapOrPath))
{
BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
List *subplans = NIL;
List *subquals = NIL;
List *subindexquals = NIL;
bool const_true_subqual = false;
bool const_true_subindexqual = false;
ListCell *l;
/*
* Here, we only detect qual-free subplans. A qual-free subplan would
* cause us to generate "... OR true ..." which we may as well reduce
* to just "true". We do not try to eliminate redundant subclauses
* because (a) it's not as likely as in the AND case, and (b) we might
* well be working with hundreds or even thousands of OR conditions,
* perhaps from a long IN list. The performance of list_append_unique
* would be unacceptable.
*/
foreach(l, opath->bitmapquals)
{
Plan *subplan;
List *subqual;
List *subindexqual;
List *subindexEC;
subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
&subqual, &subindexqual,
&subindexEC);
subplans = lappend(subplans, subplan);
if (subqual == NIL)
const_true_subqual = true;
else if (!const_true_subqual)
subquals = lappend(subquals,
make_ands_explicit(subqual));
if (subindexqual == NIL)
const_true_subindexqual = true;
else if (!const_true_subindexqual)
subindexquals = lappend(subindexquals,
make_ands_explicit(subindexqual));
}
/*
* In the presence of ScalarArrayOpExpr quals, we might have built
* BitmapOrPaths with just one subpath; don't add an OR step.
*/
if (list_length(subplans) == 1)
{
plan = (Plan *) linitial(subplans);
}
else
{
plan = (Plan *) make_bitmap_or(subplans);
plan->startup_cost = opath->path.startup_cost;
plan->total_cost = opath->path.total_cost;
plan->plan_rows =
clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
plan->plan_width = 0; /* meaningless */
}
/*
* If there were constant-TRUE subquals, the OR reduces to constant
* TRUE. Also, avoid generating one-element ORs, which could happen
* due to redundancy elimination or ScalarArrayOpExpr quals.
*/
if (const_true_subqual)
*qual = NIL;
else if (list_length(subquals) <= 1)
*qual = subquals;
else
*qual = list_make1(make_orclause(subquals));
if (const_true_subindexqual)
*indexqual = NIL;
else if (list_length(subindexquals) <= 1)
*indexqual = subindexquals;
else
*indexqual = list_make1(make_orclause(subindexquals));
*indexECs = NIL;
}
else if (IsA(bitmapqual, IndexPath))
{
IndexPath *ipath = (IndexPath *) bitmapqual;
IndexScan *iscan;
List *subindexECs;
ListCell *l;
/* Use the regular indexscan plan build machinery... */
iscan = (IndexScan *) create_indexscan_plan(root, ipath,
NIL, NIL, false);
Assert(IsA(iscan, IndexScan));
/* then convert to a bitmap indexscan */
plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
iscan->indexid,
iscan->indexqual,
iscan->indexqualorig);
plan->startup_cost = 0.0;
plan->total_cost = ipath->indextotalcost;
plan->plan_rows =
clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
plan->plan_width = 0; /* meaningless */
*qual = get_actual_clauses(ipath->indexclauses);
*indexqual = get_actual_clauses(ipath->indexquals);
foreach(l, ipath->indexinfo->indpred)
{
Expr *pred = (Expr *) lfirst(l);
/*
* We know that the index predicate must have been implied by the
* query condition as a whole, but it may or may not be implied by
* the conditions that got pushed into the bitmapqual. Avoid
* generating redundant conditions.
*/
if (!predicate_implied_by(list_make1(pred), ipath->indexclauses))
{
*qual = lappend(*qual, pred);
*indexqual = lappend(*indexqual, pred);
}
}
subindexECs = NIL;
foreach(l, ipath->indexquals)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
if (rinfo->parent_ec)
subindexECs = lappend(subindexECs, rinfo->parent_ec);
}
*indexECs = subindexECs;
}
else
{
elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
plan = NULL; /* keep compiler quiet */
}
return plan;
}
| static CteScan * create_ctescan_plan | ( | PlannerInfo * | root, | |
| Path * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1815 of file createplan.c.
References Assert, copy_path_costsize(), PlannerInfo::cte_plan_ids, RangeTblEntry::ctelevelsup, Query::cteList, CommonTableExpr::ctename, RangeTblEntry::ctename, elog, ERROR, extract_actual_clauses(), PlannerInfo::init_plans, lfirst, linitial_int, list_length(), list_nth_int(), make_ctescan(), NULL, order_qual_clauses(), Path::param_info, Path::parent, PlannerInfo::parent_root, PlannerInfo::parse, Scan::plan, SubPlan::plan_id, planner_rt_fetch, RelOptInfo::relid, replace_nestloop_params(), RTE_CTE, RangeTblEntry::rtekind, CteScan::scan, RangeTblEntry::self_reference, and SubPlan::setParam.
Referenced by create_scan_plan().
{
CteScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
SubPlan *ctesplan = NULL;
int plan_id;
int cte_param_id;
PlannerInfo *cteroot;
Index levelsup;
int ndx;
ListCell *lc;
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_CTE);
Assert(!rte->self_reference);
/*
* Find the referenced CTE, and locate the SubPlan previously made for it.
*/
levelsup = rte->ctelevelsup;
cteroot = root;
while (levelsup-- > 0)
{
cteroot = cteroot->parent_root;
if (!cteroot) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
}
/*
* Note: cte_plan_ids can be shorter than cteList, if we are still working
* on planning the CTEs (ie, this is a side-reference from another CTE).
* So we mustn't use forboth here.
*/
ndx = 0;
foreach(lc, cteroot->parse->cteList)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
if (strcmp(cte->ctename, rte->ctename) == 0)
break;
ndx++;
}
if (lc == NULL) /* shouldn't happen */
elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
if (ndx >= list_length(cteroot->cte_plan_ids))
elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
Assert(plan_id > 0);
foreach(lc, cteroot->init_plans)
{
ctesplan = (SubPlan *) lfirst(lc);
if (ctesplan->plan_id == plan_id)
break;
}
if (lc == NULL) /* shouldn't happen */
elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
/*
* We need the CTE param ID, which is the sole member of the SubPlan's
* setParam list.
*/
cte_param_id = linitial_int(ctesplan->setParam);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
}
scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
plan_id, cte_param_id);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
| static ForeignScan * create_foreignscan_plan | ( | PlannerInfo * | root, | |
| ForeignPath * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1968 of file createplan.c.
References Assert, RelOptInfo::attr_needed, bms_is_empty(), copy_path_costsize(), ForeignScan::fdw_exprs, RelOptInfo::fdwroutine, ForeignScan::fsSystemCol, FdwRoutine::GetForeignPlan, i, RelOptInfo::min_attr, order_qual_clauses(), Path::param_info, Path::parent, ForeignPath::path, Scan::plan, planner_rt_fetch, Plan::qual, RangeTblEntry::relid, RelOptInfo::relid, replace_nestloop_params(), RTE_RELATION, RangeTblEntry::rtekind, RelOptInfo::rtekind, and ForeignScan::scan.
Referenced by create_scan_plan().
{
ForeignScan *scan_plan;
RelOptInfo *rel = best_path->path.parent;
Index scan_relid = rel->relid;
RangeTblEntry *rte;
int i;
/* it should be a base rel... */
Assert(scan_relid > 0);
Assert(rel->rtekind == RTE_RELATION);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_RELATION);
/*
* Sort clauses into best execution order. We do this first since the FDW
* might have more info than we do and wish to adjust the ordering.
*/
scan_clauses = order_qual_clauses(root, scan_clauses);
/*
* Let the FDW perform its processing on the restriction clauses and
* generate the plan node. Note that the FDW might remove restriction
* clauses that it intends to execute remotely, or even add more (if it
* has selected some join clauses for remote use but also wants them
* rechecked locally).
*/
scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rte->relid,
best_path,
tlist, scan_clauses);
/* Copy cost data from Path to Plan; no need to make FDW do this */
copy_path_costsize(&scan_plan->scan.plan, &best_path->path);
/*
* Replace any outer-relation variables with nestloop params in the qual
* and fdw_exprs expressions. We do this last so that the FDW doesn't
* have to be involved. (Note that parts of fdw_exprs could have come
* from join clauses, so doing this beforehand on the scan_clauses
* wouldn't work.)
*/
if (best_path->path.param_info)
{
scan_plan->scan.plan.qual = (List *)
replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
scan_plan->fdw_exprs = (List *)
replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
}
/*
* Detect whether any system columns are requested from rel. This is a
* bit of a kluge and might go away someday, so we intentionally leave it
* out of the API presented to FDWs.
*/
scan_plan->fsSystemCol = false;
for (i = rel->min_attr; i < 0; i++)
{
if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
{
scan_plan->fsSystemCol = true;
break;
}
}
return scan_plan;
}
| static FunctionScan * create_functionscan_plan | ( | PlannerInfo * | root, | |
| Path * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1724 of file createplan.c.
References Assert, Alias::colnames, copy_path_costsize(), RangeTblEntry::eref, extract_actual_clauses(), RangeTblEntry::funccolcollations, RangeTblEntry::funccoltypes, RangeTblEntry::funccoltypmods, RangeTblEntry::funcexpr, make_functionscan(), order_qual_clauses(), Path::param_info, Path::parent, Scan::plan, planner_rt_fetch, RelOptInfo::relid, replace_nestloop_params(), RTE_FUNCTION, RangeTblEntry::rtekind, and FunctionScan::scan.
Referenced by create_scan_plan().
{
FunctionScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
Node *funcexpr;
/* it should be a function base rel... */
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_FUNCTION);
funcexpr = rte->funcexpr;
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
/* The func expression itself could contain nestloop params, too */
funcexpr = replace_nestloop_params(root, funcexpr);
}
scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
funcexpr,
rte->eref->colnames,
rte->funccoltypes,
rte->funccoltypmods,
rte->funccolcollations);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
| static Plan * create_gating_plan | ( | PlannerInfo * | root, | |
| Plan * | plan, | |||
| List * | quals | |||
| ) | [static] |
Definition at line 574 of file createplan.c.
References extract_actual_clauses(), make_result(), order_qual_clauses(), and Plan::targetlist.
Referenced by create_join_plan(), and create_scan_plan().
{
List *pseudoconstants;
/* Sort into desirable execution order while still in RestrictInfo form */
quals = order_qual_clauses(root, quals);
/* Pull out any pseudoconstant quals from the RestrictInfo list */
pseudoconstants = extract_actual_clauses(quals, true);
if (!pseudoconstants)
return plan;
return (Plan *) make_result(root,
plan->targetlist,
(Node *) pseudoconstants,
plan);
}
| static HashJoin * create_hashjoin_plan | ( | PlannerInfo * | root, | |
| HashPath * | best_path, | |||
| Plan * | outer_plan, | |||
| Plan * | inner_plan | |||
| ) | [static] |
Definition at line 2430 of file createplan.c.
References OpExpr::args, Assert, build_relation_tlist(), copy_path_costsize(), disuse_physical_tlist(), extract_actual_clauses(), extract_actual_join_clauses(), get_actual_clauses(), get_switched_clauses(), RangeTblEntry::inh, JoinPath::innerjoinpath, is_opclause, IS_OUTER_JOIN, IsA, HashJoin::join, JoinPath::joinrestrictinfo, JoinPath::jointype, HashPath::jpath, linitial, list_difference(), list_length(), make_hash(), make_hashjoin(), HashPath::num_batches, order_qual_clauses(), JoinPath::outerjoinpath, Path::param_info, Path::parent, JoinPath::path, HashPath::path_hashclauses, Join::plan, RangeTblEntry::relid, RelOptInfo::relids, replace_nestloop_params(), RTE_RELATION, RangeTblEntry::rtekind, PlannerInfo::simple_rte_array, RangeQueryClause::var, Var::varattno, Var::varno, Var::vartype, and Var::vartypmod.
Referenced by create_join_plan().
{
List *tlist = build_relation_tlist(best_path->jpath.path.parent);
List *joinclauses;
List *otherclauses;
List *hashclauses;
Oid skewTable = InvalidOid;
AttrNumber skewColumn = InvalidAttrNumber;
bool skewInherit = false;
Oid skewColType = InvalidOid;
int32 skewColTypmod = -1;
HashJoin *join_plan;
Hash *hash_plan;
/* Sort join qual clauses into best execution order */
joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
/* There's no point in sorting the hash clauses ... */
/* Get the join qual clauses (in plain expression form) */
/* Any pseudoconstant clauses are ignored here */
if (IS_OUTER_JOIN(best_path->jpath.jointype))
{
extract_actual_join_clauses(joinclauses,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = extract_actual_clauses(joinclauses, false);
otherclauses = NIL;
}
/*
* Remove the hashclauses from the list of join qual clauses, leaving the
* list of quals that must be checked as qpquals.
*/
hashclauses = get_actual_clauses(best_path->path_hashclauses);
joinclauses = list_difference(joinclauses, hashclauses);
/*
* Replace any outer-relation variables with nestloop params. There
* should not be any in the hashclauses.
*/
if (best_path->jpath.path.param_info)
{
joinclauses = (List *)
replace_nestloop_params(root, (Node *) joinclauses);
otherclauses = (List *)
replace_nestloop_params(root, (Node *) otherclauses);
}
/*
* Rearrange hashclauses, if needed, so that the outer variable is always
* on the left.
*/
hashclauses = get_switched_clauses(best_path->path_hashclauses,
best_path->jpath.outerjoinpath->parent->relids);
/* We don't want any excess columns in the hashed tuples */
disuse_physical_tlist(inner_plan, best_path->jpath.innerjoinpath);
/* If we expect batching, suppress excess columns in outer tuples too */
if (best_path->num_batches > 1)
disuse_physical_tlist(outer_plan, best_path->jpath.outerjoinpath);
/*
* If there is a single join clause and we can identify the outer variable
* as a simple column reference, supply its identity for possible use in
* skew optimization. (Note: in principle we could do skew optimization
* with multiple join clauses, but we'd have to be able to determine the
* most common combinations of outer values, which we don't currently have
* enough stats for.)
*/
if (list_length(hashclauses) == 1)
{
OpExpr *clause = (OpExpr *) linitial(hashclauses);
Node *node;
Assert(is_opclause(clause));
node = (Node *) linitial(clause->args);
if (IsA(node, RelabelType))
node = (Node *) ((RelabelType *) node)->arg;
if (IsA(node, Var))
{
Var *var = (Var *) node;
RangeTblEntry *rte;
rte = root->simple_rte_array[var->varno];
if (rte->rtekind == RTE_RELATION)
{
skewTable = rte->relid;
skewColumn = var->varattno;
skewInherit = rte->inh;
skewColType = var->vartype;
skewColTypmod = var->vartypmod;
}
}
}
/*
* Build the hash node and hash join node.
*/
hash_plan = make_hash(inner_plan,
skewTable,
skewColumn,
skewInherit,
skewColType,
skewColTypmod);
join_plan = make_hashjoin(tlist,
joinclauses,
otherclauses,
hashclauses,
outer_plan,
(Plan *) hash_plan,
best_path->jpath.jointype);
copy_path_costsize(&join_plan->join.plan, &best_path->jpath.path);
return join_plan;
}
| static Scan * create_indexscan_plan | ( | PlannerInfo * | root, | |
| IndexPath * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses, | |||
| bool | indexonly | |||
| ) | [static] |
Definition at line 1152 of file createplan.c.
References Assert, RestrictInfo::clause, contain_mutable_functions(), copy_path_costsize(), extract_actual_clauses(), fix_indexorderby_references(), fix_indexqual_references(), get_actual_clauses(), get_parse_rowmark(), IndexPath::indexinfo, IndexOptInfo::indexoid, IndexPath::indexorderbys, IndexPath::indexquals, IndexPath::indexscandir, IndexOptInfo::indextlist, IndexOptInfo::indpred, is_redundant_derived_clause(), IsA, lappend(), lfirst, list_make1, list_member_ptr(), make_indexonlyscan(), make_indexscan(), NULL, order_qual_clauses(), Path::param_info, Path::parent, PlannerInfo::parse, IndexPath::path, Scan::plan, predicate_implied_by(), RestrictInfo::pseudoconstant, RelOptInfo::relid, replace_nestloop_params(), Query::resultRelation, RTE_RELATION, and RelOptInfo::rtekind.
Referenced by create_bitmap_subplan(), and create_scan_plan().
{
Scan *scan_plan;
List *indexquals = best_path->indexquals;
List *indexorderbys = best_path->indexorderbys;
Index baserelid = best_path->path.parent->relid;
Oid indexoid = best_path->indexinfo->indexoid;
List *qpqual;
List *stripped_indexquals;
List *fixed_indexquals;
List *fixed_indexorderbys;
ListCell *l;
/* it should be a base rel... */
Assert(baserelid > 0);
Assert(best_path->path.parent->rtekind == RTE_RELATION);
/*
* Build "stripped" indexquals structure (no RestrictInfos) to pass to
* executor as indexqualorig
*/
stripped_indexquals = get_actual_clauses(indexquals);
/*
* The executor needs a copy with the indexkey on the left of each clause
* and with index Vars substituted for table ones.
*/
fixed_indexquals = fix_indexqual_references(root, best_path);
/*
* Likewise fix up index attr references in the ORDER BY expressions.
*/
fixed_indexorderbys = fix_indexorderby_references(root, best_path);
/*
* The qpqual list must contain all restrictions not automatically handled
* by the index, other than pseudoconstant clauses which will be handled
* by a separate gating plan node. All the predicates in the indexquals
* will be checked (either by the index itself, or by nodeIndexscan.c),
* but if there are any "special" operators involved then they must be
* included in qpqual. The upshot is that qpqual must contain
* scan_clauses minus whatever appears in indexquals.
*
* In normal cases simple pointer equality checks will be enough to spot
* duplicate RestrictInfos, so we try that first.
*
* Another common case is that a scan_clauses entry is generated from the
* same EquivalenceClass as some indexqual, and is therefore redundant
* with it, though not equal. (This happens when indxpath.c prefers a
* different derived equality than what generate_join_implied_equalities
* picked for a parameterized scan's ppi_clauses.)
*
* In some situations (particularly with OR'd index conditions) we may
* have scan_clauses that are not equal to, but are logically implied by,
* the index quals; so we also try a predicate_implied_by() check to see
* if we can discard quals that way. (predicate_implied_by assumes its
* first input contains only immutable functions, so we have to check
* that.)
*
* We can also discard quals that are implied by a partial index's
* predicate, but only in a plain SELECT; when scanning a target relation
* of UPDATE/DELETE/SELECT FOR UPDATE, we must leave such quals in the
* plan so that they'll be properly rechecked by EvalPlanQual testing.
*/
qpqual = NIL;
foreach(l, scan_clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Assert(IsA(rinfo, RestrictInfo));
if (rinfo->pseudoconstant)
continue; /* we may drop pseudoconstants here */
if (list_member_ptr(indexquals, rinfo))
continue; /* simple duplicate */
if (is_redundant_derived_clause(rinfo, indexquals))
continue; /* derived from same EquivalenceClass */
if (!contain_mutable_functions((Node *) rinfo->clause))
{
List *clausel = list_make1(rinfo->clause);
if (predicate_implied_by(clausel, indexquals))
continue; /* provably implied by indexquals */
if (best_path->indexinfo->indpred)
{
if (baserelid != root->parse->resultRelation &&
get_parse_rowmark(root->parse, baserelid) == NULL)
if (predicate_implied_by(clausel,
best_path->indexinfo->indpred))
continue; /* implied by index predicate */
}
}
qpqual = lappend(qpqual, rinfo);
}
/* Sort clauses into best execution order */
qpqual = order_qual_clauses(root, qpqual);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
qpqual = extract_actual_clauses(qpqual, false);
/*
* We have to replace any outer-relation variables with nestloop params in
* the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
* annoying to have to do this separately from the processing in
* fix_indexqual_references --- rethink this when generalizing the inner
* indexscan support. But note we can't really do this earlier because
* it'd break the comparisons to predicates above ... (or would it? Those
* wouldn't have outer refs)
*/
if (best_path->path.param_info)
{
stripped_indexquals = (List *)
replace_nestloop_params(root, (Node *) stripped_indexquals);
qpqual = (List *)
replace_nestloop_params(root, (Node *) qpqual);
indexorderbys = (List *)
replace_nestloop_params(root, (Node *) indexorderbys);
}
/* Finally ready to build the plan node */
if (indexonly)
scan_plan = (Scan *) make_indexonlyscan(tlist,
qpqual,
baserelid,
indexoid,
fixed_indexquals,
fixed_indexorderbys,
best_path->indexinfo->indextlist,
best_path->indexscandir);
else
scan_plan = (Scan *) make_indexscan(tlist,
qpqual,
baserelid,
indexoid,
fixed_indexquals,
stripped_indexquals,
fixed_indexorderbys,
indexorderbys,
best_path->indexscandir);
copy_path_costsize(&scan_plan->plan, &best_path->path);
return scan_plan;
}
| static Plan * create_join_plan | ( | PlannerInfo * | root, | |
| JoinPath * | best_path | |||
| ) | [static] |
Definition at line 599 of file createplan.c.
References bms_free(), bms_union(), create_gating_plan(), create_hashjoin_plan(), create_mergejoin_plan(), create_nestloop_plan(), create_plan_recurse(), PlannerInfo::curOuterRels, elog, ERROR, get_actual_clauses(), PlannerInfo::hasPseudoConstantQuals, JoinPath::innerjoinpath, JoinPath::joinrestrictinfo, list_concat(), NIL, JoinPath::outerjoinpath, Path::parent, JoinPath::path, Path::pathtype, RelOptInfo::relids, T_HashJoin, T_MergeJoin, and T_NestLoop.
Referenced by create_plan_recurse().
{
Plan *outer_plan;
Plan *inner_plan;
Plan *plan;
Relids saveOuterRels = root->curOuterRels;
outer_plan = create_plan_recurse(root, best_path->outerjoinpath);
/* For a nestloop, include outer relids in curOuterRels for inner side */
if (best_path->path.pathtype == T_NestLoop)
root->curOuterRels = bms_union(root->curOuterRels,
best_path->outerjoinpath->parent->relids);
inner_plan = create_plan_recurse(root, best_path->innerjoinpath);
switch (best_path->path.pathtype)
{
case T_MergeJoin:
plan = (Plan *) create_mergejoin_plan(root,
(MergePath *) best_path,
outer_plan,
inner_plan);
break;
case T_HashJoin:
plan = (Plan *) create_hashjoin_plan(root,
(HashPath *) best_path,
outer_plan,
inner_plan);
break;
case T_NestLoop:
/* Restore curOuterRels */
bms_free(root->curOuterRels);
root->curOuterRels = saveOuterRels;
plan = (Plan *) create_nestloop_plan(root,
(NestPath *) best_path,
outer_plan,
inner_plan);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->path.pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
/*
* If there are any pseudoconstant clauses attached to this node, insert a
* gating Result node that evaluates the pseudoconstants as one-time
* quals.
*/
if (root->hasPseudoConstantQuals)
plan = create_gating_plan(root, plan, best_path->joinrestrictinfo);
#ifdef NOT_USED
/*
* * Expensive function pullups may have pulled local predicates * into
* this path node. Put them in the qpqual of the plan node. * JMH,
* 6/15/92
*/
if (get_loc_restrictinfo(best_path) != NIL)
set_qpqual((Plan) plan,
list_concat(get_qpqual((Plan) plan),
get_actual_clauses(get_loc_restrictinfo(best_path))));
#endif
return plan;
}
| static Material * create_material_plan | ( | PlannerInfo * | root, | |
| MaterialPath * | best_path | |||
| ) | [static] |
Definition at line 876 of file createplan.c.
References copy_path_costsize(), create_plan_recurse(), disuse_physical_tlist(), make_material(), Material::plan, and MaterialPath::subpath.
Referenced by create_plan_recurse().
{
Material *plan;
Plan *subplan;
subplan = create_plan_recurse(root, best_path->subpath);
/* We don't want any excess columns in the materialized tuples */
disuse_physical_tlist(subplan, best_path->subpath);
plan = make_material(subplan);
copy_path_costsize(&plan->plan, (Path *) best_path);
return plan;
}
| static Plan * create_merge_append_plan | ( | PlannerInfo * | root, | |
| MergeAppendPath * | best_path | |||
| ) | [static] |
Definition at line 751 of file createplan.c.
References Assert, build_relation_tlist(), MergeAppend::collations, copy_path_costsize(), create_plan_recurse(), elog, ERROR, lappend(), Plan::lefttree, lfirst, make_sort(), makeNode, memcmp(), MergeAppend::mergeplans, NULL, MergeAppend::nullsFirst, MergeAppend::numCols, Path::parent, MergeAppendPath::path, Path::pathkeys, pathkeys_contained_in(), MergeAppend::plan, prepare_sort_from_pathkeys(), Plan::qual, RelOptInfo::relids, Plan::righttree, MergeAppend::sortColIdx, MergeAppend::sortOperators, subpath(), and Plan::targetlist.
Referenced by create_plan_recurse().
{
MergeAppend *node = makeNode(MergeAppend);
Plan *plan = &node->plan;
List *tlist = build_relation_tlist(best_path->path.parent);
List *pathkeys = best_path->path.pathkeys;
List *subplans = NIL;
ListCell *subpaths;
/*
* We don't have the actual creation of the MergeAppend node split out
* into a separate make_xxx function. This is because we want to run
* prepare_sort_from_pathkeys on it before we do so on the individual
* child plans, to make cross-checking the sort info easier.
*/
copy_path_costsize(plan, (Path *) best_path);
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
/* Compute sort column info, and adjust MergeAppend's tlist as needed */
(void) prepare_sort_from_pathkeys(root, plan, pathkeys,
NULL,
NULL,
true,
&node->numCols,
&node->sortColIdx,
&node->sortOperators,
&node->collations,
&node->nullsFirst);
/*
* Now prepare the child plans. We must apply prepare_sort_from_pathkeys
* even to subplans that don't need an explicit sort, to make sure they
* are returning the same sort key columns the MergeAppend expects.
*/
foreach(subpaths, best_path->subpaths)
{
Path *subpath = (Path *) lfirst(subpaths);
Plan *subplan;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/* Build the child plan */
subplan = create_plan_recurse(root, subpath);
/* Compute sort column info, and adjust subplan's tlist as needed */
subplan = prepare_sort_from_pathkeys(root, subplan, pathkeys,
subpath->parent->relids,
node->sortColIdx,
false,
&numsortkeys,
&sortColIdx,
&sortOperators,
&collations,
&nullsFirst);
/*
* Check that we got the same sort key information. We just Assert
* that the sortops match, since those depend only on the pathkeys;
* but it seems like a good idea to check the sort column numbers
* explicitly, to ensure the tlists really do match up.
*/
Assert(numsortkeys == node->numCols);
if (memcmp(sortColIdx, node->sortColIdx,
numsortkeys * sizeof(AttrNumber)) != 0)
elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
Assert(memcmp(sortOperators, node->sortOperators,
numsortkeys * sizeof(Oid)) == 0);
Assert(memcmp(collations, node->collations,
numsortkeys * sizeof(Oid)) == 0);
Assert(memcmp(nullsFirst, node->nullsFirst,
numsortkeys * sizeof(bool)) == 0);
/* Now, insert a Sort node if subplan isn't sufficiently ordered */
if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
subplan = (Plan *) make_sort(root, subplan, numsortkeys,
sortColIdx, sortOperators,
collations, nullsFirst,
best_path->limit_tuples);
subplans = lappend(subplans, subplan);
}
node->mergeplans = subplans;
return (Plan *) node;
}
| static MergeJoin * create_mergejoin_plan | ( | PlannerInfo * | root, | |
| MergePath * | best_path, | |||
| Plan * | outer_plan, | |||
| Plan * | inner_plan | |||
| ) | [static] |
Definition at line 2135 of file createplan.c.
References Assert, build_relation_tlist(), copy_path_costsize(), copy_plan_costsize(), cpu_operator_cost, disuse_physical_tlist(), EquivalenceClass::ec_collation, elog, ERROR, extract_actual_clauses(), extract_actual_join_clauses(), get_actual_clauses(), get_switched_clauses(), i, JoinPath::innerjoinpath, MergePath::innersortkeys, IS_OUTER_JOIN, IsA, MergeJoin::join, JoinPath::joinrestrictinfo, JoinPath::jointype, MergePath::jpath, RestrictInfo::left_ec, lfirst, list_difference(), list_head(), list_length(), lnext, make_material(), make_mergejoin(), make_sort_from_pathkeys(), MergePath::materialize_inner, NULL, order_qual_clauses(), RestrictInfo::outer_is_left, JoinPath::outerjoinpath, MergePath::outersortkeys, palloc(), Path::param_info, Path::parent, JoinPath::path, MergePath::path_mergeclauses, Path::pathkeys, PathKey::pk_eclass, PathKey::pk_nulls_first, PathKey::pk_opfamily, PathKey::pk_strategy, Join::plan, Plan::plan_rows, RelOptInfo::relids, replace_nestloop_params(), RestrictInfo::right_ec, and Plan::total_cost.
Referenced by create_join_plan().
{
List *tlist = build_relation_tlist(best_path->jpath.path.parent);
List *joinclauses;
List *otherclauses;
List *mergeclauses;
List *outerpathkeys;
List *innerpathkeys;
int nClauses;
Oid *mergefamilies;
Oid *mergecollations;
int *mergestrategies;
bool *mergenullsfirst;
MergeJoin *join_plan;
int i;
ListCell *lc;
ListCell *lop;
ListCell *lip;
/* Sort join qual clauses into best execution order */
/* NB: do NOT reorder the mergeclauses */
joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
/* Get the join qual clauses (in plain expression form) */
/* Any pseudoconstant clauses are ignored here */
if (IS_OUTER_JOIN(best_path->jpath.jointype))
{
extract_actual_join_clauses(joinclauses,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = extract_actual_clauses(joinclauses, false);
otherclauses = NIL;
}
/*
* Remove the mergeclauses from the list of join qual clauses, leaving the
* list of quals that must be checked as qpquals.
*/
mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
joinclauses = list_difference(joinclauses, mergeclauses);
/*
* Replace any outer-relation variables with nestloop params. There
* should not be any in the mergeclauses.
*/
if (best_path->jpath.path.param_info)
{
joinclauses = (List *)
replace_nestloop_params(root, (Node *) joinclauses);
otherclauses = (List *)
replace_nestloop_params(root, (Node *) otherclauses);
}
/*
* Rearrange mergeclauses, if needed, so that the outer variable is always
* on the left; mark the mergeclause restrictinfos with correct
* outer_is_left status.
*/
mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
best_path->jpath.outerjoinpath->parent->relids);
/*
* Create explicit sort nodes for the outer and inner paths if necessary.
* Make sure there are no excess columns in the inputs if sorting.
*/
if (best_path->outersortkeys)
{
disuse_physical_tlist(outer_plan, best_path->jpath.outerjoinpath);
outer_plan = (Plan *)
make_sort_from_pathkeys(root,
outer_plan,
best_path->outersortkeys,
-1.0);
outerpathkeys = best_path->outersortkeys;
}
else
outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
if (best_path->innersortkeys)
{
disuse_physical_tlist(inner_plan, best_path->jpath.innerjoinpath);
inner_plan = (Plan *)
make_sort_from_pathkeys(root,
inner_plan,
best_path->innersortkeys,
-1.0);
innerpathkeys = best_path->innersortkeys;
}
else
innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
/*
* If specified, add a materialize node to shield the inner plan from the
* need to handle mark/restore.
*/
if (best_path->materialize_inner)
{
Plan *matplan = (Plan *) make_material(inner_plan);
/*
* We assume the materialize will not spill to disk, and therefore
* charge just cpu_operator_cost per tuple. (Keep this estimate in
* sync with final_cost_mergejoin.)
*/
copy_plan_costsize(matplan, inner_plan);
matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
inner_plan = matplan;
}
/*
* Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
* executor. The information is in the pathkeys for the two inputs, but
* we need to be careful about the possibility of mergeclauses sharing a
* pathkey (compare find_mergeclauses_for_pathkeys()).
*/
nClauses = list_length(mergeclauses);
Assert(nClauses == list_length(best_path->path_mergeclauses));
mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
mergestrategies = (int *) palloc(nClauses * sizeof(int));
mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
lop = list_head(outerpathkeys);
lip = list_head(innerpathkeys);
i = 0;
foreach(lc, best_path->path_mergeclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
EquivalenceClass *oeclass;
EquivalenceClass *ieclass;
PathKey *opathkey;
PathKey *ipathkey;
EquivalenceClass *opeclass;
EquivalenceClass *ipeclass;
ListCell *l2;
/* fetch outer/inner eclass from mergeclause */
Assert(IsA(rinfo, RestrictInfo));
if (rinfo->outer_is_left)
{
oeclass = rinfo->left_ec;
ieclass = rinfo->right_ec;
}
else
{
oeclass = rinfo->right_ec;
ieclass = rinfo->left_ec;
}
Assert(oeclass != NULL);
Assert(ieclass != NULL);
/*
* For debugging purposes, we check that the eclasses match the paths'
* pathkeys. In typical cases the merge clauses are one-to-one with
* the pathkeys, but when dealing with partially redundant query
* conditions, we might have clauses that re-reference earlier path
* keys. The case that we need to reject is where a pathkey is
* entirely skipped over.
*
* lop and lip reference the first as-yet-unused pathkey elements;
* it's okay to match them, or any element before them. If they're
* NULL then we have found all pathkey elements to be used.
*/
if (lop)
{
opathkey = (PathKey *) lfirst(lop);
opeclass = opathkey->pk_eclass;
if (oeclass == opeclass)
{
/* fast path for typical case */
lop = lnext(lop);
}
else
{
/* redundant clauses ... must match something before lop */
foreach(l2, outerpathkeys)
{
if (l2 == lop)
break;
opathkey = (PathKey *) lfirst(l2);
opeclass = opathkey->pk_eclass;
if (oeclass == opeclass)
break;
}
if (oeclass != opeclass)
elog(ERROR, "outer pathkeys do not match mergeclauses");
}
}
else
{
/* redundant clauses ... must match some already-used pathkey */
opathkey = NULL;
opeclass = NULL;
foreach(l2, outerpathkeys)
{
opathkey = (PathKey *) lfirst(l2);
opeclass = opathkey->pk_eclass;
if (oeclass == opeclass)
break;
}
if (l2 == NULL)
elog(ERROR, "outer pathkeys do not match mergeclauses");
}
if (lip)
{
ipathkey = (PathKey *) lfirst(lip);
ipeclass = ipathkey->pk_eclass;
if (ieclass == ipeclass)
{
/* fast path for typical case */
lip = lnext(lip);
}
else
{
/* redundant clauses ... must match something before lip */
foreach(l2, innerpathkeys)
{
if (l2 == lip)
break;
ipathkey = (PathKey *) lfirst(l2);
ipeclass = ipathkey->pk_eclass;
if (ieclass == ipeclass)
break;
}
if (ieclass != ipeclass)
elog(ERROR, "inner pathkeys do not match mergeclauses");
}
}
else
{
/* redundant clauses ... must match some already-used pathkey */
ipathkey = NULL;
ipeclass = NULL;
foreach(l2, innerpathkeys)
{
ipathkey = (PathKey *) lfirst(l2);
ipeclass = ipathkey->pk_eclass;
if (ieclass == ipeclass)
break;
}
if (l2 == NULL)
elog(ERROR, "inner pathkeys do not match mergeclauses");
}
/* pathkeys should match each other too (more debugging) */
if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
opathkey->pk_strategy != ipathkey->pk_strategy ||
opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
elog(ERROR, "left and right pathkeys do not match in mergejoin");
/* OK, save info for executor */
mergefamilies[i] = opathkey->pk_opfamily;
mergecollations[i] = opathkey->pk_eclass->ec_collation;
mergestrategies[i] = opathkey->pk_strategy;
mergenullsfirst[i] = opathkey->pk_nulls_first;
i++;
}
/*
* Note: it is not an error if we have additional pathkey elements (i.e.,
* lop or lip isn't NULL here). The input paths might be better-sorted
* than we need for the current mergejoin.
*/
/*
* Now we can build the mergejoin node.
*/
join_plan = make_mergejoin(tlist,
joinclauses,
otherclauses,
mergeclauses,
mergefamilies,
mergecollations,
mergestrategies,
mergenullsfirst,
outer_plan,
inner_plan,
best_path->jpath.jointype);
/* Costs of sort and material steps are included in path cost already */
copy_path_costsize(&join_plan->join.plan, &best_path->jpath.path);
return join_plan;
}
| static NestLoop * create_nestloop_plan | ( | PlannerInfo * | root, | |
| NestPath * | best_path, | |||
| Plan * | outer_plan, | |||
| Plan * | inner_plan | |||
| ) | [static] |
Definition at line 2044 of file createplan.c.
References bms_is_member(), bms_is_subset(), bms_overlap(), build_relation_tlist(), copy_path_costsize(), PlannerInfo::curOuterParams, extract_actual_clauses(), extract_actual_join_clauses(), find_placeholder_info(), IS_OUTER_JOIN, IsA, NestLoop::join, JoinPath::joinrestrictinfo, JoinPath::jointype, lappend(), lfirst, list_delete_cell(), list_head(), lnext, make_nestloop(), RangeQueryClause::next, order_qual_clauses(), JoinPath::outerjoinpath, Path::param_info, NestLoopParam::paramval, Path::parent, JoinPath::path, PlaceHolderInfo::ph_eval_at, Join::plan, RelOptInfo::relids, replace_nestloop_params(), and Var::varno.
Referenced by create_join_plan().
{
NestLoop *join_plan;
List *tlist = build_relation_tlist(best_path->path.parent);
List *joinrestrictclauses = best_path->joinrestrictinfo;
List *joinclauses;
List *otherclauses;
Relids outerrelids;
List *nestParams;
ListCell *cell;
ListCell *prev;
ListCell *next;
/* Sort join qual clauses into best execution order */
joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
/* Get the join qual clauses (in plain expression form) */
/* Any pseudoconstant clauses are ignored here */
if (IS_OUTER_JOIN(best_path->jointype))
{
extract_actual_join_clauses(joinrestrictclauses,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = extract_actual_clauses(joinrestrictclauses, false);
otherclauses = NIL;
}
/* Replace any outer-relation variables with nestloop params */
if (best_path->path.param_info)
{
joinclauses = (List *)
replace_nestloop_params(root, (Node *) joinclauses);
otherclauses = (List *)
replace_nestloop_params(root, (Node *) otherclauses);
}
/*
* Identify any nestloop parameters that should be supplied by this join
* node, and move them from root->curOuterParams to the nestParams list.
*/
outerrelids = best_path->outerjoinpath->parent->relids;
nestParams = NIL;
prev = NULL;
for (cell = list_head(root->curOuterParams); cell; cell = next)
{
NestLoopParam *nlp = (NestLoopParam *) lfirst(cell);
next = lnext(cell);
if (IsA(nlp->paramval, Var) &&
bms_is_member(nlp->paramval->varno, outerrelids))
{
root->curOuterParams = list_delete_cell(root->curOuterParams,
cell, prev);
nestParams = lappend(nestParams, nlp);
}
else if (IsA(nlp->paramval, PlaceHolderVar) &&
bms_overlap(((PlaceHolderVar *) nlp->paramval)->phrels,
outerrelids) &&
bms_is_subset(find_placeholder_info(root,
(PlaceHolderVar *) nlp->paramval,
false)->ph_eval_at,
outerrelids))
{
root->curOuterParams = list_delete_cell(root->curOuterParams,
cell, prev);
nestParams = lappend(nestParams, nlp);
}
else
prev = cell;
}
join_plan = make_nestloop(tlist,
joinclauses,
otherclauses,
nestParams,
outer_plan,
inner_plan,
best_path->jointype);
copy_path_costsize(&join_plan->join.plan, &best_path->path);
return join_plan;
}
| Plan* create_plan | ( | PlannerInfo * | root, | |
| Path * | best_path | |||
| ) |
Definition at line 189 of file createplan.c.
References Assert, create_plan_recurse(), PlannerInfo::curOuterParams, PlannerInfo::curOuterRels, elog, ERROR, NIL, and PlannerInfo::plan_params.
Referenced by grouping_planner(), and make_agg_subplan().
{
Plan *plan;
/* plan_params should not be in use in current query level */
Assert(root->plan_params == NIL);
/* Initialize this module's private workspace in PlannerInfo */
root->curOuterRels = NULL;
root->curOuterParams = NIL;
/* Recursively process the path tree */
plan = create_plan_recurse(root, best_path);
/* Check we successfully assigned all NestLoopParams to plan nodes */
if (root->curOuterParams != NIL)
elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
/*
* Reset plan_params to ensure param IDs used for nestloop params are not
* re-used later
*/
root->plan_params = NIL;
return plan;
}
| static Plan * create_plan_recurse | ( | PlannerInfo * | root, | |
| Path * | best_path | |||
| ) | [static] |
Definition at line 221 of file createplan.c.
References create_append_plan(), create_join_plan(), create_material_plan(), create_merge_append_plan(), create_result_plan(), create_scan_plan(), create_unique_plan(), elog, ERROR, Path::pathtype, T_Append, T_BitmapHeapScan, T_CteScan, T_ForeignScan, T_FunctionScan, T_HashJoin, T_IndexOnlyScan, T_IndexScan, T_Material, T_MergeAppend, T_MergeJoin, T_NestLoop, T_Result, T_SeqScan, T_SubqueryScan, T_TidScan, T_Unique, T_ValuesScan, and T_WorkTableScan.
Referenced by create_append_plan(), create_join_plan(), create_material_plan(), create_merge_append_plan(), create_plan(), and create_unique_plan().
{
Plan *plan;
switch (best_path->pathtype)
{
case T_SeqScan:
case T_IndexScan:
case T_IndexOnlyScan:
case T_BitmapHeapScan:
case T_TidScan:
case T_SubqueryScan:
case T_FunctionScan:
case T_ValuesScan:
case T_CteScan:
case T_WorkTableScan:
case T_ForeignScan:
plan = create_scan_plan(root, best_path);
break;
case T_HashJoin:
case T_MergeJoin:
case T_NestLoop:
plan = create_join_plan(root,
(JoinPath *) best_path);
break;
case T_Append:
plan = create_append_plan(root,
(AppendPath *) best_path);
break;
case T_MergeAppend:
plan = create_merge_append_plan(root,
(MergeAppendPath *) best_path);
break;
case T_Result:
plan = (Plan *) create_result_plan(root,
(ResultPath *) best_path);
break;
case T_Material:
plan = (Plan *) create_material_plan(root,
(MaterialPath *) best_path);
break;
case T_Unique:
plan = create_unique_plan(root,
(UniquePath *) best_path);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
return plan;
}
| static Result * create_result_plan | ( | PlannerInfo * | root, | |
| ResultPath * | best_path | |||
| ) | [static] |
Definition at line 852 of file createplan.c.
References Assert, make_result(), NULL, order_qual_clauses(), Path::parent, ResultPath::path, and ResultPath::quals.
Referenced by create_plan_recurse().
{
List *tlist;
List *quals;
/* The tlist will be installed later, since we have no RelOptInfo */
Assert(best_path->path.parent == NULL);
tlist = NIL;
/* best_path->quals is just bare clauses */
quals = order_qual_clauses(root, best_path->quals);
return make_result(root, tlist, (Node *) quals, NULL);
}
| static Plan * create_scan_plan | ( | PlannerInfo * | root, | |
| Path * | best_path | |||
| ) | [static] |
Definition at line 281 of file createplan.c.
References RelOptInfo::baserestrictinfo, build_physical_tlist(), build_relation_tlist(), copyObject(), create_bitmap_scan_plan(), create_ctescan_plan(), create_foreignscan_plan(), create_functionscan_plan(), create_gating_plan(), create_indexscan_plan(), create_seqscan_plan(), create_subqueryscan_plan(), create_tidscan_plan(), create_valuesscan_plan(), create_worktablescan_plan(), elog, ERROR, PlannerInfo::hasPseudoConstantQuals, list_concat(), list_copy(), NIL, Path::param_info, Path::parent, Path::pathtype, ParamPathInfo::ppi_clauses, RELOPT_BASEREL, RelOptInfo::reloptkind, replace_nestloop_params(), T_BitmapHeapScan, T_CteScan, T_ForeignScan, T_FunctionScan, T_IndexOnlyScan, T_IndexScan, T_SeqScan, T_SubqueryScan, T_TidScan, T_ValuesScan, T_WorkTableScan, and use_physical_tlist().
Referenced by create_plan_recurse().
{
RelOptInfo *rel = best_path->parent;
List *tlist;
List *scan_clauses;
Plan *plan;
/*
* For table scans, rather than using the relation targetlist (which is
* only those Vars actually needed by the query), we prefer to generate a
* tlist containing all Vars in order. This will allow the executor to
* optimize away projection of the table tuples, if possible. (Note that
* planner.c may replace the tlist we generate here, forcing projection to
* occur.)
*/
if (use_physical_tlist(root, rel))
{
if (best_path->pathtype == T_IndexOnlyScan)
{
/* For index-only scan, the preferred tlist is the index's */
tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
}
else
{
tlist = build_physical_tlist(root, rel);
/* if fail because of dropped cols, use regular method */
if (tlist == NIL)
tlist = build_relation_tlist(rel);
}
}
else
{
tlist = build_relation_tlist(rel);
/*
* If it's a parameterized otherrel, there might be lateral references
* in the tlist, which need to be replaced with Params. This cannot
* happen for regular baserels, though. Note use_physical_tlist()
* always fails for otherrels, so we don't need to check this above.
*/
if (rel->reloptkind != RELOPT_BASEREL && best_path->param_info)
tlist = (List *) replace_nestloop_params(root, (Node *) tlist);
}
/*
* Extract the relevant restriction clauses from the parent relation. The
* executor must apply all these restrictions during the scan, except for
* pseudoconstants which we'll take care of below.
*/
scan_clauses = rel->baserestrictinfo;
/*
* If this is a parameterized scan, we also need to enforce all the join
* clauses available from the outer relation(s).
*
* For paranoia's sake, don't modify the stored baserestrictinfo list.
*/
if (best_path->param_info)
scan_clauses = list_concat(list_copy(scan_clauses),
best_path->param_info->ppi_clauses);
switch (best_path->pathtype)
{
case T_SeqScan:
plan = (Plan *) create_seqscan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_IndexScan:
plan = (Plan *) create_indexscan_plan(root,
(IndexPath *) best_path,
tlist,
scan_clauses,
false);
break;
case T_IndexOnlyScan:
plan = (Plan *) create_indexscan_plan(root,
(IndexPath *) best_path,
tlist,
scan_clauses,
true);
break;
case T_BitmapHeapScan:
plan = (Plan *) create_bitmap_scan_plan(root,
(BitmapHeapPath *) best_path,
tlist,
scan_clauses);
break;
case T_TidScan:
plan = (Plan *) create_tidscan_plan(root,
(TidPath *) best_path,
tlist,
scan_clauses);
break;
case T_SubqueryScan:
plan = (Plan *) create_subqueryscan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_FunctionScan:
plan = (Plan *) create_functionscan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_ValuesScan:
plan = (Plan *) create_valuesscan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_CteScan:
plan = (Plan *) create_ctescan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_WorkTableScan:
plan = (Plan *) create_worktablescan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_ForeignScan:
plan = (Plan *) create_foreignscan_plan(root,
(ForeignPath *) best_path,
tlist,
scan_clauses);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
/*
* If there are any pseudoconstant clauses attached to this node, insert a
* gating Result node that evaluates the pseudoconstants as one-time
* quals.
*/
if (root->hasPseudoConstantQuals)
plan = create_gating_plan(root, plan, scan_clauses);
return plan;
}
| static SeqScan * create_seqscan_plan | ( | PlannerInfo * | root, | |
| Path * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1109 of file createplan.c.
References Assert, copy_path_costsize(), extract_actual_clauses(), make_seqscan(), order_qual_clauses(), Path::param_info, Path::parent, Scan::plan, RelOptInfo::relid, replace_nestloop_params(), RTE_RELATION, and RelOptInfo::rtekind.
Referenced by create_scan_plan().
{
SeqScan *scan_plan;
Index scan_relid = best_path->parent->relid;
/* it should be a base rel... */
Assert(scan_relid > 0);
Assert(best_path->parent->rtekind == RTE_RELATION);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
}
scan_plan = make_seqscan(tlist,
scan_clauses,
scan_relid);
copy_path_costsize(&scan_plan->plan, best_path);
return scan_plan;
}
| static SubqueryScan * create_subqueryscan_plan | ( | PlannerInfo * | root, | |
| Path * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1683 of file createplan.c.
References Assert, copy_path_costsize(), extract_actual_clauses(), make_subqueryscan(), order_qual_clauses(), Path::param_info, Path::parent, Scan::plan, process_subquery_nestloop_params(), RelOptInfo::relid, replace_nestloop_params(), RTE_SUBQUERY, RelOptInfo::rtekind, SubqueryScan::scan, RelOptInfo::subplan, and RelOptInfo::subplan_params.
Referenced by create_scan_plan().
{
SubqueryScan *scan_plan;
Index scan_relid = best_path->parent->relid;
/* it should be a subquery base rel... */
Assert(scan_relid > 0);
Assert(best_path->parent->rtekind == RTE_SUBQUERY);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
process_subquery_nestloop_params(root,
best_path->parent->subplan_params);
}
scan_plan = make_subqueryscan(tlist,
scan_clauses,
scan_relid,
best_path->parent->subplan);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
| static TidScan * create_tidscan_plan | ( | PlannerInfo * | root, | |
| TidPath * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1631 of file createplan.c.
References Assert, copy_path_costsize(), extract_actual_clauses(), list_difference(), list_length(), list_make1, make_orclause(), make_tidscan(), order_qual_clauses(), Path::param_info, Path::parent, TidPath::path, Scan::plan, RelOptInfo::relid, replace_nestloop_params(), RTE_RELATION, RelOptInfo::rtekind, TidScan::scan, and TidPath::tidquals.
Referenced by create_scan_plan().
{
TidScan *scan_plan;
Index scan_relid = best_path->path.parent->relid;
List *tidquals = best_path->tidquals;
List *ortidquals;
/* it should be a base rel... */
Assert(scan_relid > 0);
Assert(best_path->path.parent->rtekind == RTE_RELATION);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->path.param_info)
{
tidquals = (List *)
replace_nestloop_params(root, (Node *) tidquals);
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
}
/*
* Remove any clauses that are TID quals. This is a bit tricky since the
* tidquals list has implicit OR semantics.
*/
ortidquals = tidquals;
if (list_length(ortidquals) > 1)
ortidquals = list_make1(make_orclause(ortidquals));
scan_clauses = list_difference(scan_clauses, ortidquals);
scan_plan = make_tidscan(tlist,
scan_clauses,
scan_relid,
tidquals);
copy_path_costsize(&scan_plan->scan.plan, &best_path->path);
return scan_plan;
}
| static Plan * create_unique_plan | ( | PlannerInfo * | root, | |
| UniquePath * | best_path | |||
| ) | [static] |
Definition at line 901 of file createplan.c.
References Assert, assignSortGroupRef(), build_relation_tlist(), create_plan_recurse(), elog, SortGroupClause::eqop, ERROR, get_compatible_hash_operators(), get_equality_op_for_ordering_op(), get_ordering_op_for_equality_op(), get_tle_by_resno(), SortGroupClause::hashable, UniquePath::in_operators, is_projection_capable_plan(), lappend(), lfirst, lfirst_oid, list_length(), make_agg(), make_result(), make_sort_from_sortclauses(), make_unique(), makeNode, makeTargetEntry(), Min, NULL, SortGroupClause::nulls_first, OidIsValid, palloc(), Path::parent, UniquePath::path, Plan::plan_rows, TargetEntry::resno, Path::rows, SortGroupClause::sortop, UniquePath::subpath, Plan::targetlist, SortGroupClause::tleSortGroupRef, tlist_member(), tlist_same_exprs(), UniquePath::umethod, UniquePath::uniq_exprs, UNIQUE_PATH_HASH, UNIQUE_PATH_NOOP, and UNIQUE_PATH_SORT.
Referenced by create_plan_recurse().
{
Plan *plan;
Plan *subplan;
List *in_operators;
List *uniq_exprs;
List *newtlist;
int nextresno;
bool newitems;
int numGroupCols;
AttrNumber *groupColIdx;
int groupColPos;
ListCell *l;
subplan = create_plan_recurse(root, best_path->subpath);
/* Done if we don't need to do any actual unique-ifying */
if (best_path->umethod == UNIQUE_PATH_NOOP)
return subplan;
/*
* As constructed, the subplan has a "flat" tlist containing just the Vars
* needed here and at upper levels. The values we are supposed to
* unique-ify may be expressions in these variables. We have to add any
* such expressions to the subplan's tlist.
*
* The subplan may have a "physical" tlist if it is a simple scan plan. If
* we're going to sort, this should be reduced to the regular tlist, so
* that we don't sort more data than we need to. For hashing, the tlist
* should be left as-is if we don't need to add any expressions; but if we
* do have to add expressions, then a projection step will be needed at
* runtime anyway, so we may as well remove unneeded items. Therefore
* newtlist starts from build_relation_tlist() not just a copy of the
* subplan's tlist; and we don't install it into the subplan unless we are
* sorting or stuff has to be added.
*/
in_operators = best_path->in_operators;
uniq_exprs = best_path->uniq_exprs;
/* initialize modified subplan tlist as just the "required" vars */
newtlist = build_relation_tlist(best_path->path.parent);
nextresno = list_length(newtlist) + 1;
newitems = false;
foreach(l, uniq_exprs)
{
Node *uniqexpr = lfirst(l);
TargetEntry *tle;
tle = tlist_member(uniqexpr, newtlist);
if (!tle)
{
tle = makeTargetEntry((Expr *) uniqexpr,
nextresno,
NULL,
false);
newtlist = lappend(newtlist, tle);
nextresno++;
newitems = true;
}
}
if (newitems || best_path->umethod == UNIQUE_PATH_SORT)
{
/*
* If the top plan node can't do projections and its existing target
* list isn't already what we need, we need to add a Result node to
* help it along.
*/
if (!is_projection_capable_plan(subplan) &&
!tlist_same_exprs(newtlist, subplan->targetlist))
subplan = (Plan *) make_result(root, newtlist, NULL, subplan);
else
subplan->targetlist = newtlist;
}
/*
* Build control information showing which subplan output columns are to
* be examined by the grouping step. Unfortunately we can't merge this
* with the previous loop, since we didn't then know which version of the
* subplan tlist we'd end up using.
*/
newtlist = subplan->targetlist;
numGroupCols = list_length(uniq_exprs);
groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber));
groupColPos = 0;
foreach(l, uniq_exprs)
{
Node *uniqexpr = lfirst(l);
TargetEntry *tle;
tle = tlist_member(uniqexpr, newtlist);
if (!tle) /* shouldn't happen */
elog(ERROR, "failed to find unique expression in subplan tlist");
groupColIdx[groupColPos++] = tle->resno;
}
if (best_path->umethod == UNIQUE_PATH_HASH)
{
long numGroups;
Oid *groupOperators;
numGroups = (long) Min(best_path->path.rows, (double) LONG_MAX);
/*
* Get the hashable equality operators for the Agg node to use.
* Normally these are the same as the IN clause operators, but if
* those are cross-type operators then the equality operators are the
* ones for the IN clause operators' RHS datatype.
*/
groupOperators = (Oid *) palloc(numGroupCols * sizeof(Oid));
groupColPos = 0;
foreach(l, in_operators)
{
Oid in_oper = lfirst_oid(l);
Oid eq_oper;
if (!get_compatible_hash_operators(in_oper, NULL, &eq_oper))
elog(ERROR, "could not find compatible hash operator for operator %u",
in_oper);
groupOperators[groupColPos++] = eq_oper;
}
/*
* Since the Agg node is going to project anyway, we can give it the
* minimum output tlist, without any stuff we might have added to the
* subplan tlist.
*/
plan = (Plan *) make_agg(root,
build_relation_tlist(best_path->path.parent),
NIL,
AGG_HASHED,
NULL,
numGroupCols,
groupColIdx,
groupOperators,
numGroups,
subplan);
}
else
{
List *sortList = NIL;
/* Create an ORDER BY list to sort the input compatibly */
groupColPos = 0;
foreach(l, in_operators)
{
Oid in_oper = lfirst_oid(l);
Oid sortop;
Oid eqop;
TargetEntry *tle;
SortGroupClause *sortcl;
sortop = get_ordering_op_for_equality_op(in_oper, false);
if (!OidIsValid(sortop)) /* shouldn't happen */
elog(ERROR, "could not find ordering operator for equality operator %u",
in_oper);
/*
* The Unique node will need equality operators. Normally these
* are the same as the IN clause operators, but if those are
* cross-type operators then the equality operators are the ones
* for the IN clause operators' RHS datatype.
*/
eqop = get_equality_op_for_ordering_op(sortop, NULL);
if (!OidIsValid(eqop)) /* shouldn't happen */
elog(ERROR, "could not find equality operator for ordering operator %u",
sortop);
tle = get_tle_by_resno(subplan->targetlist,
groupColIdx[groupColPos]);
Assert(tle != NULL);
sortcl = makeNode(SortGroupClause);
sortcl->tleSortGroupRef = assignSortGroupRef(tle,
subplan->targetlist);
sortcl->eqop = eqop;
sortcl->sortop = sortop;
sortcl->nulls_first = false;
sortcl->hashable = false; /* no need to make this accurate */
sortList = lappend(sortList, sortcl);
groupColPos++;
}
plan = (Plan *) make_sort_from_sortclauses(root, sortList, subplan);
plan = (Plan *) make_unique(plan, sortList);
}
/* Adjust output size estimate (other fields should be OK already) */
plan->plan_rows = best_path->path.rows;
return plan;
}
| static ValuesScan * create_valuesscan_plan | ( | PlannerInfo * | root, | |
| Path * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1771 of file createplan.c.
References Assert, copy_path_costsize(), extract_actual_clauses(), make_valuesscan(), order_qual_clauses(), Path::param_info, Path::parent, Scan::plan, planner_rt_fetch, RelOptInfo::relid, replace_nestloop_params(), RTE_VALUES, RangeTblEntry::rtekind, ValuesScan::scan, and RangeTblEntry::values_lists.
Referenced by create_scan_plan().
{
ValuesScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
List *values_lists;
/* it should be a values base rel... */
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_VALUES);
values_lists = rte->values_lists;
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
/* The values lists could contain nestloop params, too */
values_lists = (List *)
replace_nestloop_params(root, (Node *) values_lists);
}
scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
values_lists);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
| static WorkTableScan * create_worktablescan_plan | ( | PlannerInfo * | root, | |
| Path * | best_path, | |||
| List * | tlist, | |||
| List * | scan_clauses | |||
| ) | [static] |
Definition at line 1908 of file createplan.c.
References Assert, copy_path_costsize(), RangeTblEntry::ctelevelsup, RangeTblEntry::ctename, elog, ERROR, extract_actual_clauses(), make_worktablescan(), order_qual_clauses(), Path::param_info, Path::parent, PlannerInfo::parent_root, Scan::plan, planner_rt_fetch, RelOptInfo::relid, replace_nestloop_params(), RTE_CTE, RangeTblEntry::rtekind, WorkTableScan::scan, RangeTblEntry::self_reference, and PlannerInfo::wt_param_id.
Referenced by create_scan_plan().
{
WorkTableScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
Index levelsup;
PlannerInfo *cteroot;
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_CTE);
Assert(rte->self_reference);
/*
* We need to find the worktable param ID, which is in the plan level
* that's processing the recursive UNION, which is one level *below* where
* the CTE comes from.
*/
levelsup = rte->ctelevelsup;
if (levelsup == 0) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
levelsup--;
cteroot = root;
while (levelsup-- > 0)
{
cteroot = cteroot->parent_root;
if (!cteroot) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
}
if (cteroot->wt_param_id < 0) /* shouldn't happen */
elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
}
scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
cteroot->wt_param_id);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
Definition at line 531 of file createplan.c.
References build_relation_tlist(), Path::parent, Path::pathtype, T_BitmapHeapScan, T_CteScan, T_ForeignScan, T_FunctionScan, T_IndexOnlyScan, T_IndexScan, T_SeqScan, T_SubqueryScan, T_TidScan, T_ValuesScan, T_WorkTableScan, and Plan::targetlist.
Referenced by create_hashjoin_plan(), create_material_plan(), and create_mergejoin_plan().
{
/* Only need to undo it for path types handled by create_scan_plan() */
switch (path->pathtype)
{
case T_SeqScan:
case T_IndexScan:
case T_IndexOnlyScan:
case T_BitmapHeapScan:
case T_TidScan:
case T_SubqueryScan:
case T_FunctionScan:
case T_ValuesScan:
case T_CteScan:
case T_WorkTableScan:
case T_ForeignScan:
plan->targetlist = build_relation_tlist(path->parent);
break;
default:
break;
}
}
| static EquivalenceMember * find_ec_member_for_tle | ( | EquivalenceClass * | ec, | |
| TargetEntry * | tle, | |||
| Relids | relids | |||
| ) | [static] |
Definition at line 4048 of file createplan.c.
References arg, bms_equal(), EquivalenceClass::ec_members, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, EquivalenceMember::em_relids, equal(), TargetEntry::expr, IsA, and lfirst.
Referenced by prepare_sort_from_pathkeys().
{
Expr *tlexpr;
ListCell *lc;
/* We ignore binary-compatible relabeling on both ends */
tlexpr = tle->expr;
while (tlexpr && IsA(tlexpr, RelabelType))
tlexpr = ((RelabelType *) tlexpr)->arg;
foreach(lc, ec->ec_members)
{
EquivalenceMember *em = (EquivalenceMember *) lfirst(lc);
Expr *emexpr;
/*
* We shouldn't be trying to sort by an equivalence class that
* contains a constant, so no need to consider such cases any further.
*/
if (em->em_is_const)
continue;
/*
* Ignore child members unless they match the rel being sorted.
*/
if (em->em_is_child &&
!bms_equal(em->em_relids, relids))
continue;
/* Match if same expression (after stripping relabel) */
emexpr = em->em_expr;
while (emexpr && IsA(emexpr, RelabelType))
emexpr = ((RelabelType *) emexpr)->arg;
if (equal(emexpr, tlexpr))
return em;
}
return NULL;
}
| static List * fix_indexorderby_references | ( | PlannerInfo * | root, | |
| IndexPath * | index_path | |||
| ) | [static] |
Definition at line 2901 of file createplan.c.
References OpExpr::args, elog, ERROR, fix_indexqual_operand(), forboth, IndexPath::indexinfo, IndexPath::indexorderbycols, IndexPath::indexorderbys, IsA, lappend(), lfirst, lfirst_int, linitial, list_length(), nodeTag, and replace_nestloop_params().
Referenced by create_indexscan_plan().
{
IndexOptInfo *index = index_path->indexinfo;
List *fixed_indexorderbys;
ListCell *lcc,
*lci;
fixed_indexorderbys = NIL;
forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
{
Node *clause = (Node *) lfirst(lcc);
int indexcol = lfirst_int(lci);
/*
* Replace any outer-relation variables with nestloop params.
*
* This also makes a copy of the clause, so it's safe to modify it
* in-place below.
*/
clause = replace_nestloop_params(root, clause);
if (IsA(clause, OpExpr))
{
OpExpr *op = (OpExpr *) clause;
if (list_length(op->args) != 2)
elog(ERROR, "indexorderby clause is not binary opclause");
/*
* Now replace the indexkey expression with an index Var.
*/
linitial(op->args) = fix_indexqual_operand(linitial(op->args),
index,
indexcol);
}
else
elog(ERROR, "unsupported indexorderby type: %d",
(int) nodeTag(clause));
fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
}
return fixed_indexorderbys;
}
| static Node * fix_indexqual_operand | ( | Node * | node, | |
| IndexOptInfo * | index, | |||
| int | indexcol | |||
| ) | [static] |
Definition at line 2958 of file createplan.c.
References arg, Assert, copyObject(), elog, equal(), ERROR, exprCollation(), exprType(), INDEX_VAR, IndexOptInfo::indexkeys, IndexOptInfo::indexprs, IsA, lfirst, list_head(), lnext, makeVar(), IndexOptInfo::ncolumns, NULL, IndexOptInfo::rel, RelOptInfo::relid, Var::varattno, and Var::varno.
Referenced by fix_indexorderby_references(), and fix_indexqual_references().
{
Var *result;
int pos;
ListCell *indexpr_item;
/*
* Remove any binary-compatible relabeling of the indexkey
*/
if (IsA(node, RelabelType))
node = (Node *) ((RelabelType *) node)->arg;
Assert(indexcol >= 0 && indexcol < index->ncolumns);
if (index->indexkeys[indexcol] != 0)
{
/* It's a simple index column */
if (IsA(node, Var) &&
((Var *) node)->varno == index->rel->relid &&
((Var *) node)->varattno == index->indexkeys[indexcol])
{
result = (Var *) copyObject(node);
result->varno = INDEX_VAR;
result->varattno = indexcol + 1;
return (Node *) result;
}
else
elog(ERROR, "index key does not match expected index column");
}
/* It's an index expression, so find and cross-check the expression */
indexpr_item = list_head(index->indexprs);
for (pos = 0; pos < index->ncolumns; pos++)
{
if (index->indexkeys[pos] == 0)
{
if (indexpr_item == NULL)
elog(ERROR, "too few entries in indexprs list");
if (pos == indexcol)
{
Node *indexkey;
indexkey = (Node *) lfirst(indexpr_item);
if (indexkey && IsA(indexkey, RelabelType))
indexkey = (Node *) ((RelabelType *) indexkey)->arg;
if (equal(node, indexkey))
{
result = makeVar(INDEX_VAR, indexcol + 1,
exprType(lfirst(indexpr_item)), -1,
exprCollation(lfirst(indexpr_item)),
0);
return (Node *) result;
}
else
elog(ERROR, "index key does not match expected index column");
}
indexpr_item = lnext(indexpr_item);
}
}
/* Ooops... */
elog(ERROR, "index key does not match expected index column");
return NULL; /* keep compiler quiet */
}
| static List * fix_indexqual_references | ( | PlannerInfo * | root, | |
| IndexPath * | index_path | |||
| ) | [static] |
Definition at line 2768 of file createplan.c.
References adjust_rowcompare_for_index(), NullTest::arg, ScalarArrayOpExpr::args, OpExpr::args, Assert, bms_equal(), RestrictInfo::clause, CommuteOpExpr(), CommuteRowCompareExpr(), elog, ERROR, fix_indexqual_operand(), forboth, IndexPath::indexinfo, IndexPath::indexqualcols, IndexPath::indexquals, IsA, lappend(), RestrictInfo::left_relids, lfirst, lfirst_int, linitial, list_length(), nodeTag, IndexOptInfo::rel, RelOptInfo::relids, and replace_nestloop_params().
Referenced by create_indexscan_plan().
{
IndexOptInfo *index = index_path->indexinfo;
List *fixed_indexquals;
ListCell *lcc,
*lci;
fixed_indexquals = NIL;
forboth(lcc, index_path->indexquals, lci, index_path->indexqualcols)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lcc);
int indexcol = lfirst_int(lci);
Node *clause;
Assert(IsA(rinfo, RestrictInfo));
/*
* Replace any outer-relation variables with nestloop params.
*
* This also makes a copy of the clause, so it's safe to modify it
* in-place below.
*/
clause = replace_nestloop_params(root, (Node *) rinfo->clause);
if (IsA(clause, OpExpr))
{
OpExpr *op = (OpExpr *) clause;
if (list_length(op->args) != 2)
elog(ERROR, "indexqual clause is not binary opclause");
/*
* Check to see if the indexkey is on the right; if so, commute
* the clause. The indexkey should be the side that refers to
* (only) the base relation.
*/
if (!bms_equal(rinfo->left_relids, index->rel->relids))
CommuteOpExpr(op);
/*
* Now replace the indexkey expression with an index Var.
*/
linitial(op->args) = fix_indexqual_operand(linitial(op->args),
index,
indexcol);
}
else if (IsA(clause, RowCompareExpr))
{
RowCompareExpr *rc = (RowCompareExpr *) clause;
Expr *newrc;
List *indexcolnos;
bool var_on_left;
ListCell *lca,
*lcai;
/*
* Re-discover which index columns are used in the rowcompare.
*/
newrc = adjust_rowcompare_for_index(rc,
index,
indexcol,
&indexcolnos,
&var_on_left);
/*
* Trouble if adjust_rowcompare_for_index thought the
* RowCompareExpr didn't match the index as-is; the clause should
* have gone through that routine already.
*/
if (newrc != (Expr *) rc)
elog(ERROR, "inconsistent results from adjust_rowcompare_for_index");
/*
* Check to see if the indexkey is on the right; if so, commute
* the clause.
*/
if (!var_on_left)
CommuteRowCompareExpr(rc);
/*
* Now replace the indexkey expressions with index Vars.
*/
Assert(list_length(rc->largs) == list_length(indexcolnos));
forboth(lca, rc->largs, lcai, indexcolnos)
{
lfirst(lca) = fix_indexqual_operand(lfirst(lca),
index,
lfirst_int(lcai));
}
}
else if (IsA(clause, ScalarArrayOpExpr))
{
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
/* Never need to commute... */
/* Replace the indexkey expression with an index Var. */
linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
index,
indexcol);
}
else if (IsA(clause, NullTest))
{
NullTest *nt = (NullTest *) clause;
/* Replace the indexkey expression with an index Var. */
nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
index,
indexcol);
}
else
elog(ERROR, "unsupported indexqual type: %d",
(int) nodeTag(clause));
fixed_indexquals = lappend(fixed_indexquals, clause);
}
return fixed_indexquals;
}
Definition at line 3033 of file createplan.c.
References OpExpr::args, Assert, bms_is_subset(), RestrictInfo::clause, CommuteOpExpr(), OpExpr::inputcollid, is_opclause, lappend(), RestrictInfo::left_relids, lfirst, list_copy(), OpExpr::location, makeNode, OpExpr::opcollid, OpExpr::opfuncid, OpExpr::opno, OpExpr::opresulttype, OpExpr::opretset, RestrictInfo::outer_is_left, and RestrictInfo::right_relids.
Referenced by create_hashjoin_plan(), and create_mergejoin_plan().
{
List *t_list = NIL;
ListCell *l;
foreach(l, clauses)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
OpExpr *clause = (OpExpr *) restrictinfo->clause;
Assert(is_opclause(clause));
if (bms_is_subset(restrictinfo->right_relids, outerrelids))
{
/*
* Duplicate just enough of the structure to allow commuting the
* clause without changing the original list. Could use
* copyObject, but a complete deep copy is overkill.
*/
OpExpr *temp = makeNode(OpExpr);
temp->opno = clause->opno;
temp->opfuncid = InvalidOid;
temp->opresulttype = clause->opresulttype;
temp->opretset = clause->opretset;
temp->opcollid = clause->opcollid;
temp->inputcollid = clause->inputcollid;
temp->args = list_copy(clause->args);
temp->location = clause->location;
/* Commute it --- note this modifies the temp node in-place. */
CommuteOpExpr(temp);
t_list = lappend(t_list, temp);
restrictinfo->outer_is_left = false;
}
else
{
Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
t_list = lappend(t_list, clause);
restrictinfo->outer_is_left = true;
}
}
return t_list;
}
Definition at line 4837 of file createplan.c.
References nodeTag, T_Append, T_Hash, T_Limit, T_LockRows, T_Material, T_MergeAppend, T_ModifyTable, T_RecursiveUnion, T_SetOp, T_Sort, and T_Unique.
Referenced by create_unique_plan(), grouping_planner(), and prepare_sort_from_pathkeys().
{
/* Most plan types can project, so just list the ones that can't */
switch (nodeTag(plan))
{
case T_Hash:
case T_Material:
case T_Sort:
case T_Unique:
case T_SetOp:
case T_LockRows:
case T_Limit:
case T_ModifyTable:
case T_Append:
case T_MergeAppend:
case T_RecursiveUnion:
return false;
default:
break;
}
return true;
}
| Agg* make_agg | ( | PlannerInfo * | root, | |
| List * | tlist, | |||
| List * | qual, | |||
| AggStrategy | aggstrategy, | |||
| const AggClauseCosts * | aggcosts, | |||
| int | numGroupCols, | |||
| AttrNumber * | grpColIdx, | |||
| Oid * | grpOperators, | |||
| long | numGroups, | |||
| Plan * | lefttree | |||
| ) |
Definition at line 4274 of file createplan.c.
References add_tlist_costs_to_plan(), AGG_PLAIN, Agg::aggstrategy, copy_plan_costsize(), cost_agg(), cost_qual_eval(), Agg::grpColIdx, Agg::grpOperators, Plan::lefttree, makeNode, Agg::numCols, Agg::numGroups, QualCost::per_tuple, Agg::plan, Plan::plan_rows, Plan::qual, Plan::righttree, QualCost::startup, Path::startup_cost, Plan::startup_cost, Plan::targetlist, Path::total_cost, and Plan::total_cost.
Referenced by create_unique_plan(), grouping_planner(), and make_union_unique().
{
Agg *node = makeNode(Agg);
Plan *plan = &node->plan;
Path agg_path; /* dummy for result of cost_agg */
QualCost qual_cost;
node->aggstrategy = aggstrategy;
node->numCols = numGroupCols;
node->grpColIdx = grpColIdx;
node->grpOperators = grpOperators;
node->numGroups = numGroups;
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_agg(&agg_path, root,
aggstrategy, aggcosts,
numGroupCols, numGroups,
lefttree->startup_cost,
lefttree->total_cost,
lefttree->plan_rows);
plan->startup_cost = agg_path.startup_cost;
plan->total_cost = agg_path.total_cost;
/*
* We will produce a single output tuple if not grouping, and a tuple per
* group otherwise.
*/
if (aggstrategy == AGG_PLAIN)
plan->plan_rows = 1;
else
plan->plan_rows = numGroups;
/*
* We also need to account for the cost of evaluation of the qual (ie, the
* HAVING clause) and the tlist. Note that cost_qual_eval doesn't charge
* anything for Aggref nodes; this is okay since they are really
* comparable to Vars.
*
* See notes in add_tlist_costs_to_plan about why only make_agg,
* make_windowagg and make_group worry about tlist eval cost.
*/
if (qual)
{
cost_qual_eval(&qual_cost, qual, root);
plan->startup_cost += qual_cost.startup;
plan->total_cost += qual_cost.startup;
plan->total_cost += qual_cost.per_tuple * plan->plan_rows;
}
add_tlist_costs_to_plan(root, plan, tlist);
plan->qual = qual;
plan->targetlist = tlist;
plan->lefttree = lefttree;
plan->righttree = NULL;
return node;
}
Definition at line 3498 of file createplan.c.
References Append::appendplans, Plan::lefttree, lfirst, list_head(), makeNode, Append::plan, Plan::plan_rows, Plan::plan_width, Plan::qual, Plan::righttree, rint(), Plan::startup_cost, Plan::targetlist, and Plan::total_cost.
Referenced by create_append_plan(), generate_nonunion_plan(), and generate_union_plan().
{
Append *node = makeNode(Append);
Plan *plan = &node->plan;
double total_size;
ListCell *subnode;
/*
* Compute cost as sum of subplan costs. We charge nothing extra for the
* Append itself, which perhaps is too optimistic, but since it doesn't do
* any selection or projection, it is a pretty cheap node.
*
* If you change this, see also create_append_path(). Also, the size
* calculations should match set_append_rel_pathlist(). It'd be better
* not to duplicate all this logic, but some callers of this function
* aren't working from an appendrel or AppendPath, so there's noplace to
* copy the data from.
*/
plan->startup_cost = 0;
plan->total_cost = 0;
plan->plan_rows = 0;
total_size = 0;
foreach(subnode, appendplans)
{
Plan *subplan = (Plan *) lfirst(subnode);
if (subnode == list_head(appendplans)) /* first node? */
plan->startup_cost = subplan->startup_cost;
plan->total_cost += subplan->total_cost;
plan->plan_rows += subplan->plan_rows;
total_size += subplan->plan_width * subplan->plan_rows;
}
if (plan->plan_rows > 0)
plan->plan_width = rint(total_size / plan->plan_rows);
else
plan->plan_width = 0;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
node->appendplans = appendplans;
return node;
}
Definition at line 3599 of file createplan.c.
References BitmapAnd::bitmapplans, Plan::lefttree, makeNode, BitmapAnd::plan, Plan::qual, Plan::righttree, and Plan::targetlist.
Referenced by create_bitmap_subplan().
{
BitmapAnd *node = makeNode(BitmapAnd);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = NIL;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
node->bitmapplans = bitmapplans;
return node;
}
| static BitmapHeapScan * make_bitmap_heapscan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Plan * | lefttree, | |||
| List * | bitmapqualorig, | |||
| Index | scanrelid | |||
| ) | [static] |
Definition at line 3316 of file createplan.c.
References BitmapHeapScan::bitmapqualorig, Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, BitmapHeapScan::scan, Scan::scanrelid, and Plan::targetlist.
Referenced by create_bitmap_scan_plan().
{
BitmapHeapScan *node = makeNode(BitmapHeapScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->bitmapqualorig = bitmapqualorig;
return node;
}
| static BitmapIndexScan * make_bitmap_indexscan | ( | Index | scanrelid, | |
| Oid | indexid, | |||
| List * | indexqual, | |||
| List * | indexqualorig | |||
| ) | [static] |
Definition at line 3294 of file createplan.c.
References BitmapIndexScan::indexid, BitmapIndexScan::indexqual, BitmapIndexScan::indexqualorig, Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, BitmapIndexScan::scan, Scan::scanrelid, and Plan::targetlist.
Referenced by create_bitmap_subplan().
{
BitmapIndexScan *node = makeNode(BitmapIndexScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = NIL; /* not used */
plan->qual = NIL; /* not used */
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->indexid = indexid;
node->indexqual = indexqual;
node->indexqualorig = indexqualorig;
return node;
}
Definition at line 3615 of file createplan.c.
References BitmapOr::bitmapplans, Plan::lefttree, makeNode, BitmapOr::plan, Plan::qual, Plan::righttree, and Plan::targetlist.
Referenced by create_bitmap_subplan().
{
BitmapOr *node = makeNode(BitmapOr);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = NIL;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
node->bitmapplans = bitmapplans;
return node;
}
| static CteScan * make_ctescan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| int | ctePlanId, | |||
| int | cteParam | |||
| ) | [static] |
Definition at line 3432 of file createplan.c.
References CteScan::cteParam, CteScan::ctePlanId, Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, CteScan::scan, Scan::scanrelid, and Plan::targetlist.
Referenced by create_ctescan_plan().
{
CteScan *node = makeNode(CteScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->ctePlanId = ctePlanId;
node->cteParam = cteParam;
return node;
}
| ForeignScan* make_foreignscan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| List * | fdw_exprs, | |||
| List * | fdw_private | |||
| ) |
Definition at line 3474 of file createplan.c.
References ForeignScan::fdw_exprs, ForeignScan::fdw_private, ForeignScan::fsSystemCol, Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, ForeignScan::scan, Scan::scanrelid, and Plan::targetlist.
Referenced by fileGetForeignPlan(), and postgresGetForeignPlan().
{
ForeignScan *node = makeNode(ForeignScan);
Plan *plan = &node->scan.plan;
/* cost will be filled in by create_foreignscan_plan */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->fdw_exprs = fdw_exprs;
node->fdw_private = fdw_private;
/* fsSystemCol will be filled in by create_foreignscan_plan */
node->fsSystemCol = false;
return node;
}
| static FunctionScan * make_functionscan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| Node * | funcexpr, | |||
| List * | funccolnames, | |||
| List * | funccoltypes, | |||
| List * | funccoltypmods, | |||
| List * | funccolcollations | |||
| ) | [static] |
Definition at line 3384 of file createplan.c.
References FunctionScan::funccolcollations, FunctionScan::funccolnames, FunctionScan::funccoltypes, FunctionScan::funccoltypmods, FunctionScan::funcexpr, Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, FunctionScan::scan, Scan::scanrelid, and Plan::targetlist.
Referenced by create_functionscan_plan().
{
FunctionScan *node = makeNode(FunctionScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->funcexpr = funcexpr;
node->funccolnames = funccolnames;
node->funccoltypes = funccoltypes;
node->funccoltypmods = funccoltypmods;
node->funccolcollations = funccolcollations;
return node;
}
| Group* make_group | ( | PlannerInfo * | root, | |
| List * | tlist, | |||
| List * | qual, | |||
| int | numGroupCols, | |||
| AttrNumber * | grpColIdx, | |||
| Oid * | grpOperators, | |||
| double | numGroups, | |||
| Plan * | lefttree | |||
| ) |
Definition at line 4386 of file createplan.c.
References add_tlist_costs_to_plan(), copy_plan_costsize(), cost_group(), cost_qual_eval(), Group::grpColIdx, Group::grpOperators, Plan::lefttree, makeNode, Group::numCols, QualCost::per_tuple, Group::plan, Plan::plan_rows, Plan::qual, Plan::righttree, QualCost::startup, Path::startup_cost, Plan::startup_cost, Plan::targetlist, Path::total_cost, and Plan::total_cost.
Referenced by grouping_planner().
{
Group *node = makeNode(Group);
Plan *plan = &node->plan;
Path group_path; /* dummy for result of cost_group */
QualCost qual_cost;
node->numCols = numGroupCols;
node->grpColIdx = grpColIdx;
node->grpOperators = grpOperators;
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_group(&group_path, root,
numGroupCols, numGroups,
lefttree->startup_cost,
lefttree->total_cost,
lefttree->plan_rows);
plan->startup_cost = group_path.startup_cost;
plan->total_cost = group_path.total_cost;
/* One output tuple per estimated result group */
plan->plan_rows = numGroups;
/*
* We also need to account for the cost of evaluation of the qual (ie, the
* HAVING clause) and the tlist.
*
* XXX this double-counts the cost of evaluation of any expressions used
* for grouping, since in reality those will have been evaluated at a
* lower plan level and will only be copied by the Group node. Worth
* fixing?
*
* See notes in add_tlist_costs_to_plan about why only make_agg,
* make_windowagg and make_group worry about tlist eval cost.
*/
if (qual)
{
cost_qual_eval(&qual_cost, qual, root);
plan->startup_cost += qual_cost.startup;
plan->total_cost += qual_cost.startup;
plan->total_cost += qual_cost.per_tuple * plan->plan_rows;
}
add_tlist_costs_to_plan(root, plan, tlist);
plan->qual = qual;
plan->targetlist = tlist;
plan->lefttree = lefttree;
plan->righttree = NULL;
return node;
}
| static Hash * make_hash | ( | Plan * | lefttree, | |
| Oid | skewTable, | |||
| AttrNumber | skewColumn, | |||
| bool | skewInherit, | |||
| Oid | skewColType, | |||
| int32 | skewColTypmod | |||
| ) | [static] |
Definition at line 3679 of file createplan.c.
References copy_plan_costsize(), Plan::lefttree, makeNode, Hash::plan, Plan::qual, Plan::righttree, Hash::skewColType, Hash::skewColTypmod, Hash::skewColumn, Hash::skewInherit, Hash::skewTable, Plan::startup_cost, Plan::targetlist, and Plan::total_cost.
Referenced by create_hashjoin_plan().
{
Hash *node = makeNode(Hash);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
/*
* For plausibility, make startup & total costs equal total cost of input
* plan; this only affects EXPLAIN display not decisions.
*/
plan->startup_cost = plan->total_cost;
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->skewTable = skewTable;
node->skewColumn = skewColumn;
node->skewInherit = skewInherit;
node->skewColType = skewColType;
node->skewColTypmod = skewColTypmod;
return node;
}
| static HashJoin * make_hashjoin | ( | List * | tlist, | |
| List * | joinclauses, | |||
| List * | otherclauses, | |||
| List * | hashclauses, | |||
| Plan * | lefttree, | |||
| Plan * | righttree, | |||
| JoinType | jointype | |||
| ) | [static] |
Definition at line 3655 of file createplan.c.
References HashJoin::hashclauses, HashJoin::join, Join::joinqual, Join::jointype, Plan::lefttree, makeNode, Join::plan, Plan::qual, Plan::righttree, and Plan::targetlist.
Referenced by create_hashjoin_plan().
{
HashJoin *node = makeNode(HashJoin);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->hashclauses = hashclauses;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
return node;
}
| static IndexOnlyScan * make_indexonlyscan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| Oid | indexid, | |||
| List * | indexqual, | |||
| List * | indexorderby, | |||
| List * | indextlist, | |||
| ScanDirection | indexscandir | |||
| ) | [static] |
Definition at line 3266 of file createplan.c.
References IndexOnlyScan::indexid, IndexOnlyScan::indexorderby, IndexOnlyScan::indexorderdir, IndexOnlyScan::indexqual, IndexOnlyScan::indextlist, Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, IndexOnlyScan::scan, Scan::scanrelid, and Plan::targetlist.
Referenced by create_indexscan_plan().
{
IndexOnlyScan *node = makeNode(IndexOnlyScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->indexid = indexid;
node->indexqual = indexqual;
node->indexorderby = indexorderby;
node->indextlist = indextlist;
node->indexorderdir = indexscandir;
return node;
}
| static IndexScan * make_indexscan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| Oid | indexid, | |||
| List * | indexqual, | |||
| List * | indexqualorig, | |||
| List * | indexorderby, | |||
| List * | indexorderbyorig, | |||
| ScanDirection | indexscandir | |||
| ) | [static] |
Definition at line 3236 of file createplan.c.
References IndexScan::indexid, IndexScan::indexorderby, IndexScan::indexorderbyorig, IndexScan::indexorderdir, IndexScan::indexqual, IndexScan::indexqualorig, Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, IndexScan::scan, Scan::scanrelid, and Plan::targetlist.
Referenced by create_indexscan_plan().
{
IndexScan *node = makeNode(IndexScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->indexid = indexid;
node->indexqual = indexqual;
node->indexqualorig = indexqualorig;
node->indexorderby = indexorderby;
node->indexorderbyorig = indexorderbyorig;
node->indexorderdir = indexscandir;
return node;
}
| Limit* make_limit | ( | Plan * | lefttree, | |
| Node * | limitOffset, | |||
| Node * | limitCount, | |||
| int64 | offset_est, | |||
| int64 | count_est | |||
| ) |
Definition at line 4604 of file createplan.c.
References clamp_row_est(), copy_plan_costsize(), Plan::lefttree, Limit::limitCount, Limit::limitOffset, makeNode, Limit::plan, Plan::plan_rows, Plan::qual, Plan::righttree, Plan::startup_cost, Plan::targetlist, and Plan::total_cost.
Referenced by make_agg_subplan().
{
Limit *node = makeNode(Limit);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
/*
* Adjust the output rows count and costs according to the offset/limit.
* This is only a cosmetic issue if we are at top level, but if we are
* building a subquery then it's important to report correct info to the
* outer planner.
*
* When the offset or count couldn't be estimated, use 10% of the
* estimated number of rows emitted from the subplan.
*/
if (offset_est != 0)
{
double offset_rows;
if (offset_est > 0)
offset_rows = (double) offset_est;
else
offset_rows = clamp_row_est(lefttree->plan_rows * 0.10);
if (offset_rows > plan->plan_rows)
offset_rows = plan->plan_rows;
if (plan->plan_rows > 0)
plan->startup_cost +=
(plan->total_cost - plan->startup_cost)
* offset_rows / plan->plan_rows;
plan->plan_rows -= offset_rows;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
}
if (count_est != 0)
{
double count_rows;
if (count_est > 0)
count_rows = (double) count_est;
else
count_rows = clamp_row_est(lefttree->plan_rows * 0.10);
if (count_rows > plan->plan_rows)
count_rows = plan->plan_rows;
if (plan->plan_rows > 0)
plan->total_cost = plan->startup_cost +
(plan->total_cost - plan->startup_cost)
* count_rows / plan->plan_rows;
plan->plan_rows = count_rows;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
}
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->limitOffset = limitOffset;
node->limitCount = limitCount;
return node;
}
Definition at line 4575 of file createplan.c.
References copy_plan_costsize(), cpu_tuple_cost, LockRows::epqParam, Plan::lefttree, makeNode, LockRows::plan, Plan::plan_rows, Plan::qual, Plan::righttree, LockRows::rowMarks, Plan::targetlist, and Plan::total_cost.
{
LockRows *node = makeNode(LockRows);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
/* charge cpu_tuple_cost to reflect locking costs (underestimate?) */
plan->total_cost += cpu_tuple_cost * plan->plan_rows;
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->rowMarks = rowMarks;
node->epqParam = epqParam;
return node;
}
Definition at line 4223 of file createplan.c.
References Plan::lefttree, makeNode, Material::plan, Plan::qual, Plan::righttree, and Plan::targetlist.
Referenced by create_material_plan(), create_mergejoin_plan(), and materialize_finished_plan().
{
Material *node = makeNode(Material);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
return node;
}
| static MergeJoin * make_mergejoin | ( | List * | tlist, | |
| List * | joinclauses, | |||
| List * | otherclauses, | |||
| List * | mergeclauses, | |||
| Oid * | mergefamilies, | |||
| Oid * | mergecollations, | |||
| int * | mergestrategies, | |||
| bool * | mergenullsfirst, | |||
| Plan * | lefttree, | |||
| Plan * | righttree, | |||
| JoinType | jointype | |||
| ) | [static] |
Definition at line 3711 of file createplan.c.
References MergeJoin::join, Join::joinqual, Join::jointype, Plan::lefttree, makeNode, MergeJoin::mergeclauses, MergeJoin::mergeCollations, MergeJoin::mergeFamilies, MergeJoin::mergeNullsFirst, MergeJoin::mergeStrategies, Join::plan, Plan::qual, Plan::righttree, and Plan::targetlist.
Referenced by create_mergejoin_plan().
{
MergeJoin *node = makeNode(MergeJoin);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->mergeclauses = mergeclauses;
node->mergeFamilies = mergefamilies;
node->mergeCollations = mergecollations;
node->mergeStrategies = mergestrategies;
node->mergeNullsFirst = mergenullsfirst;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
return node;
}
| ModifyTable* make_modifytable | ( | PlannerInfo * | root, | |
| CmdType | operation, | |||
| bool | canSetTag, | |||
| List * | resultRelations, | |||
| List * | subplans, | |||
| List * | returningLists, | |||
| List * | rowMarks, | |||
| int | epqParam | |||
| ) |
Definition at line 4727 of file createplan.c.
References Assert, ModifyTable::canSetTag, ModifyTable::epqParam, ModifyTable::fdwPrivLists, RelOptInfo::fdwroutine, GetFdwRoutineByRelId(), i, lappend(), Plan::lefttree, lfirst, lfirst_int, list_head(), list_length(), makeNode, NIL, NULL, ModifyTable::operation, ModifyTable::plan, Plan::plan_rows, Plan::plan_width, FdwRoutine::PlanForeignModify, planner_rt_fetch, ModifyTable::plans, Plan::qual, RangeTblEntry::relid, RangeTblEntry::relkind, RELKIND_FOREIGN_TABLE, ModifyTable::resultRelations, ModifyTable::resultRelIndex, ModifyTable::returningLists, Plan::righttree, rint(), ModifyTable::rowMarks, RTE_RELATION, RangeTblEntry::rtekind, PlannerInfo::simple_rel_array, Plan::startup_cost, Plan::targetlist, and Plan::total_cost.
Referenced by inheritance_planner(), and subquery_planner().
{
ModifyTable *node = makeNode(ModifyTable);
Plan *plan = &node->plan;
double total_size;
List *fdw_private_list;
ListCell *subnode;
ListCell *lc;
int i;
Assert(list_length(resultRelations) == list_length(subplans));
Assert(returningLists == NIL ||
list_length(resultRelations) == list_length(returningLists));
/*
* Compute cost as sum of subplan costs.
*/
plan->startup_cost = 0;
plan->total_cost = 0;
plan->plan_rows = 0;
total_size = 0;
foreach(subnode, subplans)
{
Plan *subplan = (Plan *) lfirst(subnode);
if (subnode == list_head(subplans)) /* first node? */
plan->startup_cost = subplan->startup_cost;
plan->total_cost += subplan->total_cost;
plan->plan_rows += subplan->plan_rows;
total_size += subplan->plan_width * subplan->plan_rows;
}
if (plan->plan_rows > 0)
plan->plan_width = rint(total_size / plan->plan_rows);
else
plan->plan_width = 0;
node->plan.lefttree = NULL;
node->plan.righttree = NULL;
node->plan.qual = NIL;
/* setrefs.c will fill in the targetlist, if needed */
node->plan.targetlist = NIL;
node->operation = operation;
node->canSetTag = canSetTag;
node->resultRelations = resultRelations;
node->resultRelIndex = -1; /* will be set correctly in setrefs.c */
node->plans = subplans;
node->returningLists = returningLists;
node->rowMarks = rowMarks;
node->epqParam = epqParam;
/*
* For each result relation that is a foreign table, allow the FDW to
* construct private plan data, and accumulate it all into a list.
*/
fdw_private_list = NIL;
i = 0;
foreach(lc, resultRelations)
{
Index rti = lfirst_int(lc);
FdwRoutine *fdwroutine;
List *fdw_private;
/*
* If possible, we want to get the FdwRoutine from our RelOptInfo for
* the table. But sometimes we don't have a RelOptInfo and must get
* it the hard way. (In INSERT, the target relation is not scanned,
* so it's not a baserel; and there are also corner cases for
* updatable views where the target rel isn't a baserel.)
*/
if (rti < root->simple_rel_array_size &&
root->simple_rel_array[rti] != NULL)
{
RelOptInfo *resultRel = root->simple_rel_array[rti];
fdwroutine = resultRel->fdwroutine;
}
else
{
RangeTblEntry *rte = planner_rt_fetch(rti, root);
Assert(rte->rtekind == RTE_RELATION);
if (rte->relkind == RELKIND_FOREIGN_TABLE)
fdwroutine = GetFdwRoutineByRelId(rte->relid);
else
fdwroutine = NULL;
}
if (fdwroutine != NULL &&
fdwroutine->PlanForeignModify != NULL)
fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
else
fdw_private = NIL;
fdw_private_list = lappend(fdw_private_list, fdw_private);
i++;
}
node->fdwPrivLists = fdw_private_list;
return node;
}
| static NestLoop * make_nestloop | ( | List * | tlist, | |
| List * | joinclauses, | |||
| List * | otherclauses, | |||
| List * | nestParams, | |||
| Plan * | lefttree, | |||
| Plan * | righttree, | |||
| JoinType | jointype | |||
| ) | [static] |
Definition at line 3631 of file createplan.c.
References NestLoop::join, Join::joinqual, Join::jointype, Plan::lefttree, makeNode, NestLoop::nestParams, Join::plan, Plan::qual, Plan::righttree, and Plan::targetlist.
Referenced by create_nestloop_plan().
{
NestLoop *node = makeNode(NestLoop);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
node->nestParams = nestParams;
return node;
}
| RecursiveUnion* make_recursive_union | ( | List * | tlist, | |
| Plan * | lefttree, | |||
| Plan * | righttree, | |||
| int | wtParam, | |||
| List * | distinctList, | |||
| long | numGroups | |||
| ) |
Definition at line 3545 of file createplan.c.
References Assert, cost_recursive_union(), RecursiveUnion::dupColIdx, RecursiveUnion::dupOperators, SortGroupClause::eqop, get_sortgroupclause_tle(), Plan::lefttree, lfirst, list_length(), makeNode, RecursiveUnion::numCols, RecursiveUnion::numGroups, OidIsValid, palloc(), RecursiveUnion::plan, Plan::qual, TargetEntry::resno, Plan::righttree, Plan::targetlist, and RecursiveUnion::wtParam.
Referenced by generate_recursion_plan().
{
RecursiveUnion *node = makeNode(RecursiveUnion);
Plan *plan = &node->plan;
int numCols = list_length(distinctList);
cost_recursive_union(plan, lefttree, righttree);
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->wtParam = wtParam;
/*
* convert SortGroupClause list into arrays of attr indexes and equality
* operators, as wanted by executor
*/
node->numCols = numCols;
if (numCols > 0)
{
int keyno = 0;
AttrNumber *dupColIdx;
Oid *dupOperators;
ListCell *slitem;
dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
foreach(slitem, distinctList)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(sortcl,
plan->targetlist);
dupColIdx[keyno] = tle->resno;
dupOperators[keyno] = sortcl->eqop;
Assert(OidIsValid(dupOperators[keyno]));
keyno++;
}
node->dupColIdx = dupColIdx;
node->dupOperators = dupOperators;
}
node->numGroups = numGroups;
return node;
}
| Result* make_result | ( | PlannerInfo * | root, | |
| List * | tlist, | |||
| Node * | resconstantqual, | |||
| Plan * | subplan | |||
| ) |
Definition at line 4680 of file createplan.c.
References copy_plan_costsize(), cost_qual_eval(), cpu_tuple_cost, Plan::lefttree, makeNode, QualCost::per_tuple, Result::plan, Plan::plan_rows, Plan::plan_width, Plan::qual, Result::resconstantqual, Plan::righttree, QualCost::startup, Plan::startup_cost, Plan::targetlist, and Plan::total_cost.
Referenced by create_append_plan(), create_gating_plan(), create_result_plan(), create_unique_plan(), float4_numeric(), float8_numeric(), grouping_planner(), inheritance_planner(), int2_numeric(), int4_numeric(), int8_numeric(), numeric(), numeric_abs(), numeric_add(), numeric_ceil(), numeric_div(), numeric_div_trunc(), numeric_exp(), numeric_fac(), numeric_floor(), numeric_in(), numeric_inc(), numeric_ln(), numeric_log(), numeric_mod(), numeric_mul(), numeric_power(), numeric_recv(), numeric_round(), numeric_sign(), numeric_sqrt(), numeric_stddev_internal(), numeric_sub(), numeric_trunc(), numeric_uminus(), optimize_minmax_aggregates(), prepare_sort_from_pathkeys(), and recurse_set_operations().
{
Result *node = makeNode(Result);
Plan *plan = &node->plan;
if (subplan)
copy_plan_costsize(plan, subplan);
else
{
plan->startup_cost = 0;
plan->total_cost = cpu_tuple_cost;
plan->plan_rows = 1; /* wrong if we have a set-valued function? */
plan->plan_width = 0; /* XXX is it worth being smarter? */
if (resconstantqual)
{
QualCost qual_cost;
cost_qual_eval(&qual_cost, (List *) resconstantqual, root);
/* resconstantqual is evaluated once at startup */
plan->startup_cost += qual_cost.startup + qual_cost.per_tuple;
plan->total_cost += qual_cost.startup + qual_cost.per_tuple;
}
}
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = subplan;
plan->righttree = NULL;
node->resconstantqual = resconstantqual;
return node;
}
Definition at line 3218 of file createplan.c.
References Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, Scan::scanrelid, and Plan::targetlist.
Referenced by create_seqscan_plan().
| SetOp* make_setop | ( | SetOpCmd | cmd, | |
| SetOpStrategy | strategy, | |||
| Plan * | lefttree, | |||
| List * | distinctList, | |||
| AttrNumber | flagColIdx, | |||
| int | firstFlag, | |||
| long | numGroups, | |||
| double | outputRows | |||
| ) |
Definition at line 4513 of file createplan.c.
References Assert, SetOp::cmd, copy_plan_costsize(), cpu_operator_cost, SetOp::dupColIdx, SetOp::dupOperators, SortGroupClause::eqop, SetOp::firstFlag, SetOp::flagColIdx, get_sortgroupclause_tle(), Plan::lefttree, lfirst, list_length(), makeNode, SetOp::numCols, SetOp::numGroups, OidIsValid, palloc(), SetOp::plan, Plan::plan_rows, Plan::qual, TargetEntry::resno, Plan::righttree, SetOp::strategy, Plan::targetlist, and Plan::total_cost.
Referenced by generate_nonunion_plan().
{
SetOp *node = makeNode(SetOp);
Plan *plan = &node->plan;
int numCols = list_length(distinctList);
int keyno = 0;
AttrNumber *dupColIdx;
Oid *dupOperators;
ListCell *slitem;
copy_plan_costsize(plan, lefttree);
plan->plan_rows = outputRows;
/*
* Charge one cpu_operator_cost per comparison per input tuple. We assume
* all columns get compared at most of the tuples.
*/
plan->total_cost += cpu_operator_cost * lefttree->plan_rows * numCols;
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
/*
* convert SortGroupClause list into arrays of attr indexes and equality
* operators, as wanted by executor
*/
Assert(numCols > 0);
dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
foreach(slitem, distinctList)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
dupColIdx[keyno] = tle->resno;
dupOperators[keyno] = sortcl->eqop;
Assert(OidIsValid(dupOperators[keyno]));
keyno++;
}
node->cmd = cmd;
node->strategy = strategy;
node->numCols = numCols;
node->dupColIdx = dupColIdx;
node->dupOperators = dupOperators;
node->flagColIdx = flagColIdx;
node->firstFlag = firstFlag;
node->numGroups = numGroups;
return node;
}
| static Sort * make_sort | ( | PlannerInfo * | root, | |
| Plan * | lefttree, | |||
| int | numCols, | |||
| AttrNumber * | sortColIdx, | |||
| Oid * | sortOperators, | |||
| Oid * | collations, | |||
| bool * | nullsFirst, | |||
| double | limit_tuples | |||
| ) | [static] |
Definition at line 3750 of file createplan.c.
References Sort::collations, copy_plan_costsize(), cost_sort(), Plan::lefttree, makeNode, NIL, Sort::nullsFirst, Sort::numCols, Sort::plan, Plan::plan_rows, Plan::plan_width, Plan::qual, Plan::righttree, Sort::sortColIdx, Sort::sortOperators, Path::startup_cost, Plan::startup_cost, Plan::targetlist, Path::total_cost, Plan::total_cost, and work_mem.
Referenced by create_merge_append_plan(), make_sort_from_groupcols(), make_sort_from_pathkeys(), and make_sort_from_sortclauses().
{
Sort *node = makeNode(Sort);
Plan *plan = &node->plan;
Path sort_path; /* dummy for result of cost_sort */
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_sort(&sort_path, root, NIL,
lefttree->total_cost,
lefttree->plan_rows,
lefttree->plan_width,
0.0,
work_mem,
limit_tuples);
plan->startup_cost = sort_path.startup_cost;
plan->total_cost = sort_path.total_cost;
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->numCols = numCols;
node->sortColIdx = sortColIdx;
node->sortOperators = sortOperators;
node->collations = collations;
node->nullsFirst = nullsFirst;
return node;
}
| Sort* make_sort_from_groupcols | ( | PlannerInfo * | root, | |
| List * | groupcls, | |||
| AttrNumber * | grpColIdx, | |||
| Plan * | lefttree | |||
| ) |
Definition at line 4184 of file createplan.c.
References TargetEntry::expr, exprCollation(), get_tle_by_resno(), lfirst, list_length(), make_sort(), SortGroupClause::nulls_first, palloc(), TargetEntry::resno, SortGroupClause::sortop, and Plan::targetlist.
Referenced by grouping_planner().
{
List *sub_tlist = lefttree->targetlist;
ListCell *l;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/* Convert list-ish representation to arrays wanted by executor */
numsortkeys = list_length(groupcls);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
numsortkeys = 0;
foreach(l, groupcls)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
sortColIdx[numsortkeys] = tle->resno;
sortOperators[numsortkeys] = grpcl->sortop;
collations[numsortkeys] = exprCollation((Node *) tle->expr);
nullsFirst[numsortkeys] = grpcl->nulls_first;
numsortkeys++;
}
return make_sort(root, lefttree, numsortkeys,
sortColIdx, sortOperators, collations,
nullsFirst, -1.0);
}
| Sort* make_sort_from_pathkeys | ( | PlannerInfo * | root, | |
| Plan * | lefttree, | |||
| List * | pathkeys, | |||
| double | limit_tuples | |||
| ) |
Definition at line 4101 of file createplan.c.
References make_sort(), NULL, and prepare_sort_from_pathkeys().
Referenced by create_mergejoin_plan(), and grouping_planner().
{
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/* Compute sort column info, and adjust lefttree as needed */
lefttree = prepare_sort_from_pathkeys(root, lefttree, pathkeys,
NULL,
NULL,
false,
&numsortkeys,
&sortColIdx,
&sortOperators,
&collations,
&nullsFirst);
/* Now build the Sort node */
return make_sort(root, lefttree, numsortkeys,
sortColIdx, sortOperators, collations,
nullsFirst, limit_tuples);
}
| Sort* make_sort_from_sortclauses | ( | PlannerInfo * | root, | |
| List * | sortcls, | |||
| Plan * | lefttree | |||
| ) |
Definition at line 4135 of file createplan.c.
References TargetEntry::expr, exprCollation(), get_sortgroupclause_tle(), lfirst, list_length(), make_sort(), SortGroupClause::nulls_first, palloc(), TargetEntry::resno, SortGroupClause::sortop, and Plan::targetlist.
Referenced by create_unique_plan(), generate_nonunion_plan(), and make_union_unique().
{
List *sub_tlist = lefttree->targetlist;
ListCell *l;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/* Convert list-ish representation to arrays wanted by executor */
numsortkeys = list_length(sortcls);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
numsortkeys = 0;
foreach(l, sortcls)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
sortColIdx[numsortkeys] = tle->resno;
sortOperators[numsortkeys] = sortcl->sortop;
collations[numsortkeys] = exprCollation((Node *) tle->expr);
nullsFirst[numsortkeys] = sortcl->nulls_first;
numsortkeys++;
}
return make_sort(root, lefttree, numsortkeys,
sortColIdx, sortOperators, collations,
nullsFirst, -1.0);
}
| SubqueryScan* make_subqueryscan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| Plan * | subplan | |||
| ) |
Definition at line 3357 of file createplan.c.
References copy_plan_costsize(), cpu_tuple_cost, Plan::lefttree, makeNode, Scan::plan, Plan::plan_rows, Plan::qual, Plan::righttree, SubqueryScan::scan, Scan::scanrelid, SubqueryScan::subplan, Plan::targetlist, and Plan::total_cost.
Referenced by create_append_plan(), create_subqueryscan_plan(), and recurse_set_operations().
{
SubqueryScan *node = makeNode(SubqueryScan);
Plan *plan = &node->scan.plan;
/*
* Cost is figured here for the convenience of prepunion.c. Note this is
* only correct for the case where qpqual is empty; otherwise caller
* should overwrite cost with a better estimate.
*/
copy_plan_costsize(plan, subplan);
plan->total_cost += cpu_tuple_cost * subplan->plan_rows;
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->subplan = subplan;
return node;
}
| static TidScan * make_tidscan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| List * | tidquals | |||
| ) | [static] |
Definition at line 3337 of file createplan.c.
References Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, TidScan::scan, Scan::scanrelid, Plan::targetlist, and TidScan::tidquals.
Referenced by create_tidscan_plan().
Definition at line 4451 of file createplan.c.
References Assert, copy_plan_costsize(), cpu_operator_cost, SortGroupClause::eqop, get_sortgroupclause_tle(), Plan::lefttree, lfirst, list_length(), makeNode, Unique::numCols, OidIsValid, palloc(), Unique::plan, Plan::plan_rows, Plan::qual, TargetEntry::resno, Plan::righttree, Plan::targetlist, Plan::total_cost, Unique::uniqColIdx, and Unique::uniqOperators.
Referenced by create_unique_plan(), grouping_planner(), and make_union_unique().
{
Unique *node = makeNode(Unique);
Plan *plan = &node->plan;
int numCols = list_length(distinctList);
int keyno = 0;
AttrNumber *uniqColIdx;
Oid *uniqOperators;
ListCell *slitem;
copy_plan_costsize(plan, lefttree);
/*
* Charge one cpu_operator_cost per comparison per input tuple. We assume
* all columns get compared at most of the tuples. (XXX probably this is
* an overestimate.)
*/
plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols;
/*
* plan->plan_rows is left as a copy of the input subplan's plan_rows; ie,
* we assume the filter removes nothing. The caller must alter this if he
* has a better idea.
*/
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
/*
* convert SortGroupClause list into arrays of attr indexes and equality
* operators, as wanted by executor
*/
Assert(numCols > 0);
uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
foreach(slitem, distinctList)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
uniqColIdx[keyno] = tle->resno;
uniqOperators[keyno] = sortcl->eqop;
Assert(OidIsValid(uniqOperators[keyno]));
keyno++;
}
node->numCols = numCols;
node->uniqColIdx = uniqColIdx;
node->uniqOperators = uniqOperators;
return node;
}
| static ValuesScan * make_valuesscan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| List * | values_lists | |||
| ) | [static] |
Definition at line 3412 of file createplan.c.
References Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, ValuesScan::scan, Scan::scanrelid, Plan::targetlist, and ValuesScan::values_lists.
Referenced by create_valuesscan_plan().
{
ValuesScan *node = makeNode(ValuesScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->values_lists = values_lists;
return node;
}
| WindowAgg* make_windowagg | ( | PlannerInfo * | root, | |
| List * | tlist, | |||
| List * | windowFuncs, | |||
| Index | winref, | |||
| int | partNumCols, | |||
| AttrNumber * | partColIdx, | |||
| Oid * | partOperators, | |||
| int | ordNumCols, | |||
| AttrNumber * | ordColIdx, | |||
| Oid * | ordOperators, | |||
| int | frameOptions, | |||
| Node * | startOffset, | |||
| Node * | endOffset, | |||
| Plan * | lefttree | |||
| ) |
Definition at line 4337 of file createplan.c.
References add_tlist_costs_to_plan(), copy_plan_costsize(), cost_windowagg(), WindowAgg::endOffset, WindowAgg::frameOptions, Plan::lefttree, makeNode, WindowAgg::ordColIdx, WindowAgg::ordNumCols, WindowAgg::ordOperators, WindowAgg::partColIdx, WindowAgg::partNumCols, WindowAgg::partOperators, WindowAgg::plan, Plan::plan_rows, Plan::qual, Plan::righttree, WindowAgg::startOffset, Path::startup_cost, Plan::startup_cost, Plan::targetlist, Path::total_cost, Plan::total_cost, and WindowAgg::winref.
Referenced by grouping_planner().
{
WindowAgg *node = makeNode(WindowAgg);
Plan *plan = &node->plan;
Path windowagg_path; /* dummy for result of cost_windowagg */
node->winref = winref;
node->partNumCols = partNumCols;
node->partColIdx = partColIdx;
node->partOperators = partOperators;
node->ordNumCols = ordNumCols;
node->ordColIdx = ordColIdx;
node->ordOperators = ordOperators;
node->frameOptions = frameOptions;
node->startOffset = startOffset;
node->endOffset = endOffset;
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_windowagg(&windowagg_path, root,
windowFuncs, partNumCols, ordNumCols,
lefttree->startup_cost,
lefttree->total_cost,
lefttree->plan_rows);
plan->startup_cost = windowagg_path.startup_cost;
plan->total_cost = windowagg_path.total_cost;
/*
* We also need to account for the cost of evaluation of the tlist.
*
* See notes in add_tlist_costs_to_plan about why only make_agg,
* make_windowagg and make_group worry about tlist eval cost.
*/
add_tlist_costs_to_plan(root, plan, tlist);
plan->targetlist = tlist;
plan->lefttree = lefttree;
plan->righttree = NULL;
/* WindowAgg nodes never have a qual clause */
plan->qual = NIL;
return node;
}
| static WorkTableScan * make_worktablescan | ( | List * | qptlist, | |
| List * | qpqual, | |||
| Index | scanrelid, | |||
| int | wtParam | |||
| ) | [static] |
Definition at line 3454 of file createplan.c.
References Plan::lefttree, makeNode, Scan::plan, Plan::qual, Plan::righttree, WorkTableScan::scan, Scan::scanrelid, Plan::targetlist, and WorkTableScan::wtParam.
Referenced by create_worktablescan_plan().
{
WorkTableScan *node = makeNode(WorkTableScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->wtParam = wtParam;
return node;
}
Definition at line 4248 of file createplan.c.
References Plan::allParam, bms_copy(), cost_material(), Plan::extParam, make_material(), Plan::plan_rows, Plan::plan_width, Path::startup_cost, Plan::startup_cost, Path::total_cost, and Plan::total_cost.
Referenced by build_subplan(), and standard_planner().
{
Plan *matplan;
Path matpath; /* dummy for result of cost_material */
matplan = (Plan *) make_material(subplan);
/* Set cost data */
cost_material(&matpath,
subplan->startup_cost,
subplan->total_cost,
subplan->plan_rows,
subplan->plan_width);
matplan->startup_cost = matpath.startup_cost;
matplan->total_cost = matpath.total_cost;
matplan->plan_rows = subplan->plan_rows;
matplan->plan_width = subplan->plan_width;
/* parameter kluge --- see comments above */
matplan->extParam = bms_copy(subplan->extParam);
matplan->allParam = bms_copy(subplan->allParam);
return matplan;
}
| static List * order_qual_clauses | ( | PlannerInfo * | root, | |
| List * | clauses | |||
| ) | [static] |
Definition at line 3099 of file createplan.c.
References cost_qual_eval_node(), i, lappend(), lfirst, list_length(), palloc(), and QualCost::per_tuple.
Referenced by create_bitmap_scan_plan(), create_ctescan_plan(), create_foreignscan_plan(), create_functionscan_plan(), create_gating_plan(), create_hashjoin_plan(), create_indexscan_plan(), create_mergejoin_plan(), create_nestloop_plan(), create_result_plan(), create_seqscan_plan(), create_subqueryscan_plan(), create_tidscan_plan(), create_valuesscan_plan(), and create_worktablescan_plan().
{
typedef struct
{
Node *clause;
Cost cost;
} QualItem;
int nitems = list_length(clauses);
QualItem *items;
ListCell *lc;
int i;
List *result;
/* No need to work hard for 0 or 1 clause */
if (nitems <= 1)
return clauses;
/*
* Collect the items and costs into an array. This is to avoid repeated
* cost_qual_eval work if the inputs aren't RestrictInfos.
*/
items = (QualItem *) palloc(nitems * sizeof(QualItem));
i = 0;
foreach(lc, clauses)
{
Node *clause = (Node *) lfirst(lc);
QualCost qcost;
cost_qual_eval_node(&qcost, clause, root);
items[i].clause = clause;
items[i].cost = qcost.per_tuple;
i++;
}
/*
* Sort. We don't use qsort() because it's not guaranteed stable for
* equal keys. The expected number of entries is small enough that a
* simple insertion sort should be good enough.
*/
for (i = 1; i < nitems; i++)
{
QualItem newitem = items[i];
int j;
/* insert newitem into the already-sorted subarray */
for (j = i; j > 0; j--)
{
if (newitem.cost >= items[j - 1].cost)
break;
items[j] = items[j - 1];
}
items[j] = newitem;
}
/* Convert back to a list */
result = NIL;
for (i = 0; i < nitems; i++)
result = lappend(result, items[i].clause);
return result;
}
| static Plan * prepare_sort_from_pathkeys | ( | PlannerInfo * | root, | |
| Plan * | lefttree, | |||
| List * | pathkeys, | |||
| Relids | relids, | |||
| const AttrNumber * | reqColIdx, | |||
| bool | adjust_tlist_in_place, | |||
| int * | p_numsortkeys, | |||
| AttrNumber ** | p_sortColIdx, | |||
| Oid ** | p_sortOperators, | |||
| Oid ** | p_collations, | |||
| bool ** | p_nullsFirst | |||
| ) | [static] |
Definition at line 3823 of file createplan.c.
References Assert, bms_equal(), copyObject(), EquivalenceClass::ec_collation, EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceClass::ec_sortref, elog, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, EquivalenceMember::em_relids, ERROR, find_ec_member_for_tle(), get_opfamily_member(), get_sortgroupref_tle(), get_tle_by_resno(), i, is_projection_capable_plan(), lappend(), lfirst, linitial, list_free(), list_length(), make_result(), makeTargetEntry(), NULL, OidIsValid, palloc(), PathKey::pk_eclass, PathKey::pk_nulls_first, PathKey::pk_opfamily, PathKey::pk_strategy, pull_var_clause(), PVC_INCLUDE_AGGREGATES, PVC_INCLUDE_PLACEHOLDERS, TargetEntry::resno, Plan::targetlist, and tlist_member_ignore_relabel().
Referenced by create_merge_append_plan(), and make_sort_from_pathkeys().
{
List *tlist = lefttree->targetlist;
ListCell *i;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/*
* We will need at most list_length(pathkeys) sort columns; possibly less
*/
numsortkeys = list_length(pathkeys);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
numsortkeys = 0;
foreach(i, pathkeys)
{
PathKey *pathkey = (PathKey *) lfirst(i);
EquivalenceClass *ec = pathkey->pk_eclass;
EquivalenceMember *em;
TargetEntry *tle = NULL;
Oid pk_datatype = InvalidOid;
Oid sortop;
ListCell *j;
if (ec->ec_has_volatile)
{
/*
* If the pathkey's EquivalenceClass is volatile, then it must
* have come from an ORDER BY clause, and we have to match it to
* that same targetlist entry.
*/
if (ec->ec_sortref == 0) /* can't happen */
elog(ERROR, "volatile EquivalenceClass has no sortref");
tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
Assert(tle);
Assert(list_length(ec->ec_members) == 1);
pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
}
else if (reqColIdx != NULL)
{
/*
* If we are given a sort column number to match, only consider
* the single TLE at that position. It's possible that there is
* no such TLE, in which case fall through and generate a resjunk
* targetentry (we assume this must have happened in the parent
* plan as well). If there is a TLE but it doesn't match the
* pathkey's EC, we do the same, which is probably the wrong thing
* but we'll leave it to caller to complain about the mismatch.
*/
tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
if (tle)
{
em = find_ec_member_for_tle(ec, tle, relids);
if (em)
{
/* found expr at right place in tlist */
pk_datatype = em->em_datatype;
}
else
tle = NULL;
}
}
else
{
/*
* Otherwise, we can sort by any non-constant expression listed in
* the pathkey's EquivalenceClass. For now, we take the first
* tlist item found in the EC. If there's no match, we'll generate
* a resjunk entry using the first EC member that is an expression
* in the input's vars. (The non-const restriction only matters
* if the EC is below_outer_join; but if it isn't, it won't
* contain consts anyway, else we'd have discarded the pathkey as
* redundant.)
*
* XXX if we have a choice, is there any way of figuring out which
* might be cheapest to execute? (For example, int4lt is likely
* much cheaper to execute than numericlt, but both might appear
* in the same equivalence class...) Not clear that we ever will
* have an interesting choice in practice, so it may not matter.
*/
foreach(j, tlist)
{
tle = (TargetEntry *) lfirst(j);
em = find_ec_member_for_tle(ec, tle, relids);
if (em)
{
/* found expr already in tlist */
pk_datatype = em->em_datatype;
break;
}
tle = NULL;
}
}
if (!tle)
{
/*
* No matching tlist item; look for a computable expression. Note
* that we treat Aggrefs as if they were variables; this is
* necessary when attempting to sort the output from an Agg node
* for use in a WindowFunc (since grouping_planner will have
* treated the Aggrefs as variables, too).
*/
Expr *sortexpr = NULL;
foreach(j, ec->ec_members)
{
EquivalenceMember *em = (EquivalenceMember *) lfirst(j);
List *exprvars;
ListCell *k;
/*
* We shouldn't be trying to sort by an equivalence class that
* contains a constant, so no need to consider such cases any
* further.
*/
if (em->em_is_const)
continue;
/*
* Ignore child members unless they match the rel being
* sorted.
*/
if (em->em_is_child &&
!bms_equal(em->em_relids, relids))
continue;
sortexpr = em->em_expr;
exprvars = pull_var_clause((Node *) sortexpr,
PVC_INCLUDE_AGGREGATES,
PVC_INCLUDE_PLACEHOLDERS);
foreach(k, exprvars)
{
if (!tlist_member_ignore_relabel(lfirst(k), tlist))
break;
}
list_free(exprvars);
if (!k)
{
pk_datatype = em->em_datatype;
break; /* found usable expression */
}
}
if (!j)
elog(ERROR, "could not find pathkey item to sort");
/*
* Do we need to insert a Result node?
*/
if (!adjust_tlist_in_place &&
!is_projection_capable_plan(lefttree))
{
/* copy needed so we don't modify input's tlist below */
tlist = copyObject(tlist);
lefttree = (Plan *) make_result(root, tlist, NULL,
lefttree);
}
/* Don't bother testing is_projection_capable_plan again */
adjust_tlist_in_place = true;
/*
* Add resjunk entry to input's tlist
*/
tle = makeTargetEntry(sortexpr,
list_length(tlist) + 1,
NULL,
true);
tlist = lappend(tlist, tle);
lefttree->targetlist = tlist; /* just in case NIL before */
}
/*
* Look up the correct sort operator from the PathKey's slightly
* abstracted representation.
*/
sortop = get_opfamily_member(pathkey->pk_opfamily,
pk_datatype,
pk_datatype,
pathkey->pk_strategy);
if (!OidIsValid(sortop)) /* should not happen */
elog(ERROR, "could not find member %d(%u,%u) of opfamily %u",
pathkey->pk_strategy, pk_datatype, pk_datatype,
pathkey->pk_opfamily);
/* Add the column to the sort arrays */
sortColIdx[numsortkeys] = tle->resno;
sortOperators[numsortkeys] = sortop;
collations[numsortkeys] = ec->ec_collation;
nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
numsortkeys++;
}
/* Return results */
*p_numsortkeys = numsortkeys;
*p_sortColIdx = sortColIdx;
*p_sortOperators = sortOperators;
*p_collations = collations;
*p_nullsFirst = nullsFirst;
return lefttree;
}
| static void process_subquery_nestloop_params | ( | PlannerInfo * | root, | |
| List * | subplan_params | |||
| ) | [static] |
Definition at line 2676 of file createplan.c.
References Assert, bms_is_member(), bms_is_subset(), copyObject(), PlannerInfo::curOuterParams, PlannerInfo::curOuterRels, elog, equal(), ERROR, find_placeholder_info(), IsA, PlannerParamItem::item, lappend(), lfirst, makeNode, NULL, PlannerParamItem::paramId, RangeQueryClause::var, and Var::varno.
Referenced by create_subqueryscan_plan().
{
ListCell *ppl;
foreach(ppl, subplan_params)
{
PlannerParamItem *pitem = (PlannerParamItem *) lfirst(ppl);
if (IsA(pitem->item, Var))
{
Var *var = (Var *) pitem->item;
NestLoopParam *nlp;
ListCell *lc;
/* If not from a nestloop outer rel, complain */
if (!bms_is_member(var->varno, root->curOuterRels))
elog(ERROR, "non-LATERAL parameter required by subquery");
/* Is this param already listed in root->curOuterParams? */
foreach(lc, root->curOuterParams)
{
nlp = (NestLoopParam *) lfirst(lc);
if (nlp->paramno == pitem->paramId)
{
Assert(equal(var, nlp->paramval));
/* Present, so nothing to do */
break;
}
}
if (lc == NULL)
{
/* No, so add it */
nlp = makeNode(NestLoopParam);
nlp->paramno = pitem->paramId;
nlp->paramval = copyObject(var);
root->curOuterParams = lappend(root->curOuterParams, nlp);
}
}
else if (IsA(pitem->item, PlaceHolderVar))
{
PlaceHolderVar *phv = (PlaceHolderVar *) pitem->item;
NestLoopParam *nlp;
ListCell *lc;
/* If not from a nestloop outer rel, complain */
if (!bms_is_subset(find_placeholder_info(root, phv, false)->ph_eval_at,
root->curOuterRels))
elog(ERROR, "non-LATERAL parameter required by subquery");
/* Is this param already listed in root->curOuterParams? */
foreach(lc, root->curOuterParams)
{
nlp = (NestLoopParam *) lfirst(lc);
if (nlp->paramno == pitem->paramId)
{
Assert(equal(phv, nlp->paramval));
/* Present, so nothing to do */
break;
}
}
if (lc == NULL)
{
/* No, so add it */
nlp = makeNode(NestLoopParam);
nlp->paramno = pitem->paramId;
nlp->paramval = copyObject(phv);
root->curOuterParams = lappend(root->curOuterParams, nlp);
}
}
else
elog(ERROR, "unexpected type of subquery parameter");
}
}
| static Node * replace_nestloop_params | ( | PlannerInfo * | root, | |
| Node * | expr | |||
| ) | [static] |
Definition at line 2571 of file createplan.c.
References replace_nestloop_params_mutator().
Referenced by create_bitmap_scan_plan(), create_ctescan_plan(), create_foreignscan_plan(), create_functionscan_plan(), create_hashjoin_plan(), create_indexscan_plan(), create_mergejoin_plan(), create_nestloop_plan(), create_scan_plan(), create_seqscan_plan(), create_subqueryscan_plan(), create_tidscan_plan(), create_valuesscan_plan(), create_worktablescan_plan(), fix_indexorderby_references(), and fix_indexqual_references().
{
/* No setup needed for tree walk, so away we go */
return replace_nestloop_params_mutator(expr, root);
}
| static Node * replace_nestloop_params_mutator | ( | Node * | node, | |
| PlannerInfo * | root | |||
| ) | [static] |
Definition at line 2578 of file createplan.c.
References Assert, assign_nestloop_param_placeholdervar(), assign_nestloop_param_var(), bms_is_member(), bms_is_subset(), bms_overlap(), PlannerInfo::curOuterParams, PlannerInfo::curOuterRels, equal(), expression_tree_mutator(), find_placeholder_info(), IsA, lappend(), lfirst, makeNode, NULL, Param::paramid, NestLoopParam::paramno, NestLoopParam::paramval, PlaceHolderVar::phlevelsup, PlaceHolderVar::phrels, RangeQueryClause::var, Var::varlevelsup, and Var::varno.
Referenced by replace_nestloop_params().
{
if (node == NULL)
return NULL;
if (IsA(node, Var))
{
Var *var = (Var *) node;
Param *param;
NestLoopParam *nlp;
ListCell *lc;
/* Upper-level Vars should be long gone at this point */
Assert(var->varlevelsup == 0);
/* If not to be replaced, we can just return the Var unmodified */
if (!bms_is_member(var->varno, root->curOuterRels))
return node;
/* Create a Param representing the Var */
param = assign_nestloop_param_var(root, var);
/* Is this param already listed in root->curOuterParams? */
foreach(lc, root->curOuterParams)
{
nlp = (NestLoopParam *) lfirst(lc);
if (nlp->paramno == param->paramid)
{
Assert(equal(var, nlp->paramval));
/* Present, so we can just return the Param */
return (Node *) param;
}
}
/* No, so add it */
nlp = makeNode(NestLoopParam);
nlp->paramno = param->paramid;
nlp->paramval = var;
root->curOuterParams = lappend(root->curOuterParams, nlp);
/* And return the replacement Param */
return (Node *) param;
}
if (IsA(node, PlaceHolderVar))
{
PlaceHolderVar *phv = (PlaceHolderVar *) node;
Param *param;
NestLoopParam *nlp;
ListCell *lc;
/* Upper-level PlaceHolderVars should be long gone at this point */
Assert(phv->phlevelsup == 0);
/*
* If not to be replaced, just return the PlaceHolderVar unmodified.
* We use bms_overlap as a cheap/quick test to see if the PHV might be
* evaluated in the outer rels, and then grab its PlaceHolderInfo to
* tell for sure.
*/
if (!bms_overlap(phv->phrels, root->curOuterRels))
return node;
if (!bms_is_subset(find_placeholder_info(root, phv, false)->ph_eval_at,
root->curOuterRels))
return node;
/* Create a Param representing the PlaceHolderVar */
param = assign_nestloop_param_placeholdervar(root, phv);
/* Is this param already listed in root->curOuterParams? */
foreach(lc, root->curOuterParams)
{
nlp = (NestLoopParam *) lfirst(lc);
if (nlp->paramno == param->paramid)
{
Assert(equal(phv, nlp->paramval));
/* Present, so we can just return the Param */
return (Node *) param;
}
}
/* No, so add it */
nlp = makeNode(NestLoopParam);
nlp->paramno = param->paramid;
nlp->paramval = (Var *) phv;
root->curOuterParams = lappend(root->curOuterParams, nlp);
/* And return the replacement Param */
return (Node *) param;
}
return expression_tree_mutator(node,
replace_nestloop_params_mutator,
(void *) root);
}
| static bool use_physical_tlist | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel | |||
| ) | [static] |
Definition at line 471 of file createplan.c.
References RelOptInfo::attr_needed, bms_is_empty(), bms_is_subset(), bms_nonempty_difference(), i, lfirst, RelOptInfo::min_attr, PlaceHolderInfo::ph_eval_at, PlaceHolderInfo::ph_needed, PlannerInfo::placeholder_list, RelOptInfo::relids, RELOPT_BASEREL, RelOptInfo::reloptkind, RTE_CTE, RTE_FUNCTION, RTE_RELATION, RTE_SUBQUERY, RTE_VALUES, and RelOptInfo::rtekind.
Referenced by create_scan_plan().
{
int i;
ListCell *lc;
/*
* We can do this for real relation scans, subquery scans, function scans,
* values scans, and CTE scans (but not for, eg, joins).
*/
if (rel->rtekind != RTE_RELATION &&
rel->rtekind != RTE_SUBQUERY &&
rel->rtekind != RTE_FUNCTION &&
rel->rtekind != RTE_VALUES &&
rel->rtekind != RTE_CTE)
return false;
/*
* Can't do it with inheritance cases either (mainly because Append
* doesn't project).
*/
if (rel->reloptkind != RELOPT_BASEREL)
return false;
/*
* Can't do it if any system columns or whole-row Vars are requested.
* (This could possibly be fixed but would take some fragile assumptions
* in setrefs.c, I think.)
*/
for (i = rel->min_attr; i <= 0; i++)
{
if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
return false;
}
/*
* Can't do it if the rel is required to emit any placeholder expressions,
* either.
*/
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
bms_is_subset(phinfo->ph_eval_at, rel->relids))
return false;
}
return true;
}
1.7.1