![]() |
Eigen
3.2.7
|
Base class for quaternion expressions.
This is defined in the Geometry module.
Derived | derived type (CRTP) |
Public Types | |
typedef AngleAxis< Scalar > | AngleAxisType |
typedef Matrix< Scalar, 3, 3 > | Matrix3 |
typedef Matrix< Scalar, Dim, Dim > | RotationMatrixType |
typedef Matrix< Scalar, 3, 1 > | Vector3 |
Public Member Functions | |
Vector3 | _transformVector (const Vector3 &v) const |
template<class OtherDerived > | |
internal::traits< Derived >::Scalar | angularDistance (const QuaternionBase< OtherDerived > &other) const |
template<typename NewScalarType > | |
internal::cast_return_type < Derived, Quaternion < NewScalarType > >::type | cast () const |
const internal::traits < Derived >::Coefficients & | coeffs () const |
internal::traits< Derived > ::Coefficients & | coeffs () |
Quaternion< Scalar > | conjugate () const |
template<class OtherDerived > | |
Scalar | dot (const QuaternionBase< OtherDerived > &other) const |
Quaternion< Scalar > | inverse () const |
template<class OtherDerived > | |
bool | isApprox (const QuaternionBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
RotationMatrixType | matrix () const |
Scalar | norm () const |
void | normalize () |
Quaternion< Scalar > | normalized () const |
Transform< Scalar, Dim, Isometry > | operator* (const Translation< Scalar, Dim > &t) const |
RotationMatrixType | operator* (const UniformScaling< Scalar > &s) const |
internal::rotation_base_generic_product_selector < Derived, OtherDerived, OtherDerived::IsVectorAtCompileTime > ::ReturnType | operator* (const EigenBase< OtherDerived > &e) const |
Transform< Scalar, Dim, Mode > | operator* (const Transform< Scalar, Dim, Mode, Options > &t) const |
template<class OtherDerived > | |
Quaternion< typename internal::traits< Derived > ::Scalar > | operator* (const QuaternionBase< OtherDerived > &other) const |
template<class OtherDerived > | |
Derived & | operator*= (const QuaternionBase< OtherDerived > &q) |
Derived & | operator= (const AngleAxisType &aa) |
template<class MatrixDerived > | |
Derived & | operator= (const MatrixBase< MatrixDerived > &xpr) |
template<typename Derived1 , typename Derived2 > | |
Derived & | setFromTwoVectors (const MatrixBase< Derived1 > &a, const MatrixBase< Derived2 > &b) |
QuaternionBase & | setIdentity () |
template<class OtherDerived > | |
Quaternion< typename internal::traits< Derived > ::Scalar > | slerp (const Scalar &t, const QuaternionBase< OtherDerived > &other) const |
Scalar | squaredNorm () const |
Matrix3 | toRotationMatrix () const |
const VectorBlock< const Coefficients, 3 > | vec () const |
VectorBlock< Coefficients, 3 > | vec () |
Scalar | w () const |
Scalar & | w () |
Scalar | x () const |
Scalar & | x () |
Scalar | y () const |
Scalar & | y () |
Scalar | z () const |
Scalar & | z () |
Static Public Member Functions | |
static Quaternion< Scalar > | Identity () |
typedef AngleAxis<Scalar> AngleAxisType |
the equivalent angle-axis type
|
inherited |
corresponding linear transformation matrix type
|
inline |
return the result vector of v through the rotation
Rotation of a vector by a quaternion.
|
inline |
|
inline |
*this
with scalar type casted to NewScalarType Note that if NewScalarType is equal to the current scalar type of *this
then this function smartly returns a const reference to *this
.
|
inline |
Referenced by QuaternionBase< Quaternion< _Scalar, _Options > >::dot(), QuaternionBase< Quaternion< _Scalar, _Options > >::isApprox(), QuaternionBase< Quaternion< _Scalar, _Options > >::norm(), QuaternionBase< Quaternion< _Scalar, _Options > >::normalize(), QuaternionBase< Quaternion< _Scalar, _Options > >::normalized(), QuaternionBase< Quaternion< _Scalar, _Options > >::setIdentity(), QuaternionBase< Quaternion< _Scalar, _Options > >::squaredNorm(), and QuaternionBase< Quaternion< _Scalar, _Options > >::vec().
|
inline |
|
inline |
*this
which is equal to the multiplicative inverse if the quaternion is normalized. The conjugate of a quaternion represents the opposite rotation.
|
inline |
*this
and other Geometrically speaking, the dot product of two unit quaternions corresponds to the cosine of half the angle between the two rotations.
|
inlinestatic |
|
inline |
*this
Note that in most cases, i.e., if you simply want the opposite rotation, and/or the quaternion is normalized, then it is enough to use the conjugate.
|
inline |
true
if *this
is approximately equal to other, within the precision determined by prec.
|
inlineinherited |
|
inline |
|
inline |
Normalizes the quaternion *this
|
inline |
*this
|
inlineinherited |
*this
with a translation t
|
inlineinherited |
*this
with a uniform scaling s References RotationBase< Derived, _Dim >::toRotationMatrix().
|
inlineinherited |
*this
with a generic expression e e can be:References EigenBase< Derived >::derived().
|
inlineinherited |
*this
with a transformation t References RotationBase< Derived, _Dim >::toRotationMatrix().
|
inline |
|
inline |
|
inline |
Set *this
from an angle-axis aa and returns a reference to *this
References AngleAxis< Scalar >::angle(), and AngleAxis< Scalar >::axis().
|
inline |
Set *this
from the expression xpr:
|
inline |
Sets *this
to be a quaternion representing a rotation between the two arbitrary vectors a and b. In other words, the built rotation represent a rotation sending the line of direction a to the line of direction b, both lines passing through the origin.
*this
.Note that the two input vectors do not have to be normalized, and do not need to have the same norm.
References Eigen::ComputeFullV, JacobiSVD< MatrixType, QRPreconditioner >::matrixV(), and MatrixBase< Derived >::normalized().
|
inline |
Quaternion<typename internal::traits<Derived>::Scalar> slerp | ( | const Scalar & | t, |
const QuaternionBase< OtherDerived > & | other | ||
) | const |
*this
and other at the parameter t in [0;1].This represents an interpolation for a constant motion between *this
and other, see also http://en.wikipedia.org/wiki/Slerp.
|
inline |
|
inline |
Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to be normalized, otherwise the result is undefined.
|
inline |
Referenced by AngleAxis< Scalar >::operator=().
|
inline |
|
inline |
w
coefficient Referenced by AngleAxis< Scalar >::operator=().
|
inline |
w
coefficient
|
inline |
x
coefficient
|
inline |
x
coefficient
|
inline |
y
coefficient
|
inline |
y
coefficient
|
inline |
z
coefficient
|
inline |
z
coefficient