ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elsucexmid Unicode version

Theorem 0elsucexmid 4308
Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.)
Hypothesis
Ref Expression
0elsucexmid.1  |-  A. x  e.  On  (/)  e.  suc  x
Assertion
Ref Expression
0elsucexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem 0elsucexmid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ordtriexmidlem 4263 . . . 4  |-  { y  e.  { (/) }  |  ph }  e.  On
2 0elsucexmid.1 . . . 4  |-  A. x  e.  On  (/)  e.  suc  x
3 suceq 4157 . . . . . 6  |-  ( x  =  { y  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { y  e.  { (/)
}  |  ph }
)
43eleq2d 2148 . . . . 5  |-  ( x  =  { y  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  suc  x 
<->  (/)  e.  suc  { y  e.  { (/) }  |  ph } ) )
54rspcv 2697 . . . 4  |-  ( { y  e.  { (/) }  |  ph }  e.  On  ->  ( A. x  e.  On  (/)  e.  suc  x  -> 
(/)  e.  suc  { y  e.  { (/) }  |  ph } ) )
61, 2, 5mp2 16 . . 3  |-  (/)  e.  suc  { y  e.  { (/) }  |  ph }
7 0ex 3905 . . . 4  |-  (/)  e.  _V
87elsuc 4161 . . 3  |-  ( (/)  e.  suc  { y  e. 
{ (/) }  |  ph } 
<->  ( (/)  e.  { y  e.  { (/) }  |  ph }  \/  (/)  =  {
y  e.  { (/) }  |  ph } ) )
96, 8mpbi 143 . 2  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  \/  (/)  =  { y  e.  { (/) }  |  ph } )
107snid 3425 . . . . 5  |-  (/)  e.  { (/)
}
11 biidd 170 . . . . . 6  |-  ( y  =  (/)  ->  ( ph  <->  ph ) )
1211elrab3 2750 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { y  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
1310, 12ax-mp 7 . . . 4  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  <->  ph )
1413biimpi 118 . . 3  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  ->  ph )
15 ordtriexmidlem2 4264 . . . 4  |-  ( { y  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
1615eqcoms 2084 . . 3  |-  ( (/)  =  { y  e.  { (/)
}  |  ph }  ->  -.  ph )
1714, 16orim12i 708 . 2  |-  ( (
(/)  e.  { y  e.  { (/) }  |  ph }  \/  (/)  =  {
y  e.  { (/) }  |  ph } )  ->  ( ph  \/  -.  ph ) )
189, 17ax-mp 7 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   A.wral 2348   {crab 2352   (/)c0 3251   {csn 3398   Oncon0 4118   suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator