ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elsucexmid GIF version

Theorem 0elsucexmid 4308
Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.)
Hypothesis
Ref Expression
0elsucexmid.1 𝑥 ∈ On ∅ ∈ suc 𝑥
Assertion
Ref Expression
0elsucexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 0elsucexmid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordtriexmidlem 4263 . . . 4 {𝑦 ∈ {∅} ∣ 𝜑} ∈ On
2 0elsucexmid.1 . . . 4 𝑥 ∈ On ∅ ∈ suc 𝑥
3 suceq 4157 . . . . . 6 (𝑥 = {𝑦 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑦 ∈ {∅} ∣ 𝜑})
43eleq2d 2148 . . . . 5 (𝑥 = {𝑦 ∈ {∅} ∣ 𝜑} → (∅ ∈ suc 𝑥 ↔ ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑}))
54rspcv 2697 . . . 4 ({𝑦 ∈ {∅} ∣ 𝜑} ∈ On → (∀𝑥 ∈ On ∅ ∈ suc 𝑥 → ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑}))
61, 2, 5mp2 16 . . 3 ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑}
7 0ex 3905 . . . 4 ∅ ∈ V
87elsuc 4161 . . 3 (∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑}))
96, 8mpbi 143 . 2 (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑})
107snid 3425 . . . . 5 ∅ ∈ {∅}
11 biidd 170 . . . . . 6 (𝑦 = ∅ → (𝜑𝜑))
1211elrab3 2750 . . . . 5 (∅ ∈ {∅} → (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
1310, 12ax-mp 7 . . . 4 (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
1413biimpi 118 . . 3 (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} → 𝜑)
15 ordtriexmidlem2 4264 . . . 4 ({𝑦 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
1615eqcoms 2084 . . 3 (∅ = {𝑦 ∈ {∅} ∣ 𝜑} → ¬ 𝜑)
1714, 16orim12i 708 . 2 ((∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
189, 17ax-mp 7 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103  wo 661   = wceq 1284  wcel 1433  wral 2348  {crab 2352  c0 3251  {csn 3398  Oncon0 4118  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator