| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | Unicode version | ||
| Description: Lemma for decidability
and ordinals. The set |
| Ref | Expression |
|---|---|
| ordtriexmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. . . . . 6
| |
| 2 | elrabi 2746 |
. . . . . . . . 9
| |
| 3 | velsn 3415 |
. . . . . . . . 9
| |
| 4 | 2, 3 | sylib 120 |
. . . . . . . 8
|
| 5 | noel 3255 |
. . . . . . . . 9
| |
| 6 | eleq2 2142 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mtbiri 632 |
. . . . . . . 8
|
| 8 | 4, 7 | syl 14 |
. . . . . . 7
|
| 9 | 8 | adantl 271 |
. . . . . 6
|
| 10 | 1, 9 | pm2.21dd 582 |
. . . . 5
|
| 11 | 10 | gen2 1379 |
. . . 4
|
| 12 | dftr2 3877 |
. . . 4
| |
| 13 | 11, 12 | mpbir 144 |
. . 3
|
| 14 | ssrab2 3079 |
. . 3
| |
| 15 | ord0 4146 |
. . . . 5
| |
| 16 | ordsucim 4244 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 7 |
. . . 4
|
| 18 | suc0 4166 |
. . . . 5
| |
| 19 | ordeq 4127 |
. . . . 5
| |
| 20 | 18, 19 | ax-mp 7 |
. . . 4
|
| 21 | 17, 20 | mpbi 143 |
. . 3
|
| 22 | trssord 4135 |
. . 3
| |
| 23 | 13, 14, 21, 22 | mp3an 1268 |
. 2
|
| 24 | p0ex 3959 |
. . . 4
| |
| 25 | 24 | rabex 3922 |
. . 3
|
| 26 | 25 | elon 4129 |
. 2
|
| 27 | 23, 26 | mpbir 144 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: ordtriexmid 4265 ordtri2orexmid 4266 ontr2exmid 4268 onsucsssucexmid 4270 ordsoexmid 4305 0elsucexmid 4308 ordpwsucexmid 4313 |
| Copyright terms: Public domain | W3C validator |