ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem Unicode version

Theorem ordtriexmidlem 4263
Description: Lemma for decidability and ordinals. The set  { x  e.  { (/)
}  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4265 or weak linearity in ordsoexmid 4305) with a proposition  ph. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem  |-  { x  e.  { (/) }  |  ph }  e.  On

Proof of Theorem ordtriexmidlem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  y  e.  z )
2 elrabi 2746 . . . . . . . . 9  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  z  e.  { (/)
} )
3 velsn 3415 . . . . . . . . 9  |-  ( z  e.  { (/) }  <->  z  =  (/) )
42, 3sylib 120 . . . . . . . 8  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  z  =  (/) )
5 noel 3255 . . . . . . . . 9  |-  -.  y  e.  (/)
6 eleq2 2142 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( y  e.  z  <->  y  e.  (/) ) )
75, 6mtbiri 632 . . . . . . . 8  |-  ( z  =  (/)  ->  -.  y  e.  z )
84, 7syl 14 . . . . . . 7  |-  ( z  e.  { x  e. 
{ (/) }  |  ph }  ->  -.  y  e.  z )
98adantl 271 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  -.  y  e.  z )
101, 9pm2.21dd 582 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) }  |  ph } )  ->  y  e.  { x  e.  { (/)
}  |  ph }
)
1110gen2 1379 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  { (/)
}  |  ph }
)  ->  y  e.  { x  e.  { (/) }  |  ph } )
12 dftr2 3877 . . . 4  |-  ( Tr 
{ x  e.  { (/)
}  |  ph }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) }  |  ph } )  ->  y  e.  {
x  e.  { (/) }  |  ph } ) )
1311, 12mpbir 144 . . 3  |-  Tr  {
x  e.  { (/) }  |  ph }
14 ssrab2 3079 . . 3  |-  { x  e.  { (/) }  |  ph }  C_  { (/) }
15 ord0 4146 . . . . 5  |-  Ord  (/)
16 ordsucim 4244 . . . . 5  |-  ( Ord  (/)  ->  Ord  suc  (/) )
1715, 16ax-mp 7 . . . 4  |-  Ord  suc  (/)
18 suc0 4166 . . . . 5  |-  suc  (/)  =  { (/)
}
19 ordeq 4127 . . . . 5  |-  ( suc  (/)  =  { (/) }  ->  ( Ord  suc  (/)  <->  Ord  { (/) } ) )
2018, 19ax-mp 7 . . . 4  |-  ( Ord 
suc  (/)  <->  Ord  { (/) } )
2117, 20mpbi 143 . . 3  |-  Ord  { (/)
}
22 trssord 4135 . . 3  |-  ( ( Tr  { x  e. 
{ (/) }  |  ph }  /\  { x  e. 
{ (/) }  |  ph }  C_  { (/) }  /\  Ord  { (/) } )  ->  Ord  { x  e.  { (/)
}  |  ph }
)
2313, 14, 21, 22mp3an 1268 . 2  |-  Ord  {
x  e.  { (/) }  |  ph }
24 p0ex 3959 . . . 4  |-  { (/) }  e.  _V
2524rabex 3922 . . 3  |-  { x  e.  { (/) }  |  ph }  e.  _V
2625elon 4129 . 2  |-  ( { x  e.  { (/) }  |  ph }  e.  On 
<->  Ord  { x  e. 
{ (/) }  |  ph } )
2723, 26mpbir 144 1  |-  { x  e.  { (/) }  |  ph }  e.  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   {crab 2352    C_ wss 2973   (/)c0 3251   {csn 3398   Tr wtr 3875   Ord word 4117   Oncon0 4118   suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by:  ordtriexmid  4265  ordtri2orexmid  4266  ontr2exmid  4268  onsucsssucexmid  4270  ordsoexmid  4305  0elsucexmid  4308  ordpwsucexmid  4313
  Copyright terms: Public domain W3C validator