ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r Unicode version

Theorem 3adant3r 1166
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213com13 1143 . . 3  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
323adant1r 1162 . 2  |-  ( ( ( ch  /\  ta )  /\  ps  /\  ph )  ->  th )
433com13 1143 1  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 921
This theorem is referenced by:  addassnqg  6572  mulassnqg  6574  prarloc  6693  ltpopr  6785  ltexprlemfl  6799  ltexprlemfu  6801  addasssrg  6933  axaddass  7038  apmul1  7876  ltmul2  7934  lemul2  7935  dvdscmulr  10224  dvdsmulcr  10225  modremain  10329  ndvdsadd  10331  rpexp12i  10534
  Copyright terms: Public domain W3C validator