ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc Unicode version

Theorem prarloc 6693
Description: A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance  P, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 6694 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

Assertion
Ref Expression
prarloc  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
Distinct variable groups:    L, a, b    P, a, b    U, a, b

Proof of Theorem prarloc
Dummy variables  m  n  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prml 6667 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  E. x  e.  Q.  x  e.  L )
2 df-rex 2354 . . . . . . 7  |-  ( E. x  e.  Q.  x  e.  L  <->  E. x ( x  e.  Q.  /\  x  e.  L ) )
31, 2sylib 120 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  E. x ( x  e.  Q.  /\  x  e.  L ) )
43adantr 270 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. x
( x  e.  Q.  /\  x  e.  L ) )
5 prmu 6668 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  E. y  e.  Q.  y  e.  U )
6 df-rex 2354 . . . . . . 7  |-  ( E. y  e.  Q.  y  e.  U  <->  E. y ( y  e.  Q.  /\  y  e.  U ) )
75, 6sylib 120 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  E. y ( y  e.  Q.  /\  y  e.  U ) )
87adantr 270 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. y
( y  e.  Q.  /\  y  e.  U ) )
9 subhalfnqq 6604 . . . . . . . . 9  |-  ( P  e.  Q.  ->  E. q  e.  Q.  ( q  +Q  q )  <Q  P )
109adantl 271 . . . . . . . 8  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q  e.  Q.  ( q  +Q  q )  <Q  P )
11 df-rex 2354 . . . . . . . 8  |-  ( E. q  e.  Q.  (
q  +Q  q ) 
<Q  P  <->  E. q ( q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P ) )
1210, 11sylib 120 . . . . . . 7  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )
1312ancli 316 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  E. q
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )
14 19.42v 1827 . . . . . 6  |-  ( E. q ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )  <-> 
( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  E. q ( q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P ) ) )
1513, 14sylibr 132 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q
( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )
16 eeeanv 1849 . . . . 5  |-  ( E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  <->  ( E. x
( x  e.  Q.  /\  x  e.  L )  /\  E. y ( y  e.  Q.  /\  y  e.  U )  /\  E. q ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) ) )
174, 8, 15, 16syl3anbrc 1122 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) ) )
18 prarloclemarch2 6609 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Q.  /\  x  e.  Q.  /\  q  e.  Q. )  ->  E. n  e.  N.  ( 1o  <N  n  /\  y  <Q  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) ) ) )
19 df-rex 2354 . . . . . . . . . . . . . 14  |-  ( E. n  e.  N.  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) )  <->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
2018, 19sylib 120 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  x  e.  Q.  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
21203com12 1142 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
22213adant1r 1162 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  y  e.  Q.  /\  q  e.  Q. )  ->  E. n ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )
23223adant2r 1164 . . . . . . . . . 10  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
24233adant3r 1166 . . . . . . . . 9  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )  ->  E. n ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )
25243adant3l 1165 . . . . . . . 8  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
2625ancli 316 . . . . . . 7  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  ( (
( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) ) )
27 19.42v 1827 . . . . . . 7  |-  ( E. n ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  <->  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) ) )
2826, 27sylibr 132 . . . . . 6  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. n
( ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
29282eximi 1532 . . . . 5  |-  ( E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. y E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
3029eximi 1531 . . . 4  |-  ( E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. x E. y E. q E. n ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
31 simpl1l 989 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  x  e.  Q. )
32 simp3rl 1011 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  q  e.  Q. )
3332adantr 270 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  q  e.  Q. )
34 simp3rr 1012 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  ( q  +Q  q )  <Q  P )
3534adantr 270 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( q  +Q  q )  <Q  P )
3631, 33, 353jca 1118 . . . . . . . . 9  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( x  e.  Q.  /\  q  e. 
Q.  /\  ( q  +Q  q )  <Q  P ) )
37 simp3ll 1009 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  <. L ,  U >.  e.  P. )
3837adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  <. L ,  U >.  e.  P. )
39 simpl1r 990 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  x  e.  L )
40 simprl 497 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  n  e.  N. )
41 simprrl 505 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  1o  <N  n )
42 simprrr 506 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  y  <Q  ( x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) ) )
43 simpl2r 992 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  y  e.  U )
44 prcunqu 6675 . . . . . . . . . . . . 13  |-  ( (
<. L ,  U >.  e. 
P.  /\  y  e.  U )  ->  (
y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) )  ->  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4538, 43, 44syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) )  ->  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4642, 45mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U )
47 prarloclem 6691 . . . . . . . . . . 11  |-  ( ( ( <. L ,  U >.  e.  P.  /\  x  e.  L )  /\  (
n  e.  N.  /\  q  e.  Q.  /\  1o  <N  n )  /\  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  ->  E. m  e.  om  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4838, 39, 40, 33, 41, 46, 47syl231anc 1189 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m  e.  om  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
49 df-rex 2354 . . . . . . . . . 10  |-  ( E. m  e.  om  (
( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  <->  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5048, 49sylib 120 . . . . . . . . 9  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m
( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5136, 50jca 300 . . . . . . . 8  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
52 19.42v 1827 . . . . . . . 8  |-  ( E. m ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
5351, 52sylibr 132 . . . . . . 7  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m
( ( x  e. 
Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
54 simprrl 505 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L )
55 eleq1 2141 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( a  e.  L  <->  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L ) )
5655anbi1d 452 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  <-> 
( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5756anbi2d 451 . . . . . . . . . . . . . . 15  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )  <->  ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
5857anbi2d 451 . . . . . . . . . . . . . 14  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
5958ceqsexgv 2724 . . . . . . . . . . . . 13  |-  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  -> 
( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
6059biimprcd 158 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  ->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6154, 60mpd 13 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
62 simprrr 506 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )
63 eleq1 2141 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( b  e.  U  <->  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
6463anbi2d 451 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
a  e.  L  /\  b  e.  U )  <->  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
6564anbi2d 451 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) )  <->  ( m  e.  om  /\  ( a  e.  L  /\  (
x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
6665anbi2d 451 . . . . . . . . . . . . . . 15  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
6766anbi2d 451 . . . . . . . . . . . . . 14  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  <-> 
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6867exbidv 1746 . . . . . . . . . . . . 13  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  <->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6968ceqsexgv 2724 . . . . . . . . . . . 12  |-  ( ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U  ->  ( E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
7069biimprcd 158 . . . . . . . . . . 11  |-  ( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )  -> 
( ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U  ->  E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) ) )
7161, 62, 70sylc 61 . . . . . . . . . 10  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b
( b  =  ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
72 19.42v 1827 . . . . . . . . . . 11  |-  ( E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
7372exbii 1536 . . . . . . . . . 10  |-  ( E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
7471, 73sylibr 132 . . . . . . . . 9  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
75 simprrl 505 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  -> 
a  e.  L )
7675adantl 271 . . . . . . . . . . . . 13  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  a  e.  L
)
77 simprrr 506 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  -> 
b  e.  U )
7877adantl 271 . . . . . . . . . . . . . 14  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  b  e.  U
)
79 simpl 107 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) ) )
80 simprl2 984 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  q  e.  Q. )
81 simprl3 985 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( q  +Q  q )  <Q  P )
8280, 81jca 300 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( q  e. 
Q.  /\  ( q  +Q  q )  <Q  P ) )
83 simprl1 983 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  x  e.  Q. )
84 simprrl 505 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  m  e.  om )
8583, 84jca 300 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( x  e. 
Q.  /\  m  e.  om ) )
86 prarloclemcalc 6692 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( x  e.  Q.  /\  m  e.  om )
) )  ->  b  <Q  ( a  +Q  P
) )
8779, 82, 85, 86syl12anc 1167 . . . . . . . . . . . . . 14  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  b  <Q  (
a  +Q  P ) )
8878, 87jca 300 . . . . . . . . . . . . 13  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( b  e.  U  /\  b  <Q 
( a  +Q  P
) ) )
8976, 88jca 300 . . . . . . . . . . . 12  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9089ancom1s 533 . . . . . . . . . . 11  |-  ( ( ( b  =  ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  a  =  ( x +Q0  ( [
<. m ,  1o >. ] ~Q0 ·Q0 
q ) ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9190anasss 391 . . . . . . . . . 10  |-  ( ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  ->  ( a  e.  L  /\  (
b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
92912eximi 1532 . . . . . . . . 9  |-  ( E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9374, 92syl 14 . . . . . . . 8  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9493exlimiv 1529 . . . . . . 7  |-  ( E. m ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9553, 94syl 14 . . . . . 6  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9695exlimivv 1817 . . . . 5  |-  ( E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9796exlimivv 1817 . . . 4  |-  ( E. x E. y E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9817, 30, 973syl 17 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
99 excom 1594 . . 3  |-  ( E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a E. b
( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
10098, 99sylib 120 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
101 19.42v 1827 . . . . 5  |-  ( E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )  <->  ( a  e.  L  /\  E. b
( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
102 df-rex 2354 . . . . . 6  |-  ( E. b  e.  U  b 
<Q  ( a  +Q  P
)  <->  E. b ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )
103102anbi2i 444 . . . . 5  |-  ( ( a  e.  L  /\  E. b  e.  U  b 
<Q  ( a  +Q  P
) )  <->  ( a  e.  L  /\  E. b
( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
104101, 103bitr4i 185 . . . 4  |-  ( E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )  <->  ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P ) ) )
105104exbii 1536 . . 3  |-  ( E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P
) ) )
106 df-rex 2354 . . 3  |-  ( E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P
)  <->  E. a ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P
) ) )
107105, 106bitr4i 185 . 2  |-  ( E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
108100, 107sylib 120 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   <.cop 3401   class class class wbr 3785   omcom 4331  (class class class)co 5532   1oc1o 6017   2oc2o 6018    +o coa 6021   [cec 6127   N.cnpi 6462    <N clti 6465    ~Q ceq 6469   Q.cnq 6470    +Q cplq 6472    .Q cmq 6473    <Q cltq 6475   ~Q0 ceq0 6476   +Q0 cplq0 6479   ·Q0 cmq0 6480   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656
This theorem is referenced by:  prarloc2  6694  addlocpr  6726  prmuloc  6756  ltaddpr  6787  ltexprlemloc  6797  ltexprlemrl  6800  ltexprlemru  6802
  Copyright terms: Public domain W3C validator