ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpopr Unicode version

Theorem ltpopr 6785
Description: Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 6786. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltpopr  |-  <P  Po  P.

Proof of Theorem ltpopr
Dummy variables  r  q  s  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . . . . . 8  |-  ( s  e.  P.  ->  <. ( 1st `  s ) ,  ( 2nd `  s
) >.  e.  P. )
2 prdisj 6682 . . . . . . . 8  |-  ( (
<. ( 1st `  s
) ,  ( 2nd `  s ) >.  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  s
)  /\  q  e.  ( 2nd `  s ) ) )
31, 2sylan 277 . . . . . . 7  |-  ( ( s  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  s
)  /\  q  e.  ( 2nd `  s ) ) )
4 ancom 262 . . . . . . 7  |-  ( ( q  e.  ( 1st `  s )  /\  q  e.  ( 2nd `  s
) )  <->  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) )
53, 4sylnib 633 . . . . . 6  |-  ( ( s  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) )
65nrexdv 2454 . . . . 5  |-  ( s  e.  P.  ->  -.  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  s
) ) )
7 ltdfpr 6696 . . . . . 6  |-  ( ( s  e.  P.  /\  s  e.  P. )  ->  ( s  <P  s  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  s
) ) ) )
87anidms 389 . . . . 5  |-  ( s  e.  P.  ->  (
s  <P  s  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  s ) ) ) )
96, 8mtbird 630 . . . 4  |-  ( s  e.  P.  ->  -.  s  <P  s )
109adantl 271 . . 3  |-  ( ( T.  /\  s  e. 
P. )  ->  -.  s  <P  s )
11 ltdfpr 6696 . . . . . . . . . . 11  |-  ( ( s  e.  P.  /\  t  e.  P. )  ->  ( s  <P  t  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t
) ) ) )
12113adant3 958 . . . . . . . . . 10  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
s  <P  t  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) ) ) )
13 ltdfpr 6696 . . . . . . . . . . 11  |-  ( ( t  e.  P.  /\  u  e.  P. )  ->  ( t  <P  u  <->  E. r  e.  Q.  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) ) )
14133adant1 956 . . . . . . . . . 10  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
t  <P  u  <->  E. r  e.  Q.  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )
1512, 14anbi12d 456 . . . . . . . . 9  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  <-> 
( E. q  e. 
Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  E. r  e.  Q.  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) ) )
16 reeanv 2523 . . . . . . . . 9  |-  ( E. q  e.  Q.  E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  <->  ( E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t
) )  /\  E. r  e.  Q.  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) ) )
1715, 16syl6bbr 196 . . . . . . . 8  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  <->  E. q  e.  Q.  E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) ) )
1817biimpa 290 . . . . . . 7  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  E. q  e.  Q.  E. r  e. 
Q.  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )
19 simprll 503 . . . . . . . . . . 11  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  e.  ( 2nd `  s ) )
20 prop 6665 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  P.  ->  <. ( 1st `  t ) ,  ( 2nd `  t
) >.  e.  P. )
21 prltlu 6677 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P.  /\  q  e.  ( 1st `  t )  /\  r  e.  ( 2nd `  t
) )  ->  q  <Q  r )
2220, 21syl3an1 1202 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  P.  /\  q  e.  ( 1st `  t )  /\  r  e.  ( 2nd `  t
) )  ->  q  <Q  r )
23223adant3r 1166 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  P.  /\  q  e.  ( 1st `  t )  /\  (
r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u
) ) )  -> 
q  <Q  r )
24233adant2l 1163 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  P.  /\  ( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  q  <Q  r )
25243expb 1139 . . . . . . . . . . . . . 14  |-  ( ( t  e.  P.  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
26253ad2antl2 1101 . . . . . . . . . . . . 13  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
2726adantlr 460 . . . . . . . . . . . 12  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  <Q  r )
28 prop 6665 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  P.  ->  <. ( 1st `  u ) ,  ( 2nd `  u
) >.  e.  P. )
29 prcdnql 6674 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  u
) ,  ( 2nd `  u ) >.  e.  P.  /\  r  e.  ( 1st `  u ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3028, 29sylan 277 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  P.  /\  r  e.  ( 1st `  u ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3130adantrl 461 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  P.  /\  ( r  e.  ( 2nd `  t )  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  <Q  r  ->  q  e.  ( 1st `  u
) ) )
3231adantrl 461 . . . . . . . . . . . . . 14  |-  ( ( u  e.  P.  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
33323ad2antl3 1102 . . . . . . . . . . . . 13  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3433adantlr 460 . . . . . . . . . . . 12  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  <Q  r  ->  q  e.  ( 1st `  u ) ) )
3527, 34mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
q  e.  ( 1st `  u ) )
3619, 35jca 300 . . . . . . . . . 10  |-  ( ( ( ( s  e. 
P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P 
t  /\  t  <P  u ) )  /\  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) ) )  -> 
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u ) ) )
3736ex 113 . . . . . . . . 9  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
3837rexlimdvw 2480 . . . . . . . 8  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. r  e.  Q.  (
( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
3938reximdv 2462 . . . . . . 7  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. q  e.  Q.  E. r  e.  Q.  ( ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  t ) )  /\  ( r  e.  ( 2nd `  t
)  /\  r  e.  ( 1st `  u ) ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) ) )
4018, 39mpd 13 . . . . . 6  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) )
41 ltdfpr 6696 . . . . . . . . 9  |-  ( ( s  e.  P.  /\  u  e.  P. )  ->  ( s  <P  u  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) ) ) )
42413adant2 957 . . . . . . . 8  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
s  <P  u  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  s
)  /\  q  e.  ( 1st `  u ) ) ) )
4342biimprd 156 . . . . . . 7  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  ( E. q  e.  Q.  ( q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u ) )  ->  s  <P  u ) )
4443adantr 270 . . . . . 6  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  ( E. q  e.  Q.  (
q  e.  ( 2nd `  s )  /\  q  e.  ( 1st `  u
) )  ->  s  <P  u ) )
4540, 44mpd 13 . . . . 5  |-  ( ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  /\  ( s  <P  t  /\  t  <P  u ) )  ->  s  <P  u )
4645ex 113 . . . 4  |-  ( ( s  e.  P.  /\  t  e.  P.  /\  u  e.  P. )  ->  (
( s  <P  t  /\  t  <P  u )  ->  s  <P  u
) )
4746adantl 271 . . 3  |-  ( ( T.  /\  ( s  e.  P.  /\  t  e.  P.  /\  u  e. 
P. ) )  -> 
( ( s  <P 
t  /\  t  <P  u )  ->  s  <P  u ) )
4810, 47ispod 4059 . 2  |-  ( T. 
->  <P  Po  P. )
4948trud 1293 1  |-  <P  Po  P.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919   T. wtru 1285    e. wcel 1433   E.wrex 2349   <.cop 3401   class class class wbr 3785    Po wpo 4049   ` cfv 4922   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    <Q cltq 6475   P.cnp 6481    <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  ltsopr  6786
  Copyright terms: Public domain W3C validator