| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemab | Unicode version | ||
| Description: Lemma for acexmid 5531. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3255 |
. . . 4
| |
| 2 | 0ex 3905 |
. . . . . 6
| |
| 3 | 2 | snid 3425 |
. . . . 5
|
| 4 | eleq2 2142 |
. . . . 5
| |
| 5 | 3, 4 | mpbiri 166 |
. . . 4
|
| 6 | 1, 5 | mto 620 |
. . 3
|
| 7 | acexmidlem.a |
. . . . . . . . . 10
| |
| 8 | acexmidlem.b |
. . . . . . . . . 10
| |
| 9 | acexmidlem.c |
. . . . . . . . . 10
| |
| 10 | 7, 8, 9 | acexmidlemph 5525 |
. . . . . . . . 9
|
| 11 | id 19 |
. . . . . . . . . 10
| |
| 12 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi1d 452 |
. . . . . . . . . . 11
|
| 14 | 13 | rexbidv 2369 |
. . . . . . . . . 10
|
| 15 | 11, 14 | riotaeqbidv 5491 |
. . . . . . . . 9
|
| 16 | 10, 15 | syl 14 |
. . . . . . . 8
|
| 17 | 16 | eqeq1d 2089 |
. . . . . . 7
|
| 18 | 17 | biimpa 290 |
. . . . . 6
|
| 19 | 18 | adantrr 462 |
. . . . 5
|
| 20 | simprr 498 |
. . . . 5
| |
| 21 | 19, 20 | eqtr3d 2115 |
. . . 4
|
| 22 | 21 | ex 113 |
. . 3
|
| 23 | 6, 22 | mtoi 622 |
. 2
|
| 24 | 23 | con2i 589 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-nul 3252 df-sn 3404 df-uni 3602 df-iota 4887 df-riota 5488 |
| This theorem is referenced by: acexmidlem1 5528 |
| Copyright terms: Public domain | W3C validator |