| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcan2 | Unicode version | ||
| Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| addcan2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex 7286 |
. . 3
| |
| 2 | 1 | 3ad2ant3 961 |
. 2
|
| 3 | oveq1 5539 |
. . . 4
| |
| 4 | simpl1 941 |
. . . . . . 7
| |
| 5 | simpl3 943 |
. . . . . . 7
| |
| 6 | simprl 497 |
. . . . . . 7
| |
| 7 | 4, 5, 6 | addassd 7141 |
. . . . . 6
|
| 8 | simprr 498 |
. . . . . . 7
| |
| 9 | 8 | oveq2d 5548 |
. . . . . 6
|
| 10 | addid1 7246 |
. . . . . . 7
| |
| 11 | 4, 10 | syl 14 |
. . . . . 6
|
| 12 | 7, 9, 11 | 3eqtrd 2117 |
. . . . 5
|
| 13 | simpl2 942 |
. . . . . . 7
| |
| 14 | 13, 5, 6 | addassd 7141 |
. . . . . 6
|
| 15 | 8 | oveq2d 5548 |
. . . . . 6
|
| 16 | addid1 7246 |
. . . . . . 7
| |
| 17 | 13, 16 | syl 14 |
. . . . . 6
|
| 18 | 14, 15, 17 | 3eqtrd 2117 |
. . . . 5
|
| 19 | 12, 18 | eqeq12d 2095 |
. . . 4
|
| 20 | 3, 19 | syl5ib 152 |
. . 3
|
| 21 | oveq1 5539 |
. . 3
| |
| 22 | 20, 21 | impbid1 140 |
. 2
|
| 23 | 2, 22 | rexlimddv 2481 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-resscn 7068 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: addcan2i 7291 addcan2d 7293 muleqadd 7758 |
| Copyright terms: Public domain | W3C validator |