![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl2 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 939 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: simpll2 978 simprl2 984 simp1l2 1032 simp2l2 1038 simp3l2 1044 3anandirs 1279 rspc3ev 2717 tfisi 4328 brcogw 4522 oawordi 6072 nnmord 6113 nnmword 6114 ac6sfi 6379 unsnfi 6384 unsnfidcel 6386 ordiso2 6446 prarloclemarch2 6609 enq0tr 6624 distrlem4prl 6774 distrlem4pru 6775 ltaprg 6809 aptiprlemu 6830 lelttr 7199 ltletr 7200 readdcan 7248 addcan 7288 addcan2 7289 ltadd2 7523 ltmul1a 7691 ltmul1 7692 divmulassap 7783 divmulasscomap 7784 lemul1a 7936 xrlelttr 8876 xrltletr 8877 ixxdisj 8926 icoshftf1o 9013 icodisj 9014 lincmb01cmp 9025 iccf1o 9026 fztri3or 9058 ioom 9269 modqmuladdim 9369 modqmuladdnn0 9370 q2submod 9387 modqaddmulmod 9393 ltexp2a 9528 exple1 9532 expnbnd 9596 expnlbnd2 9598 expcan 9644 maxleastb 10100 maxltsup 10104 addcn2 10149 mulcn2 10151 dvdsval2 10198 dvdsadd2b 10242 dvdsmod 10262 oexpneg 10276 divalglemex 10322 divalg 10324 gcdass 10404 rplpwr 10416 rppwr 10417 lcmass 10467 coprmdvds2 10475 rpmulgcd2 10477 rpdvds 10481 cncongr2 10486 rpexp 10532 znege1 10556 |
Copyright terms: Public domain | W3C validator |