ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muleqadd Unicode version

Theorem muleqadd 7758
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
Assertion
Ref Expression
muleqadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B )  <-> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  1 ) )

Proof of Theorem muleqadd
StepHypRef Expression
1 ax-1cn 7069 . . . . 5  |-  1  e.  CC
2 mulsub 7505 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
31, 2mpanr2 428 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  B  e.  CC )  ->  ( ( A  -  1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
41, 3mpanl2 425 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
51mulid1i 7121 . . . . . . 7  |-  ( 1  x.  1 )  =  1
65oveq2i 5543 . . . . . 6  |-  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 )
76a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 ) )
8 mulid1 7116 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
9 mulid1 7116 . . . . . 6  |-  ( B  e.  CC  ->  ( B  x.  1 )  =  B )
108, 9oveqan12d 5551 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  =  ( A  +  B ) )
117, 10oveq12d 5550 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  (
( A  x.  1 )  +  ( B  x.  1 ) ) )  =  ( ( ( A  x.  B
)  +  1 )  -  ( A  +  B ) ) )
12 mulcl 7100 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
13 addcl 7098 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
14 addsub 7319 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  1  e.  CC  /\  ( A  +  B )  e.  CC )  ->  (
( ( A  x.  B )  +  1 )  -  ( A  +  B ) )  =  ( ( ( A  x.  B )  -  ( A  +  B ) )  +  1 ) )
151, 14mp3an2 1256 . . . . 5  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( A  +  B
)  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B
) )  =  ( ( ( A  x.  B )  -  ( A  +  B )
)  +  1 ) )
1612, 13, 15syl2anc 403 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B )
)  =  ( ( ( A  x.  B
)  -  ( A  +  B ) )  +  1 ) )
174, 11, 163eqtrd 2117 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  -  ( A  +  B ) )  +  1 ) )
1817eqeq1d 2089 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  =  1  <-> 
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  1 ) )
191addid2i 7251 . . . 4  |-  ( 0  +  1 )  =  1
2019eqeq2i 2091 . . 3  |-  ( ( ( ( A  x.  B )  -  ( A  +  B )
)  +  1 )  =  ( 0  +  1 )  <->  ( (
( A  x.  B
)  -  ( A  +  B ) )  +  1 )  =  1 )
2112, 13subcld 7419 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  -  ( A  +  B )
)  e.  CC )
22 0cn 7111 . . . . 5  |-  0  e.  CC
23 addcan2 7289 . . . . 5  |-  ( ( ( ( A  x.  B )  -  ( A  +  B )
)  e.  CC  /\  0  e.  CC  /\  1  e.  CC )  ->  (
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  ( 0  +  1 )  <->  ( ( A  x.  B )  -  ( A  +  B ) )  =  0 ) )
2422, 1, 23mp3an23 1260 . . . 4  |-  ( ( ( A  x.  B
)  -  ( A  +  B ) )  e.  CC  ->  (
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  ( 0  +  1 )  <->  ( ( A  x.  B )  -  ( A  +  B ) )  =  0 ) )
2521, 24syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  B )  -  ( A  +  B ) )  +  1 )  =  ( 0  +  1 )  <-> 
( ( A  x.  B )  -  ( A  +  B )
)  =  0 ) )
2620, 25syl5rbbr 193 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  -  ( A  +  B
) )  =  0  <-> 
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  1 ) )
2712, 13subeq0ad 7429 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  -  ( A  +  B
) )  =  0  <-> 
( A  x.  B
)  =  ( A  +  B ) ) )
2818, 26, 273bitr2rd 215 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B )  <-> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    - cmin 7279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-neg 7282
This theorem is referenced by:  conjmulap  7817
  Copyright terms: Public domain W3C validator