![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 938 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: simpll1 977 simprl1 983 simp1l1 1031 simp2l1 1037 simp3l1 1043 3anandirs 1279 rspc3ev 2717 brcogw 4522 cocan1 5447 oawordi 6072 nnmord 6113 nnmword 6114 dif1en 6364 ac6sfi 6379 ordiso2 6446 enq0tr 6624 distrlem4prl 6774 distrlem4pru 6775 ltaprg 6809 aptiprlemu 6830 lelttr 7199 readdcan 7248 addcan 7288 addcan2 7289 ltadd2 7523 ltmul1a 7691 ltmul1 7692 divmulassap 7783 divmulasscomap 7784 lemul1a 7936 xrlelttr 8876 icoshftf1o 9013 lincmb01cmp 9025 iccf1o 9026 fztri3or 9058 fzofzim 9197 ioom 9269 modqmuladdim 9369 modqm1p1mod0 9377 q2submod 9387 modqaddmulmod 9393 ltexp2a 9528 exple1 9532 expnlbnd2 9598 expcan 9644 maxleastb 10100 maxltsup 10104 addcn2 10149 mulcn2 10151 dvdsadd2b 10242 dvdsmod 10262 oexpneg 10276 divalglemex 10322 divalg 10324 gcdass 10404 rplpwr 10416 rppwr 10417 coprmdvds2 10475 rpmulgcd2 10477 qredeq 10478 rpdvds 10481 cncongr2 10486 rpexp 10532 znege1 10556 |
Copyright terms: Public domain | W3C validator |