| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcmpblnr | Unicode version | ||
| Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| addcmpblnr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 5541 |
. 2
| |
| 2 | addclpr 6727 |
. . . . . . . 8
| |
| 3 | addclpr 6727 |
. . . . . . . 8
| |
| 4 | 2, 3 | anim12i 331 |
. . . . . . 7
|
| 5 | 4 | an4s 552 |
. . . . . 6
|
| 6 | addclpr 6727 |
. . . . . . . 8
| |
| 7 | addclpr 6727 |
. . . . . . . 8
| |
| 8 | 6, 7 | anim12i 331 |
. . . . . . 7
|
| 9 | 8 | an4s 552 |
. . . . . 6
|
| 10 | 5, 9 | anim12i 331 |
. . . . 5
|
| 11 | 10 | an4s 552 |
. . . 4
|
| 12 | enrbreq 6911 |
. . . 4
| |
| 13 | 11, 12 | syl 14 |
. . 3
|
| 14 | simprll 503 |
. . . . . . . . 9
| |
| 15 | simplrr 502 |
. . . . . . . . 9
| |
| 16 | addcomprg 6768 |
. . . . . . . . 9
| |
| 17 | 14, 15, 16 | syl2anc 403 |
. . . . . . . 8
|
| 18 | 17 | oveq1d 5547 |
. . . . . . 7
|
| 19 | simprrr 506 |
. . . . . . . 8
| |
| 20 | addassprg 6769 |
. . . . . . . 8
| |
| 21 | 14, 15, 19, 20 | syl3anc 1169 |
. . . . . . 7
|
| 22 | addassprg 6769 |
. . . . . . . 8
| |
| 23 | 15, 14, 19, 22 | syl3anc 1169 |
. . . . . . 7
|
| 24 | 18, 21, 23 | 3eqtr3d 2121 |
. . . . . 6
|
| 25 | 24 | oveq2d 5548 |
. . . . 5
|
| 26 | simplll 499 |
. . . . . 6
| |
| 27 | 15, 19, 7 | syl2anc 403 |
. . . . . 6
|
| 28 | addassprg 6769 |
. . . . . 6
| |
| 29 | 26, 14, 27, 28 | syl3anc 1169 |
. . . . 5
|
| 30 | addclpr 6727 |
. . . . . . 7
| |
| 31 | 14, 19, 30 | syl2anc 403 |
. . . . . 6
|
| 32 | addassprg 6769 |
. . . . . 6
| |
| 33 | 26, 15, 31, 32 | syl3anc 1169 |
. . . . 5
|
| 34 | 25, 29, 33 | 3eqtr4d 2123 |
. . . 4
|
| 35 | simprlr 504 |
. . . . . . . . 9
| |
| 36 | simplrl 501 |
. . . . . . . . 9
| |
| 37 | addcomprg 6768 |
. . . . . . . . 9
| |
| 38 | 35, 36, 37 | syl2anc 403 |
. . . . . . . 8
|
| 39 | 38 | oveq1d 5547 |
. . . . . . 7
|
| 40 | simprrl 505 |
. . . . . . . 8
| |
| 41 | addassprg 6769 |
. . . . . . . 8
| |
| 42 | 35, 36, 40, 41 | syl3anc 1169 |
. . . . . . 7
|
| 43 | addassprg 6769 |
. . . . . . . 8
| |
| 44 | 36, 35, 40, 43 | syl3anc 1169 |
. . . . . . 7
|
| 45 | 39, 42, 44 | 3eqtr3d 2121 |
. . . . . 6
|
| 46 | 45 | oveq2d 5548 |
. . . . 5
|
| 47 | simpllr 500 |
. . . . . 6
| |
| 48 | 36, 40, 6 | syl2anc 403 |
. . . . . 6
|
| 49 | addassprg 6769 |
. . . . . 6
| |
| 50 | 47, 35, 48, 49 | syl3anc 1169 |
. . . . 5
|
| 51 | addclpr 6727 |
. . . . . . 7
| |
| 52 | 35, 40, 51 | syl2anc 403 |
. . . . . 6
|
| 53 | addassprg 6769 |
. . . . . 6
| |
| 54 | 47, 36, 52, 53 | syl3anc 1169 |
. . . . 5
|
| 55 | 46, 50, 54 | 3eqtr4d 2123 |
. . . 4
|
| 56 | 34, 55 | eqeq12d 2095 |
. . 3
|
| 57 | 13, 56 | bitrd 186 |
. 2
|
| 58 | 1, 57 | syl5ibr 154 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-iplp 6658 df-enr 6903 |
| This theorem is referenced by: addsrmo 6920 |
| Copyright terms: Public domain | W3C validator |